research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new mononuclear neutral high-spin iron(III) complex with the different tridentate ligands 5-bromo­salicyl­aldehyde (pyridin-2-yl)hydrazone and 5-bromo­salicyl­aldehyde thio­semicarbazone

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: zhanglifang@cumt.edu.cn

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 26 November 2017; accepted 20 January 2018; online 31 January 2018)

The title neutral mononuclear complex, [1-(5-bromo-2-oxido­benzyl­idene)thio­semicarbazidato](4-bromo-2-{[2-(pyridin-2-yl)hydrazinyl­idene]meth­yl}pheno­lato)iron(III), [Fe(C8H6BrN3OS)(C12H9BrN3O)] (I), crystallizes in the monoclinic space group C2/c and has two different planar tridentate ligands. The central FeIII ion is coordinated to three N, two O and one S atom, forming a distorted octa­hedral FeN3O2S coordination geometry. In the crystal, the complex mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds and ππ inter­actions into layers parallel to (100). Magnetic measurements show that the central FeIII ion is in the high-spin state; this is also supported by the bond distances around the FeIII ion.

1. Chemical context

Much attention have been paid to the design and synthesis of FeIII complexes for magnetic materials owing to their inter­esting thermal- or light-induced spin conversion between the high-spin (HS, S = 5/2) and low-spin (LS, S = 1/2) states (Li et al., 2013[Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948-12952.]; Phonsri et al., 2017[Phonsri, W., Harding, P., Murray, K. S., Moubaraki, B. & Harding, D. J. (2017). New J. Chem. 41, 13747-13753.]; Sato et al., 2007[Sato, O., Tao, J. & Zhang, Y.-Z. (2007). Angew. Chem. Int. Ed. 46, 2152-2187.]). It is well known that the organic ligands usually play a significant role in the crystal structures and magnetic properties of metal complexes (Ni et al., 2017[Ni, Z.-H., Xu, L., Li, N. & Zhang, L. F. (2017). Inorg. Chim. Acta, 462, 204-208.]; Zhang et al., 2016[Zhang, R., Xu, L., Ni, Z., Chen, H. & Zhang, L. (2016). Inorg. Chem. Commun. 67, 99-102.]). Up to date, many FeIII complexes with spin-crossover (SCO) behavior have been designed and synthesized through the subtle design and combination of different ligands. Among the many organic ligands, Schiff bases are the most common ligands for new FeIII complexes due to their convenient synthesis and regulation. Compared with homo-ligand complexes, the employment of mixed ligands provides more selection and modification strategies for new magnetic complexes. In previous reports, the ligands 5-bromo-salicyl­aldehyde-2-pyridyl­hydrazone (5-Br-Hpsal), 5-bromo-salicyl­aldehyde-thio­semicarbazone (5-Br-H2thsa) and their derivatives have been explored to assembly FeIII and MnIII complexes with SCO behavior (Shongwe et al., 2014[Shongwe, M. S., Al-Barhi, K. S., Mikuriya, M., Adams, H., Morris, M. J., Bill, E. & Molloy, K. C. (2014). Chem. Eur. J. 20, 9693-9701.]). Recently, we obtained the title complex, [(C20H15N6O2SBr2)Fe] (I)[link], using 5-Br-Hpsal and 5-Br-H2thsa ligands. Herein, we report the crystal structure and magnetic property of this iron(III) complex.

2. Structural commentary

The title complex (Fig. 1[link]) crystallizes in the monoclinic space group C2/c. Compound (I)[link] is a neutral mononuclear complex with two different rigid tridentate ligands – 5-Br-psal and 5-Br-thsa2– – which adopt a meridional coordination mode. The central FeIII ion lies almost within the plane of each ligand [give deviations] and is coordinated to three nitro­gen, two oxygen and one sulfur atoms from the two tridentate 5-Br-psal and 5-Br-thsa2– ligands, forming a distored octa­hedral FeN3O2S geometry. The Fe—O bond lengths are 1.943 (3) and 1.931 (3) Å, the Fe—N bond lengths range from 2.142 (3) to 2.157 (3) Å, and the Fe1—S1 bond length is 2.4093 (14) Å. All the bond lengths are normal and agree well with those in related high-spin state FeIII compounds (Li et al., 2013[Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948-12952.]; Phonsri et al., 2017[Phonsri, W., Harding, P., Murray, K. S., Moubaraki, B. & Harding, D. J. (2017). New J. Chem. 41, 13747-13753.]). The C1—S1 bond length [1.720 (4) Å] is comparable with the ordinary C—S bond length (Li & Sato, 2017[Li, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993-995.]), whereas the C1=N2 and C2=N3 bond distances [1.314 (5) and 1.287 (5) Å, respectively] are significantly smaller than those of C1—N1 [1.350 (5) Å] and C16—N5 [1.377 (6) Å] indicating the double-bond character. The bond angles further evidence the significantly distorted octa­hedral coordination geometry around the FeIII ion.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link] with 30% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, there are two independent hydrogen bonds (Table 1[link]), which link the complex mol­ecules into layers parallel to (100) (Fig. 2[link]). In addition, there exist relatively strong ππ inter­actions between the pyridine and benzene rings of the 5-Br-psal ligands with a shortest inter­atomic distance of 3.485 (3) Å (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N2i 0.83 (4) 2.00 (4) 2.825 (5) 171 (4)
N1—H1A⋯O2ii 0.88 2.29 2.987 (4) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The layered structure of (I)[link] formed through hydrogen bonds (green dotted lines) and ππ inter­actions.

4. Magnetic properties

The magnetic susceptibilities of (I)[link] have been measured in the temperature range 2–350 K under an applied magnetic field strength of 2000 Oe by SQUID magnetometry. A plot of χmT versus T is presented in Fig. 3[link], where χm represents the molar magnetic susceptibility per FeIII unit. The χmT value is 4.042 emu K mol−1 at room temperature, which is slightly smaller than the expected value of 4.375 emu K mol−1 for the single spin carrier of high-spin FeIII (S = 5/2) based on g = 2.0. The measurement of the magnetic property shows that the FeIII ion is in the high-spin state, which agrees well with the above-mentioned bond lengths around the FeIII ion. The χmT value keeps nearly constant with decreasing temperature until around 75 K, and then it decreases quickly to a minimum value of 1.12 emu K mol−1 at 2.0 K. This tendency to change of the χmT curve indicates the existence of overall weak anti­ferromagnetic inter­actions in (I)[link]. The magnetic susceptibilities in the range of 2–350 K comply well with the Curie–Weiss law with a negative Weiss constant θ = −4.28 K, and Curie constant C = 4.08 emu K mol−1, which further confirms the presence of overall inter­molecular anti­ferromagnetic inter­actions between neighboring FeIII ions through inter­molecular hydrogen bonds and ππ inter­actions in complex (I)[link].

[Figure 3]
Figure 3
Temperature dependencies of χmT and χm versus temperature (T) for complex (I)[link] measured under an applied field of 2000 Oe. The solid line represents the fitting curve based on the Curie–Weiss law.

5. Synthesis and crystallization

All reactions were conducted in air using reagent grade solvents. The 5-Br-Hpsal and 5-Br-H2thsa ligands were synthesized by refluxing equimolar 5-bromo­salicyl­aldehyde with thio­semicarbazone and 2-pyridyl­hydrazine, respectively, in an ethanol solvent. All other chemicals were purchased from the Sigma Aldrich Chemical Company and used as received. The precursors [Fe(5-Br-psal)2]Cl and Li[Fe(5-Br-thsa)2] were prepared according to literature methods (Phonsri et al., 2016[Phonsri, W., Davies, C. G., Jameson, G. N. L., Moubaraki, B. & Murray, K. S. (2016). Chem. Eur. J. 22, 1322-1333.]). [Fe(5-Br-psal)2]Cl (0.2 mmol) and Li[Fe(5-Br-thsa)2] (0.2 mmol) were dissolved in aceto­nitrile (20 mL). The mixture was filtered and kept at room temperature for two days. Brown block-shaped single crystals were collected with a relatively high yield of 76%. Elemental analysis calculated for C20H15N6O2SBr2Fe: C, 38.80%; H, 2.44%; N, 13.57%; found: C, 38.72%, H, 2.38%; N, 13.62%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amino-H atom of 5-Br-psal was found from the difference-Fourier map and refined isotropically. All other hydrogen atoms were placed in calculated positions with C—H = 0.88–0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C,N)].

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C8H6BrN3OS)(C12H9BrN3O)]
Mr 619.11
Crystal system, space group Monoclinic, C2/c
Temperature (K) 123
a, b, c (Å) 21.145 (4), 14.738 (3), 15.471 (3)
β (°) 112.47 (3)
V3) 4455.2 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.39
Crystal size (mm) 0.12 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.576, 0.707
No. of measured, independent and observed [I > 2σ(I)] reflections 17937, 5012, 3514
Rint 0.074
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.106, 1.00
No. of reflections 5012
No. of parameters 293
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.76
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

[1-(5-Bromo-2-oxidobenzylidene)thiosemicarbazidato](4-bromo-2-{[2-(pyridin-2-yl)hydrazinylidene]methyl}phenolato)iron(III) top
Crystal data top
[Fe(C8H6BrN3OS)(C12H9BrN3O)]F(000) = 2440
Mr = 619.11Dx = 1.846 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.145 (4) ÅCell parameters from 2456 reflections
b = 14.738 (3) Åθ = 3.0–26.6°
c = 15.471 (3) ŵ = 4.39 mm1
β = 112.47 (3)°T = 123 K
V = 4455.2 (18) Å3Block, brown
Z = 80.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3514 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.074
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 2725
Tmin = 0.576, Tmax = 0.707k = 1819
17937 measured reflectionsl = 2018
5012 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2543P]
where P = (Fo2 + 2Fc2)/3
5012 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.25435 (3)0.91027 (4)0.12510 (4)0.01599 (15)
Br10.11616 (2)1.34761 (3)0.13350 (3)0.02748 (14)
Br20.56554 (3)0.64748 (4)0.14892 (4)0.04080 (16)
O10.20626 (15)0.96909 (19)0.00536 (18)0.0228 (7)
O20.33707 (15)0.91116 (19)0.1001 (2)0.0226 (7)
S10.30696 (6)0.87380 (7)0.28908 (7)0.0232 (3)
N10.32499 (18)0.9869 (2)0.4275 (2)0.0250 (8)
H1A0.32251.03940.45320.030*
H1B0.34460.94020.46310.030*
N20.27026 (18)1.0507 (2)0.2850 (2)0.0184 (8)
N30.24650 (17)1.0386 (2)0.1873 (2)0.0160 (7)
N40.26090 (17)0.7660 (2)0.1140 (2)0.0165 (7)
N50.20634 (19)0.7168 (2)0.1166 (2)0.0212 (8)
N60.15575 (18)0.8575 (2)0.1092 (2)0.0198 (8)
C10.2987 (2)0.9781 (3)0.3335 (3)0.0183 (9)
C20.2241 (2)1.1126 (3)0.1416 (3)0.0191 (9)
H20.22721.16560.17800.023*
C30.1945 (2)1.1242 (3)0.0406 (3)0.0171 (9)
C40.1734 (2)1.2118 (3)0.0059 (3)0.0190 (9)
H40.17921.26050.04840.023*
C50.1448 (2)1.2278 (3)0.0876 (3)0.0182 (9)
C60.1360 (2)1.1570 (3)0.1512 (3)0.0252 (10)
H60.11611.16860.21650.030*
C70.1558 (2)1.0713 (3)0.1194 (3)0.0246 (10)
H70.14901.02350.16320.030*
C80.1863 (2)1.0516 (3)0.0228 (3)0.0170 (9)
C90.3869 (2)0.8521 (3)0.1141 (3)0.0211 (10)
C100.4514 (2)0.8828 (3)0.1204 (3)0.0272 (10)
H100.45880.94600.11700.033*
C110.5042 (2)0.8236 (3)0.1311 (3)0.0298 (11)
H110.54770.84530.13610.036*
C120.4922 (2)0.7305 (3)0.1347 (3)0.0295 (11)
C130.4306 (2)0.6972 (3)0.1282 (3)0.0241 (10)
H130.42400.63350.12990.029*
C140.3763 (2)0.7575 (3)0.1191 (3)0.0207 (9)
C150.3135 (2)0.7189 (3)0.1168 (3)0.0202 (9)
H150.31010.65460.11720.024*
C160.1507 (2)0.7671 (3)0.1137 (3)0.0209 (9)
C170.0910 (2)0.7237 (3)0.1113 (3)0.0279 (11)
H170.08890.65950.11570.034*
C180.0352 (2)0.7776 (3)0.1022 (3)0.0315 (11)
H180.00600.75050.10050.038*
C190.0396 (2)0.8719 (3)0.0956 (3)0.0312 (11)
H190.00160.90990.08850.037*
C200.1007 (2)0.9079 (3)0.0996 (3)0.0269 (10)
H200.10410.97180.09530.032*
H50.214 (2)0.665 (3)0.140 (3)0.022 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0230 (3)0.0106 (3)0.0143 (3)0.0020 (3)0.0071 (3)0.0004 (2)
Br10.0358 (3)0.0187 (2)0.0243 (2)0.0050 (2)0.0074 (2)0.00645 (19)
Br20.0304 (3)0.0502 (4)0.0369 (3)0.0172 (2)0.0073 (2)0.0101 (2)
O10.0372 (19)0.0142 (15)0.0146 (15)0.0049 (13)0.0073 (14)0.0016 (12)
O20.0283 (17)0.0176 (15)0.0253 (16)0.0048 (14)0.0140 (14)0.0042 (13)
S10.0350 (7)0.0156 (5)0.0160 (5)0.0058 (5)0.0063 (5)0.0004 (4)
N10.037 (2)0.019 (2)0.0144 (18)0.0031 (17)0.0049 (17)0.0010 (15)
N20.029 (2)0.0158 (18)0.0109 (16)0.0016 (15)0.0085 (15)0.0026 (14)
N30.0220 (19)0.0145 (18)0.0129 (17)0.0002 (15)0.0082 (15)0.0029 (13)
N40.0217 (19)0.0160 (18)0.0098 (16)0.0018 (15)0.0038 (14)0.0010 (13)
N50.032 (2)0.0092 (18)0.0214 (19)0.0001 (16)0.0096 (17)0.0003 (15)
N60.0219 (19)0.019 (2)0.0152 (18)0.0012 (16)0.0035 (15)0.0012 (14)
C10.024 (2)0.014 (2)0.018 (2)0.0017 (18)0.0093 (19)0.0021 (16)
C20.026 (2)0.013 (2)0.020 (2)0.0003 (18)0.0116 (19)0.0010 (17)
C30.022 (2)0.016 (2)0.014 (2)0.0054 (18)0.0071 (18)0.0024 (16)
C40.033 (3)0.011 (2)0.014 (2)0.0027 (18)0.0101 (19)0.0021 (16)
C50.020 (2)0.014 (2)0.021 (2)0.0034 (17)0.0072 (18)0.0052 (17)
C60.030 (3)0.029 (3)0.015 (2)0.004 (2)0.0070 (19)0.0036 (19)
C70.034 (3)0.026 (3)0.012 (2)0.004 (2)0.0065 (19)0.0018 (18)
C80.018 (2)0.015 (2)0.018 (2)0.0013 (17)0.0056 (18)0.0027 (16)
C90.029 (3)0.021 (2)0.014 (2)0.009 (2)0.0096 (19)0.0027 (17)
C100.031 (3)0.029 (3)0.023 (2)0.001 (2)0.011 (2)0.001 (2)
C110.023 (3)0.040 (3)0.025 (2)0.000 (2)0.007 (2)0.003 (2)
C120.029 (3)0.035 (3)0.024 (2)0.012 (2)0.009 (2)0.004 (2)
C130.032 (3)0.018 (2)0.022 (2)0.004 (2)0.010 (2)0.0044 (18)
C140.027 (2)0.023 (2)0.011 (2)0.0045 (19)0.0060 (18)0.0031 (17)
C150.029 (3)0.012 (2)0.013 (2)0.0022 (18)0.0000 (18)0.0017 (16)
C160.030 (2)0.021 (2)0.0089 (19)0.003 (2)0.0035 (18)0.0010 (16)
C170.034 (3)0.028 (3)0.024 (2)0.008 (2)0.012 (2)0.006 (2)
C180.027 (3)0.035 (3)0.030 (3)0.009 (2)0.008 (2)0.002 (2)
C190.026 (3)0.036 (3)0.029 (3)0.004 (2)0.007 (2)0.001 (2)
C200.029 (3)0.027 (2)0.023 (2)0.005 (2)0.009 (2)0.002 (2)
Geometric parameters (Å, º) top
Fe1—O21.931 (3)C4—C51.359 (5)
Fe1—O11.943 (3)C4—H40.9500
Fe1—N42.142 (3)C5—C61.396 (6)
Fe1—N62.150 (4)C6—C71.362 (6)
Fe1—N32.157 (3)C6—H60.9500
Fe1—S12.4093 (14)C7—C81.412 (5)
Br1—C51.913 (4)C7—H70.9500
Br2—C121.921 (4)C9—C101.405 (6)
O1—C81.307 (5)C9—C141.418 (6)
O2—C91.318 (5)C10—C111.376 (6)
S1—C11.720 (4)C10—H100.9500
N1—C11.350 (5)C11—C121.399 (6)
N1—H1A0.8800C11—H110.9500
N1—H1B0.8800C12—C131.361 (6)
N2—C11.314 (5)C13—C141.416 (6)
N2—N31.409 (4)C13—H130.9500
N3—C21.287 (5)C14—C151.433 (6)
N4—C151.298 (5)C15—H150.9500
N4—N51.376 (5)C16—C171.403 (6)
N5—C161.377 (6)C17—C181.384 (6)
N5—H50.83 (4)C17—H170.9500
N6—C201.339 (5)C18—C191.400 (6)
N6—C161.341 (5)C18—H180.9500
C2—C31.454 (5)C19—C201.376 (6)
C2—H20.9500C19—H190.9500
C3—C41.403 (5)C20—H200.9500
C3—C81.416 (5)
O2—Fe1—O189.41 (12)C4—C5—Br1120.3 (3)
O2—Fe1—N484.23 (12)C6—C5—Br1119.4 (3)
O1—Fe1—N4113.13 (12)C7—C6—C5119.9 (4)
O2—Fe1—N6153.25 (13)C7—C6—H6120.0
O1—Fe1—N685.48 (13)C5—C6—H6120.0
N4—Fe1—N673.81 (13)C6—C7—C8121.7 (4)
O2—Fe1—N3108.28 (13)C6—C7—H7119.2
O1—Fe1—N386.13 (12)C8—C7—H7119.2
N4—Fe1—N3157.59 (12)O1—C8—C7120.1 (4)
N6—Fe1—N397.57 (13)O1—C8—C3122.3 (4)
O2—Fe1—S197.11 (10)C7—C8—C3117.6 (4)
O1—Fe1—S1165.00 (9)O2—C9—C10119.5 (4)
N4—Fe1—S181.07 (9)O2—C9—C14121.7 (4)
N6—Fe1—S194.42 (10)C10—C9—C14118.7 (4)
N3—Fe1—S179.01 (9)C11—C10—C9121.7 (4)
C8—O1—Fe1135.9 (3)C11—C10—H10119.1
C9—O2—Fe1133.6 (3)C9—C10—H10119.1
C1—S1—Fe198.35 (14)C10—C11—C12118.5 (4)
C1—N1—H1A120.0C10—C11—H11120.8
C1—N1—H1B120.0C12—C11—H11120.8
H1A—N1—H1B120.0C13—C12—C11122.2 (4)
C1—N2—N3114.1 (3)C13—C12—Br2119.1 (4)
C2—N3—N2112.8 (3)C11—C12—Br2118.6 (4)
C2—N3—Fe1125.0 (3)C12—C13—C14119.8 (4)
N2—N3—Fe1122.2 (2)C12—C13—H13120.1
C15—N4—N5115.8 (4)C14—C13—H13120.1
C15—N4—Fe1127.5 (3)C13—C14—C9119.0 (4)
N5—N4—Fe1116.1 (2)C13—C14—C15117.4 (4)
N4—N5—C16115.6 (4)C9—C14—C15123.5 (4)
N4—N5—H5118 (3)N4—C15—C14124.2 (4)
C16—N5—H5122 (3)N4—C15—H15117.9
C20—N6—C16118.2 (4)C14—C15—H15117.9
C20—N6—Fe1125.1 (3)N6—C16—N5116.9 (4)
C16—N6—Fe1116.6 (3)N6—C16—C17122.8 (4)
N2—C1—N1116.6 (4)N5—C16—C17120.3 (4)
N2—C1—S1126.4 (3)C18—C17—C16117.6 (4)
N1—C1—S1117.0 (3)C18—C17—H17121.2
N3—C2—C3127.3 (4)C16—C17—H17121.2
N3—C2—H2116.4C17—C18—C19120.0 (4)
C3—C2—H2116.4C17—C18—H18120.0
C4—C3—C8119.5 (4)C19—C18—H18120.0
C4—C3—C2117.5 (4)C20—C19—C18117.8 (4)
C8—C3—C2123.0 (4)C20—C19—H19121.1
C5—C4—C3121.0 (4)C18—C19—H19121.1
C5—C4—H4119.5N6—C20—C19123.6 (5)
C3—C4—H4119.5N6—C20—H20118.2
C4—C5—C6120.3 (4)C19—C20—H20118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N2i0.83 (4)2.00 (4)2.825 (5)171 (4)
N1—H1A···O2ii0.882.292.987 (4)136
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z+1/2.
 

Funding information

The work was supported by the Fundamental Research Funds for the Central Universities (No. 2015QNA24).

References

First citationLi, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948–12952.  CrossRef CAS PubMed Google Scholar
First citationLi, G.-L. & Sato, O. (2017). Acta Cryst. E73, 993–995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, Z.-H., Xu, L., Li, N. & Zhang, L. F. (2017). Inorg. Chim. Acta, 462, 204–208.  CrossRef CAS Google Scholar
First citationPhonsri, W., Davies, C. G., Jameson, G. N. L., Moubaraki, B. & Murray, K. S. (2016). Chem. Eur. J. 22, 1322–1333.  CrossRef CAS PubMed Google Scholar
First citationPhonsri, W., Harding, P., Murray, K. S., Moubaraki, B. & Harding, D. J. (2017). New J. Chem. 41, 13747–13753.  CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSato, O., Tao, J. & Zhang, Y.-Z. (2007). Angew. Chem. Int. Ed. 46, 2152–2187.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShongwe, M. S., Al-Barhi, K. S., Mikuriya, M., Adams, H., Morris, M. J., Bill, E. & Molloy, K. C. (2014). Chem. Eur. J. 20, 9693–9701.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, R., Xu, L., Ni, Z., Chen, H. & Zhang, L. (2016). Inorg. Chem. Commun. 67, 99–102.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds