research communications
of 3-[(2-acetamidophenyl)imino]butan-2-one
aDepartment of Chemistry, The University of Chicago, 5735 South Ellis Ave, Chicago, Il 60637, USA
*Correspondence e-mail: rfjordan@uchicago.edu
In the title compound, 3-[(2-acetamidophenyl)imino]butan-2-one, C12H14N2O2, the imine C=N bond is essentially coplanar with the ketone C=O bond in an s-trans conformation. The benzene ring is twisted away from the plane of the C=N bond by 53.03 (14)°. The acetamido unit is essentially coplanar with the benzene ring. In the crystal, molecules are connected into chains along the c axis through C—H⋯O hydrogen bonds, with two adjacent chains being hinged by C—H⋯O hydrogen bonds.
Keywords: crystal structure; iminoketone; hydrogen bonding.
CCDC reference: 1553771
1. Chemical context
α-(Arylimino)ketone compounds, resulting from condensation between α-diketones and anilines in a 1:1 fashion, are useful bidentate ligands in transition metal coordination chemistry (Binotti et al., 2004) and important synthetic intermediates toward α-diimines (Schmid et al., 2002) and imine-based multidentate ligands (Schmiege et al., 2007). X-ray structural studies of α-(arylimino)ketones have primarily focused on those derived from aromatic diketones such as acenaphthenequinone (Kovach et al., 2011), benzil (Kovach et al., 2014; Güner et al., 2000), and phenanthrenequinone (Farrell et al., 2017). In contrast, structural reports on α-(arylimino)ketone compounds derived from aliphatic α-diketones are rare (Azoulay et al., 2009).
Our group is interested in N,N-diaryl α-diimine ligands that contain hydrogen-bonding units for transition-metal-catalyzed of polar vinyl monomers with ethylene (Zhai & Jordan, 2014; Zhai et al., 2017). We obtained the title compound during the attempted synthesis of an α-diimine compound containing an ortho-acetamido group and report its in the present work.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The arylimine unit exhibits an E conformation. The ketone carbonyl group (C2–O1) and the imine C=N group (C3–N1) are almost coplanar [torsion angle O1—C2—C3—N1 −177.87 (10) °] and trans with respect to the C2—C3 bond. The imine plane is twisted from the plane of the aryl ring (C5–C10) by a dihedral angle of 53.03 (14)° [defined by atoms C3/N1/C5/C6]. The acetamido group is essentially coplanar with the aryl ring [torsion angle C11—N2—C10—C9, −0.14 (18)°]. The molecular structure of I also features intramolecular C9—H9⋯O2 hydrogen bond (Table 1). This bond, in combination with conjugation between the amide group and the aryl ring, is likely responsible for the coplanarity between the acetamido and the aryl groups.
3. Supramolecular features
In the crystal, C8—H8⋯O1ii [symmetry code: (ii) x, y, z − 1 hydrogen bonds arrange the molecules into chains along the c axis (Fig. 2, Table 2). Two chains in close proximity are linked by C12—H12B⋯O2i hydrogen bonds [symmetry code: (i) x, −y + , z + ]. There are no other significant contacts between the chains (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) indicated that no other α-(arylimino)ketone compounds derived from 2,3-butanedione have been structurally characterized. Two structurally similar α-(arylimino)ketones have been reported, namely 2,4-bis(2,6-diisopropylphenylimino)pentan-3-one [CCDC refcode COPLAV (Azoulay et al., 2009) and its identical structure COPLAV01 (Zhang et al., 2012)] and 2-(2,6-diisopropylphenylimino)-1-phenylpropan-1-one (IFADAV; Ferreira et al., 2006).
5. Synthesis and crystallization
A Schlenk flask was charged with N-(2-aminophenyl)acetamide (Shirin et al., 2002) (2.00 g, 13.3 mmol) and anhydrous MeOH (11 mL) under nitrogen. The mixture was cooled to 273 K. Butane-2,3-dione (2.30 g, 26.7 mmol) and a catalytic amount of formic acid (2–3 drops) were added to the reaction mixture, and the mixture was stirred at 273 K for 1 h. The mixture was warmed to room temperature, and the volatiles were removed under vacuum. The yellow solid residue was washed three times with diethyl ether and dried under vacuum to yield the title compound (2.04 g, 70%). This material slowly degrades under air at room temperature. Storage under vacuum or nitrogen is recommended.
1H NMR (500 MHz, CDCl3): δ 8.31 (d, J = 8.0, 1H), 7.64 (br s, 1H, NH), 7.24 (t, J = 7.5, 1H), 7.08 (t, J = 7.5, 1H), 6.78 (d, J = 8.0, 1H), 2.55 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.16 (s, 3H, CH3). 13C{1H NMR (126 MHz, CDCl3): δ 199.5, 168.0, 167.1, 136.4, 131.5, 127.7, 123.6, 120.5, 119.4, 25.1, 25.0, 14.9. Single crystals were obtained from diffusion of diethyl ether into a THF solution at room temperature under nitrogen.
6. Refinement
Crystal data, data collection and structural . Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The hydrogen atom attached to the N2 atom was found in a difference-Fourier map and was freely refined without any restraints.
details are summarized in Table 2Supporting information
CCDC reference: 1553771
https://doi.org/10.1107/S2056989018000749/ld2143sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000749/ld2143Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018000749/ld2143Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018000749/ld2143Isup4.cml
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C12H14N2O2 | F(000) = 464 |
Mr = 218.25 | Dx = 1.338 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.987 (3) Å | Cell parameters from 9891 reflections |
b = 7.7950 (14) Å | θ = 3.0–28.0° |
c = 10.3135 (18) Å | µ = 0.09 mm−1 |
β = 105.556 (4)° | T = 100 K |
V = 1083.3 (3) Å3 | Prism, yellow |
Z = 4 | 0.24 × 0.18 × 0.12 mm |
Bruker D8 Venture diffractometer | 2600 independent reflections |
Radiation source: micro-focus X-ray tube, INCOATEC ImuS | 2238 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.045 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
ω and phi scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −10→10 |
Tmin = 0.692, Tmax = 0.746 | l = −13→13 |
25254 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4447P] where P = (Fo2 + 2Fc2)/3 |
2600 reflections | (Δ/σ)max < 0.001 |
152 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.25794 (6) | −0.00837 (12) | 0.18433 (9) | 0.0135 (2) | |
N2 | 0.13175 (7) | 0.12269 (12) | −0.04210 (9) | 0.0152 (2) | |
H2 | 0.1258 (11) | 0.1242 (19) | 0.0383 (16) | 0.025 (4)* | |
O1 | 0.34355 (6) | 0.09306 (11) | 0.52268 (8) | 0.0226 (2) | |
O2 | 0.05883 (7) | 0.20570 (12) | −0.25772 (8) | 0.0254 (2) | |
C1 | 0.19297 (8) | −0.05200 (15) | 0.41627 (11) | 0.0186 (2) | |
H1A | 0.199647 | −0.175214 | 0.401962 | 0.028* | |
H1B | 0.139946 | −0.004880 | 0.342575 | 0.028* | |
H1C | 0.176645 | −0.033654 | 0.501886 | 0.028* | |
C2 | 0.28862 (8) | 0.03613 (14) | 0.41993 (10) | 0.0154 (2) | |
C3 | 0.31963 (8) | 0.04845 (13) | 0.29018 (10) | 0.0137 (2) | |
C4 | 0.41926 (8) | 0.12803 (15) | 0.30273 (11) | 0.0190 (2) | |
H4A | 0.471461 | 0.045455 | 0.343678 | 0.029* | |
H4B | 0.426448 | 0.230613 | 0.359472 | 0.029* | |
H4C | 0.425014 | 0.160061 | 0.213243 | 0.029* | |
C5 | 0.28445 (8) | −0.02162 (14) | 0.06164 (10) | 0.0136 (2) | |
C6 | 0.36956 (8) | −0.10852 (14) | 0.05394 (11) | 0.0155 (2) | |
H6 | 0.413667 | −0.152562 | 0.133672 | 0.019* | |
C7 | 0.39089 (8) | −0.13174 (15) | −0.06887 (11) | 0.0173 (2) | |
H7 | 0.448663 | −0.192741 | −0.073564 | 0.021* | |
C8 | 0.32711 (8) | −0.06509 (15) | −0.18428 (11) | 0.0181 (2) | |
H8 | 0.342227 | −0.078164 | −0.268210 | 0.022* | |
C9 | 0.24121 (8) | 0.02072 (15) | −0.17894 (11) | 0.0169 (2) | |
H9 | 0.198150 | 0.066045 | −0.258987 | 0.020* | |
C10 | 0.21796 (8) | 0.04058 (13) | −0.05641 (10) | 0.0137 (2) | |
C11 | 0.05744 (8) | 0.19599 (14) | −0.13980 (11) | 0.0169 (2) | |
C12 | −0.02681 (8) | 0.26801 (16) | −0.09199 (11) | 0.0197 (2) | |
H12A | −0.036247 | 0.389215 | −0.117457 | 0.030* | |
H12B | −0.011413 | 0.257572 | 0.006139 | 0.030* | |
H12C | −0.087703 | 0.204217 | −0.133482 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0143 (4) | 0.0147 (4) | 0.0114 (4) | 0.0018 (3) | 0.0033 (3) | 0.0017 (3) |
N2 | 0.0165 (4) | 0.0185 (5) | 0.0103 (4) | 0.0018 (4) | 0.0031 (3) | 0.0008 (3) |
O1 | 0.0279 (5) | 0.0259 (5) | 0.0124 (4) | −0.0038 (3) | 0.0025 (3) | −0.0016 (3) |
O2 | 0.0289 (5) | 0.0336 (5) | 0.0115 (4) | 0.0096 (4) | 0.0016 (3) | 0.0008 (3) |
C1 | 0.0201 (5) | 0.0226 (6) | 0.0155 (5) | 0.0006 (4) | 0.0087 (4) | 0.0004 (4) |
C2 | 0.0190 (5) | 0.0144 (5) | 0.0126 (5) | 0.0030 (4) | 0.0039 (4) | 0.0013 (4) |
C3 | 0.0143 (5) | 0.0135 (5) | 0.0129 (5) | 0.0014 (4) | 0.0032 (4) | 0.0016 (4) |
C4 | 0.0169 (5) | 0.0237 (6) | 0.0162 (5) | −0.0045 (4) | 0.0039 (4) | −0.0019 (4) |
C5 | 0.0150 (5) | 0.0141 (5) | 0.0119 (5) | −0.0030 (4) | 0.0040 (4) | −0.0003 (4) |
C6 | 0.0148 (5) | 0.0174 (5) | 0.0136 (5) | −0.0001 (4) | 0.0026 (4) | 0.0016 (4) |
C7 | 0.0167 (5) | 0.0192 (5) | 0.0178 (5) | −0.0006 (4) | 0.0075 (4) | −0.0014 (4) |
C8 | 0.0226 (6) | 0.0202 (6) | 0.0136 (5) | −0.0028 (4) | 0.0086 (4) | −0.0016 (4) |
C9 | 0.0207 (5) | 0.0179 (5) | 0.0110 (5) | −0.0012 (4) | 0.0027 (4) | 0.0009 (4) |
C10 | 0.0142 (5) | 0.0132 (5) | 0.0129 (5) | −0.0018 (4) | 0.0023 (4) | −0.0007 (4) |
C11 | 0.0178 (5) | 0.0162 (5) | 0.0142 (5) | 0.0000 (4) | −0.0002 (4) | −0.0014 (4) |
C12 | 0.0172 (5) | 0.0232 (6) | 0.0165 (5) | 0.0030 (4) | 0.0006 (4) | −0.0003 (4) |
N1—C3 | 1.2756 (14) | C4—H4C | 0.9800 |
N1—C5 | 1.4147 (13) | C5—C6 | 1.3904 (15) |
N2—H2 | 0.855 (15) | C5—C10 | 1.4053 (15) |
N2—C10 | 1.4074 (14) | C6—H6 | 0.9500 |
N2—C11 | 1.3640 (14) | C6—C7 | 1.3888 (15) |
O1—C2 | 1.2138 (13) | C7—H7 | 0.9500 |
O2—C11 | 1.2239 (14) | C7—C8 | 1.3831 (16) |
C1—H1A | 0.9800 | C8—H8 | 0.9500 |
C1—H1B | 0.9800 | C8—C9 | 1.3890 (16) |
C1—H1C | 0.9800 | C9—H9 | 0.9500 |
C1—C2 | 1.4954 (15) | C9—C10 | 1.3955 (15) |
C2—C3 | 1.5164 (14) | C11—C12 | 1.5029 (16) |
C3—C4 | 1.4990 (15) | C12—H12A | 0.9800 |
C4—H4A | 0.9800 | C12—H12B | 0.9800 |
C4—H4B | 0.9800 | C12—H12C | 0.9800 |
C3—N1—C5 | 120.76 (9) | C5—C6—H6 | 119.6 |
C10—N2—H2 | 114.6 (10) | C7—C6—C5 | 120.81 (10) |
C11—N2—H2 | 117.2 (10) | C7—C6—H6 | 119.6 |
C11—N2—C10 | 128.14 (9) | C6—C7—H7 | 120.4 |
H1A—C1—H1B | 109.5 | C8—C7—C6 | 119.29 (10) |
H1A—C1—H1C | 109.5 | C8—C7—H7 | 120.4 |
H1B—C1—H1C | 109.5 | C7—C8—H8 | 119.6 |
C2—C1—H1A | 109.5 | C7—C8—C9 | 120.79 (10) |
C2—C1—H1B | 109.5 | C9—C8—H8 | 119.6 |
C2—C1—H1C | 109.5 | C8—C9—H9 | 119.9 |
O1—C2—C1 | 122.86 (10) | C8—C9—C10 | 120.23 (10) |
O1—C2—C3 | 118.91 (10) | C10—C9—H9 | 119.9 |
C1—C2—C3 | 118.20 (9) | C5—C10—N2 | 116.91 (9) |
N1—C3—C2 | 116.44 (9) | C9—C10—N2 | 124.04 (10) |
N1—C3—C4 | 128.13 (10) | C9—C10—C5 | 119.04 (10) |
C4—C3—C2 | 115.42 (9) | N2—C11—C12 | 115.04 (10) |
C3—C4—H4A | 109.5 | O2—C11—N2 | 123.23 (11) |
C3—C4—H4B | 109.5 | O2—C11—C12 | 121.72 (10) |
C3—C4—H4C | 109.5 | C11—C12—H12A | 109.5 |
H4A—C4—H4B | 109.5 | C11—C12—H12B | 109.5 |
H4A—C4—H4C | 109.5 | C11—C12—H12C | 109.5 |
H4B—C4—H4C | 109.5 | H12A—C12—H12B | 109.5 |
C6—C5—N1 | 121.37 (9) | H12A—C12—H12C | 109.5 |
C6—C5—C10 | 119.77 (10) | H12B—C12—H12C | 109.5 |
C10—C5—N1 | 118.58 (9) | ||
N1—C5—C6—C7 | 175.13 (10) | C6—C5—C10—N2 | 178.09 (9) |
N1—C5—C10—N2 | 4.11 (14) | C6—C5—C10—C9 | −2.98 (16) |
N1—C5—C10—C9 | −176.95 (9) | C6—C7—C8—C9 | −1.56 (17) |
O1—C2—C3—N1 | −177.87 (10) | C7—C8—C9—C10 | −0.13 (17) |
O1—C2—C3—C4 | 1.57 (15) | C8—C9—C10—N2 | −178.76 (10) |
C1—C2—C3—N1 | 4.39 (14) | C8—C9—C10—C5 | 2.40 (16) |
C1—C2—C3—C4 | −176.18 (9) | C10—N2—C11—O2 | −3.18 (18) |
C3—N1—C5—C6 | 53.03 (15) | C10—N2—C11—C12 | 177.87 (10) |
C3—N1—C5—C10 | −133.09 (11) | C10—C5—C6—C7 | 1.33 (16) |
C5—N1—C3—C2 | −172.41 (9) | C11—N2—C10—C5 | 178.73 (10) |
C5—N1—C3—C4 | 8.23 (17) | C11—N2—C10—C9 | −0.15 (18) |
C5—C6—C7—C8 | 0.95 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.95 | 2.54 | 3.3286 (14) | 141 |
C9—H9···O2 | 0.95 | 2.24 | 2.8523 (15) | 122 |
C12—H12B···O2ii | 0.98 | 2.39 | 3.3387 (15) | 164 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y+1/2, z+1/2. |
Funding information
This work was supported by the National Science Foundation (CHE-1709159).
References
Azoulay, J. D., Rojas, R. S., Serrano, A. V., Ohtaki, H., Galland, G. B., Wu, G. & Bazan, G. C. (2009). Angew. Chem. Int. Ed. 48, 1089–1092. CSD CrossRef CAS Google Scholar
Binotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647–661. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrell, D., Kingston, S. J., Tungulin, D., Nuzzo, S., Twamley, B., Platts, J. A. & Baker, R. J. (2017). Eur. J. Org. Chem. 2017, 5597–5609. CSD CrossRef CAS Google Scholar
Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o2969–o2970. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Güner, V., Kabak, M. & Elerman, Y. (2000). J. Mol. Struct. 526, 151–157. Web of Science CSD CrossRef CAS Google Scholar
Kovach, J., Brennessel, W. W. & Jones, W. D. (2014). RSC Adv. 4, 1401–1411. CSD CrossRef CAS Google Scholar
Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38. Web of Science CSD CrossRef CAS Google Scholar
Schmid, M., Eberhardt, R., Kukral, J. & Rieger, B. (2002). Z. Naturforsch. B57, 1141. Google Scholar
Schmiege, B. M., Carney, M. J., Small, B. L., Gerlach, D. L. & Halfen, J. A. (2007). Dalton Trans. pp. 2547–2562. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shirin, Z., Thompson, J., Liable-Sands, L., Yap, G. P. A., Rheingold, A. L. & Borovik, A. S. (2002). J. Chem. Soc. Dalton Trans. pp. 1714–1720. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhai, F. & Jordan, R. F. (2014). Organometallics, 33, 7176–7192. CSD CrossRef CAS Google Scholar
Zhai, F., Solomon, J. B. & Jordan, R. F. (2017). Organometallics, 36, 1873–1879. CSD CrossRef CAS Google Scholar
Zhang, J., Zhang, Z., Chen, Z. & Zhou, X. (2012). Dalton Trans. 41, 357–359. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.