research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-[(2-acetamido­phen­yl)imino]­butan-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Chicago, 5735 South Ellis Ave, Chicago, Il 60637, USA
*Correspondence e-mail: rfjordan@uchicago.edu

Edited by S. V. Lindeman, Marquette University, USA (Received 23 December 2017; accepted 11 January 2018; online 19 January 2018)

In the title compound, 3-[(2-acetamido­phen­yl)imino]­butan-2-one, C12H14N2O2, the imine C=N bond is essentially coplanar with the ketone C=O bond in an s-trans conformation. The benzene ring is twisted away from the plane of the C=N bond by 53.03 (14)°. The acetamido unit is essentially coplanar with the benzene ring. In the crystal, mol­ecules are connected into chains along the c axis through C—H⋯O hydrogen bonds, with two adjacent chains being hinged by C—H⋯O hydrogen bonds.

1. Chemical context

α-(Aryl­imino)­ketone compounds, resulting from condensation between α-diketones and anilines in a 1:1 fashion, are useful bidentate ligands in transition metal coordination chemistry (Binotti et al., 2004[Binotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647-661.]) and important synthetic inter­mediates toward α-di­imines (Schmid et al., 2002[Schmid, M., Eberhardt, R., Kukral, J. & Rieger, B. (2002). Z. Naturforsch. B57, 1141.]) and imine-based multidentate ligands (Schmiege et al., 2007[Schmiege, B. M., Carney, M. J., Small, B. L., Gerlach, D. L. & Halfen, J. A. (2007). Dalton Trans. pp. 2547-2562.]). X-ray structural studies of α-(aryl­imino)­ketones have primarily focused on those derived from aromatic diketones such as acenaphthene­quinone (Kovach et al., 2011[Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33-38.]), benzil (Kovach et al., 2014[Kovach, J., Brennessel, W. W. & Jones, W. D. (2014). RSC Adv. 4, 1401-1411.]; Güner et al., 2000[Güner, V., Kabak, M. & Elerman, Y. (2000). J. Mol. Struct. 526, 151-157.]), and phenanthrene­quinone (Farrell et al., 2017[Farrell, D., Kingston, S. J., Tungulin, D., Nuzzo, S., Twamley, B., Platts, J. A. & Baker, R. J. (2017). Eur. J. Org. Chem. 2017, 5597-5609.]). In contrast, structural reports on α-(aryl­imino)­ketone compounds derived from aliphatic α-diketones are rare (Azoulay et al., 2009[Azoulay, J. D., Rojas, R. S., Serrano, A. V., Ohtaki, H., Galland, G. B., Wu, G. & Bazan, G. C. (2009). Angew. Chem. Int. Ed. 48, 1089-1092.]).

Our group is inter­ested in N,N-diaryl α-di­imine ligands that contain hydrogen-bonding units for transition-metal-catalyzed copolymerization of polar vinyl monomers with ethyl­ene (Zhai & Jordan, 2014[Zhai, F. & Jordan, R. F. (2014). Organometallics, 33, 7176-7192.]; Zhai et al., 2017[Zhai, F., Solomon, J. B. & Jordan, R. F. (2017). Organometallics, 36, 1873-1879.]). We obtained the title compound during the attempted synthesis of an α-di­imine compound containing an ortho-acetamido group and report its crystal structure in the present work.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The aryl­imine unit exhibits an E conformation. The ketone carbonyl group (C2–O1) and the imine C=N group (C3–N1) are almost coplanar [torsion angle O1—C2—C3—N1 −177.87 (10) °] and trans with respect to the C2—C3 bond. The imine plane is twisted from the plane of the aryl ring (C5–C10) by a dihedral angle of 53.03 (14)° [defined by atoms C3/N1/C5/C6]. The acetamido group is essentially coplanar with the aryl ring [torsion angle C11—N2—C10—C9, −0.14 (18)°]. The mol­ecular structure of I also features intra­molecular C9—H9⋯O2 hydrogen bond (Table 1[link]). This bond, in combination with conjugation between the amide group and the aryl ring, is likely responsible for the coplanarity between the acetamido and the aryl groups.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.54 3.3286 (14) 141
C9—H9⋯O2 0.95 2.24 2.8523 (15) 122
C12—H12B⋯O2ii 0.98 2.39 3.3387 (15) 164
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

In the crystal, C8—H8⋯O1ii [symmetry code: (ii) x, y, z − 1 hydrogen bonds arrange the mol­ecules into chains along the c axis (Fig. 2[link], Table 2[link]). Two chains in close proximity are linked by C12—H12B⋯O2i hydrogen bonds [symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}]]. There are no other significant contacts between the chains (Fig. 3[link]).

Table 2
Experimental details

Crystal data
Chemical formula C12H14N2O2
Mr 218.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.987 (3), 7.7950 (14), 10.3135 (18)
β (°) 105.556 (4)
V3) 1083.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.24 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.692, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25254, 2600, 2238
Rint 0.045
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.06
No. of reflections 2600
No. of parameters 152
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 2]
Figure 2
Chains running along the c-axis direction. [Symmetry codes: (_1) x, −y + [1\over2], z + [1\over2]; (_2) x, y, z − 1.]
[Figure 3]
Figure 3
Crystal packing of the title compound.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that no other α-(aryl­imino)­ketone compounds derived from 2,3-butane­dione have been structurally characterized. Two structurally similar α-(aryl­imino)­ketones have been reported, namely 2,4-bis­(2,6-diiso­propyl­phenyl­imino)­pentan-3-one [CCDC refcode COPLAV (Azoulay et al., 2009[Azoulay, J. D., Rojas, R. S., Serrano, A. V., Ohtaki, H., Galland, G. B., Wu, G. & Bazan, G. C. (2009). Angew. Chem. Int. Ed. 48, 1089-1092.]) and its identical structure COPLAV01 (Zhang et al., 2012[Zhang, J., Zhang, Z., Chen, Z. & Zhou, X. (2012). Dalton Trans. 41, 357-359.])] and 2-(2,6-diiso­propyl­phenyl­imino)-1-phenyl­propan-1-one (IFA­DAV; Ferreira et al., 2006[Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o2969-o2970.]).

5. Synthesis and crystallization

A Schlenk flask was charged with N-(2-amino­phen­yl)acetamide (Shirin et al., 2002[Shirin, Z., Thompson, J., Liable-Sands, L., Yap, G. P. A., Rheingold, A. L. & Borovik, A. S. (2002). J. Chem. Soc. Dalton Trans. pp. 1714-1720.]) (2.00 g, 13.3 mmol) and anhydrous MeOH (11 mL) under nitro­gen. The mixture was cooled to 273 K. Butane-2,3-dione (2.30 g, 26.7 mmol) and a catalytic amount of formic acid (2–3 drops) were added to the reaction mixture, and the mixture was stirred at 273 K for 1 h. The mixture was warmed to room temperature, and the volatiles were removed under vacuum. The yellow solid residue was washed three times with diethyl ether and dried under vacuum to yield the title compound (2.04 g, 70%). This material slowly degrades under air at room temperature. Storage under vacuum or nitro­gen is recommended.

1H NMR (500 MHz, CDCl3): δ 8.31 (d, J = 8.0, 1H), 7.64 (br s, 1H, NH), 7.24 (t, J = 7.5, 1H), 7.08 (t, J = 7.5, 1H), 6.78 (d, J = 8.0, 1H), 2.55 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.16 (s, 3H, CH3). 13C{1H NMR (126 MHz, CDCl3): δ 199.5, 168.0, 167.1, 136.4, 131.5, 127.7, 123.6, 120.5, 119.4, 25.1, 25.0, 14.9. Single crystals were obtained from diffusion of diethyl ether into a THF solution at room temperature under nitro­gen.

6. Refinement

Crystal data, data collection and structural refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The hydrogen atom attached to the N2 atom was found in a difference-Fourier map and was freely refined without any restraints.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

3-[(2-Acetamidophenyl)imino]butan-2-one top
Crystal data top
C12H14N2O2F(000) = 464
Mr = 218.25Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.987 (3) ÅCell parameters from 9891 reflections
b = 7.7950 (14) Åθ = 3.0–28.0°
c = 10.3135 (18) ŵ = 0.09 mm1
β = 105.556 (4)°T = 100 K
V = 1083.3 (3) Å3Prism, yellow
Z = 40.24 × 0.18 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
2600 independent reflections
Radiation source: micro-focus X-ray tube, INCOATEC ImuS2238 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.045
Detector resolution: 10.4167 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω and phi scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1010
Tmin = 0.692, Tmax = 0.746l = 1313
25254 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4447P]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25794 (6)0.00837 (12)0.18433 (9)0.0135 (2)
N20.13175 (7)0.12269 (12)0.04210 (9)0.0152 (2)
H20.1258 (11)0.1242 (19)0.0383 (16)0.025 (4)*
O10.34355 (6)0.09306 (11)0.52268 (8)0.0226 (2)
O20.05883 (7)0.20570 (12)0.25772 (8)0.0254 (2)
C10.19297 (8)0.05200 (15)0.41627 (11)0.0186 (2)
H1A0.1996470.1752140.4019620.028*
H1B0.1399460.0048800.3425750.028*
H1C0.1766450.0336540.5018860.028*
C20.28862 (8)0.03613 (14)0.41993 (10)0.0154 (2)
C30.31963 (8)0.04845 (13)0.29018 (10)0.0137 (2)
C40.41926 (8)0.12803 (15)0.30273 (11)0.0190 (2)
H4A0.4714610.0454550.3436780.029*
H4B0.4264480.2306130.3594720.029*
H4C0.4250140.1600610.2132430.029*
C50.28445 (8)0.02162 (14)0.06164 (10)0.0136 (2)
C60.36956 (8)0.10852 (14)0.05394 (11)0.0155 (2)
H60.4136670.1525620.1336720.019*
C70.39089 (8)0.13174 (15)0.06887 (11)0.0173 (2)
H70.4486630.1927410.0735640.021*
C80.32711 (8)0.06509 (15)0.18428 (11)0.0181 (2)
H80.3422270.0781640.2682100.022*
C90.24121 (8)0.02072 (15)0.17894 (11)0.0169 (2)
H90.1981500.0660450.2589870.020*
C100.21796 (8)0.04058 (13)0.05641 (10)0.0137 (2)
C110.05744 (8)0.19599 (14)0.13980 (11)0.0169 (2)
C120.02681 (8)0.26801 (16)0.09199 (11)0.0197 (2)
H12A0.0362470.3892150.1174570.030*
H12B0.0114130.2575720.0061390.030*
H12C0.0877030.2042170.1334820.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0143 (4)0.0147 (4)0.0114 (4)0.0018 (3)0.0033 (3)0.0017 (3)
N20.0165 (4)0.0185 (5)0.0103 (4)0.0018 (4)0.0031 (3)0.0008 (3)
O10.0279 (5)0.0259 (5)0.0124 (4)0.0038 (3)0.0025 (3)0.0016 (3)
O20.0289 (5)0.0336 (5)0.0115 (4)0.0096 (4)0.0016 (3)0.0008 (3)
C10.0201 (5)0.0226 (6)0.0155 (5)0.0006 (4)0.0087 (4)0.0004 (4)
C20.0190 (5)0.0144 (5)0.0126 (5)0.0030 (4)0.0039 (4)0.0013 (4)
C30.0143 (5)0.0135 (5)0.0129 (5)0.0014 (4)0.0032 (4)0.0016 (4)
C40.0169 (5)0.0237 (6)0.0162 (5)0.0045 (4)0.0039 (4)0.0019 (4)
C50.0150 (5)0.0141 (5)0.0119 (5)0.0030 (4)0.0040 (4)0.0003 (4)
C60.0148 (5)0.0174 (5)0.0136 (5)0.0001 (4)0.0026 (4)0.0016 (4)
C70.0167 (5)0.0192 (5)0.0178 (5)0.0006 (4)0.0075 (4)0.0014 (4)
C80.0226 (6)0.0202 (6)0.0136 (5)0.0028 (4)0.0086 (4)0.0016 (4)
C90.0207 (5)0.0179 (5)0.0110 (5)0.0012 (4)0.0027 (4)0.0009 (4)
C100.0142 (5)0.0132 (5)0.0129 (5)0.0018 (4)0.0023 (4)0.0007 (4)
C110.0178 (5)0.0162 (5)0.0142 (5)0.0000 (4)0.0002 (4)0.0014 (4)
C120.0172 (5)0.0232 (6)0.0165 (5)0.0030 (4)0.0006 (4)0.0003 (4)
Geometric parameters (Å, º) top
N1—C31.2756 (14)C4—H4C0.9800
N1—C51.4147 (13)C5—C61.3904 (15)
N2—H20.855 (15)C5—C101.4053 (15)
N2—C101.4074 (14)C6—H60.9500
N2—C111.3640 (14)C6—C71.3888 (15)
O1—C21.2138 (13)C7—H70.9500
O2—C111.2239 (14)C7—C81.3831 (16)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C8—C91.3890 (16)
C1—H1C0.9800C9—H90.9500
C1—C21.4954 (15)C9—C101.3955 (15)
C2—C31.5164 (14)C11—C121.5029 (16)
C3—C41.4990 (15)C12—H12A0.9800
C4—H4A0.9800C12—H12B0.9800
C4—H4B0.9800C12—H12C0.9800
C3—N1—C5120.76 (9)C5—C6—H6119.6
C10—N2—H2114.6 (10)C7—C6—C5120.81 (10)
C11—N2—H2117.2 (10)C7—C6—H6119.6
C11—N2—C10128.14 (9)C6—C7—H7120.4
H1A—C1—H1B109.5C8—C7—C6119.29 (10)
H1A—C1—H1C109.5C8—C7—H7120.4
H1B—C1—H1C109.5C7—C8—H8119.6
C2—C1—H1A109.5C7—C8—C9120.79 (10)
C2—C1—H1B109.5C9—C8—H8119.6
C2—C1—H1C109.5C8—C9—H9119.9
O1—C2—C1122.86 (10)C8—C9—C10120.23 (10)
O1—C2—C3118.91 (10)C10—C9—H9119.9
C1—C2—C3118.20 (9)C5—C10—N2116.91 (9)
N1—C3—C2116.44 (9)C9—C10—N2124.04 (10)
N1—C3—C4128.13 (10)C9—C10—C5119.04 (10)
C4—C3—C2115.42 (9)N2—C11—C12115.04 (10)
C3—C4—H4A109.5O2—C11—N2123.23 (11)
C3—C4—H4B109.5O2—C11—C12121.72 (10)
C3—C4—H4C109.5C11—C12—H12A109.5
H4A—C4—H4B109.5C11—C12—H12B109.5
H4A—C4—H4C109.5C11—C12—H12C109.5
H4B—C4—H4C109.5H12A—C12—H12B109.5
C6—C5—N1121.37 (9)H12A—C12—H12C109.5
C6—C5—C10119.77 (10)H12B—C12—H12C109.5
C10—C5—N1118.58 (9)
N1—C5—C6—C7175.13 (10)C6—C5—C10—N2178.09 (9)
N1—C5—C10—N24.11 (14)C6—C5—C10—C92.98 (16)
N1—C5—C10—C9176.95 (9)C6—C7—C8—C91.56 (17)
O1—C2—C3—N1177.87 (10)C7—C8—C9—C100.13 (17)
O1—C2—C3—C41.57 (15)C8—C9—C10—N2178.76 (10)
C1—C2—C3—N14.39 (14)C8—C9—C10—C52.40 (16)
C1—C2—C3—C4176.18 (9)C10—N2—C11—O23.18 (18)
C3—N1—C5—C653.03 (15)C10—N2—C11—C12177.87 (10)
C3—N1—C5—C10133.09 (11)C10—C5—C6—C71.33 (16)
C5—N1—C3—C2172.41 (9)C11—N2—C10—C5178.73 (10)
C5—N1—C3—C48.23 (17)C11—N2—C10—C90.15 (18)
C5—C6—C7—C80.95 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.543.3286 (14)141
C9—H9···O20.952.242.8523 (15)122
C12—H12B···O2ii0.982.393.3387 (15)164
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z+1/2.
 

Funding information

This work was supported by the National Science Foundation (CHE-1709159).

References

First citationAzoulay, J. D., Rojas, R. S., Serrano, A. V., Ohtaki, H., Galland, G. B., Wu, G. & Bazan, G. C. (2009). Angew. Chem. Int. Ed. 48, 1089–1092.  CSD CrossRef CAS Google Scholar
First citationBinotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647–661.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2015). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrell, D., Kingston, S. J., Tungulin, D., Nuzzo, S., Twamley, B., Platts, J. A. & Baker, R. J. (2017). Eur. J. Org. Chem. 2017, 5597–5609.  CSD CrossRef CAS Google Scholar
First citationFerreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o2969–o2970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGüner, V., Kabak, M. & Elerman, Y. (2000). J. Mol. Struct. 526, 151–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovach, J., Brennessel, W. W. & Jones, W. D. (2014). RSC Adv. 4, 1401–1411.  CSD CrossRef CAS Google Scholar
First citationKovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmid, M., Eberhardt, R., Kukral, J. & Rieger, B. (2002). Z. Naturforsch. B57, 1141.  Google Scholar
First citationSchmiege, B. M., Carney, M. J., Small, B. L., Gerlach, D. L. & Halfen, J. A. (2007). Dalton Trans. pp. 2547–2562.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirin, Z., Thompson, J., Liable-Sands, L., Yap, G. P. A., Rheingold, A. L. & Borovik, A. S. (2002). J. Chem. Soc. Dalton Trans. pp. 1714–1720.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhai, F. & Jordan, R. F. (2014). Organometallics, 33, 7176–7192.  CSD CrossRef CAS Google Scholar
First citationZhai, F., Solomon, J. B. & Jordan, R. F. (2017). Organometallics, 36, 1873–1879.  CSD CrossRef CAS Google Scholar
First citationZhang, J., Zhang, Z., Chen, Z. & Zhou, X. (2012). Dalton Trans. 41, 357–359.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds