research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2,4,6-tri­iodo­benzo­nitrile and 2,4,6-tri­iodo­phenyl isocyanide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 14 December 2017; accepted 19 December 2017; online 9 January 2018)

The title crystals, C7H2I3N, are isomorphous. Both mol­ecules lie across two crystallographic mirror planes and a twofold axis. The principal supra­molecular inter­action is centric R22(10) CN/NC⋯I short contacts involving both ortho I atoms, with two contacts bis­ecting each cyano and iso­cyano group. These form ribbons along [010] and give rise to a planar sheet structure parallel to (100). All pairs of adjacent sheets have centric stacking, a mode not previously reported for sheets of this type. This study completes the series of homo-2,4,6-trihalobenzo­nitriles, in which I atoms give the strongest CN⋯X and NC⋯X inter­actions (X = F, Cl, Br, I).

1. Chemical context

The strength of cyano–halo inter­actions tends to increase with increasing polarizability, or the elemental period, of the halogen. Structure-directing CN⋯F inter­actions are usually not observed (Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]). In crystals of the other 4-halobenzo­nitriles (X = Cl, Br, I), parallel or anti­parallel C11(7) CN⋯X chains dominate the secondary structures (Fig. 1[link]; Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]). When the halo atom is moved to the 2-position, R22(10) CN⋯X rings can form, usually as inversion dimers. Halogenation at both ortho positions allows the formation of CN⋯X-derived ribbons or sheets. The aforementioned periodic trend is exhibited by the homo-2,4,6-trihalobenzo­nitriles. No CN⋯F contacts are observed in 2,4,6-tri­fluoro­benzo­nitrile (F3CN). Instead, each CN group is bis­ected by two CN⋯H contacts (Fig. 2[link]a; Britton, 2008[Britton, D. (2008). Acta Cryst. C64, o583-o585.]). In 2,4,6-tri­chloro­benzo­nitrile (Cl3CN), half of these have been replaced by CN⋯Cl contacts (Fig. 2[link]b; Pink et al., 2000[Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.]). In 2,4,6-tri­bromo­benzo­nitrile (Br3CN), no CN⋯H contacts are found, and each CN group is bis­ected by two CN⋯Br contacts (Fig. 2[link]c; Britton et al., 2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]).

[Scheme 1]
[Figure 1]
Figure 1
Several mol­ecules in the crystal of 4-iodo­benzo­nitrile (4ICN), viewed along [001]. Dashed green lines represent CN⋯I short contacts, which collectively form a C(7) chain motif along [010]. All previously reported 4-iodo­benzo­nitriles form similar chains.
[Figure 2]
Figure 2
(a) A sheet in a crystal of F3CN, showing two CN⋯H contacts per CN group, viewed along [001]; (b) A sheet in a crystal of Cl3CN, showing one CN⋯H and one CN⋯Cl contact per CN group, viewed along [100]; (c) A sheet in the Z = 8 polytype of Br3CN, showing two CN⋯Br contacts per CN group, viewed along [100]. Dashed magenta lines represent short contacts.

2. Database survey

No entries were found in the most recent update of the Cambridge Structural Database (Version 5.37, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that have I atoms at both ortho positions of a benzo­nitrile. Four of the five crystalline 2-iodo­benzo­nitriles have CN⋯I contacts (Britton, 2001[Britton, D. (2001). Acta Cryst. E57, o702-o704.], 2004[Britton, D. (2004). Acta Cryst. E60, o184-o186.]; Ketels et al., 2017[Ketels, M., Konrad, D. B., Karaghiosoff, K., Trauner, D. & Knochel, P. (2017). Org. Lett. 19, 1666-1669.]; Lam & Britton, 1974[Lam, S. & Britton, D. (1974). Acta Cryst. B30, 1119-1120.]); the fifth is a cyano alcohol that forms O—H⋯NC hydrogen bonds (Salvati et al., 2008[Salvati, M. E., Balog, A., Shan, W., Rampulla, R., Giese, S., Mitt, T., Furch, J. A., Vite, G. D., Attar, R. M., Jure-Kunkel, M., Geng, J., Rizzo, C. A., Gottardis, M. M., Krystek, S. R., Gougoutas, J., Galella, M. A., Obermeier, M., Fura, A. & Chandrasena, G. (2008). Bioorg. Med. Chem. Lett. 18, 1910-1915.]). The 3-iodo analogs do not pack as efficiently. Three of the four examples feature I⋯I contacts (Britton, 2006[Britton, D. (2006). Acta Cryst. B62, 109-117.]; Merz, 2006[Merz, K. (2006). Cryst. Growth Des. 6, 1615-1619.]); packing in the fourth example is directed by hydrogen bonding between acetamido groups (Garden et al., 2007[Garden, S. J., Custódio, C. de A., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o408-o410.]). All five reported 4-iodo­benzo­nitriles form C(7) CN⋯I chains (Fig. 1[link]; Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]; Britton, 2004[Britton, D. (2004). Acta Cryst. E60, o184-o186.]; Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]; Gleason & Britton, 1978[Gleason, W. B. & Britton, D. (1978). Cryst. Struct. Commun. 7, 365-370.]). It is pertinent to determine the crystal structure of 2,4,6-tri­iodo­benzo­nitrile (I3CN) to complete the series of homo-2,4,6-trihalobenzo­nitriles, and to determine whether the primary packing inter­action is CN⋯I-derived C(7) chains, R22(10) rings, or another motif. 2,4,6-Tri­iodo­phenyl isocyanide (I3NC) is included to contribute to the library of corres­ponding halogenated nitrile-isocyanide crystal pairs.

3. Structural commentary

Mol­ecules of I3CN and I3NC (Fig. 3[link]) lie about a twofold axis and two orthogonal vertical mirror planes. Thus, they have crystallographically-imposed C2v symmetry and are planar, with the para I atom (I4; I14) collinear with the CN and NC groups. All of the aryl bond angles are roughly 120°. The ortho I atoms (I2, I2′; I12, I12′) are scissored slightly toward the ipso C atom (C1; C11), which is probably caused by the inter­molecular CN⋯I and NC⋯I short contacts. The bond lengths are typical for their respective functional groups.

[Figure 3]
Figure 3
The mol­ecular structures of (a) I3CN and (b) I3NC, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the symmetry operation (1 − x, [{3\over 2}] − y, z).

4. Supra­molecular features

Crystals of I3CN and I3NC are isomorphous. The CN and NC groups are bis­ected by C7≡N7⋯I2 and N17≡C17⋯I12 contacts (Table 1[link]), forming ribbons of R22(10) rings parallel to (100) along [010]. Adjacent ribbons translate along [001]. The resulting planar sheet structure (Fig. 4[link]) matches that observed in Br3CN and the corresponding isocyanide (Br3NC) (Britton et al., 2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), and the 4-chloro (Britton, 2005[Britton, D. (2005). Acta Cryst. E61, o1726-o1727.]) and 4-nitro (Noland & Tritch, 2017[Noland, W. E. & Tritch, K. J. (2017). IUCrData, 2, x171617.]) analogs of Br3CN. In crystals of I3CN and I3NC, all pairs of adjacent sheets have centric stacking along [100] (Fig. 5[link]), with mol­ecules stacked about a glide plane and an inversion center. In the polytypes of Br3CN and Br3NC, adjacent sheets had combinations of centric and translational stacking, but not solely centric stacking. The 4-chloro analog had translational stacking. The 4-nitro analog had glide stacking, with no inversion center between stacked mol­ecules. Thus, the all-centric stacking of I3CN and I3NC can be regarded as a new polytype in this series.

Table 1
Contact geometry (Å, °) for I3CN and I3NC

AB⋯I AB B⋯I AB⋯I
C7≡N7⋯I2i 1.151 (3) 3.074 (2) 132.85 (3)
N17≡C17⋯I12i 1.164 (3) 3.106 (2) 134.18 (3)
Symmetry code: (i) −x + 1, y − [{1\over 2}], −z + 2
[Figure 4]
Figure 4
A space-filling drawing of the sheet structure of I3NC, viewed along [100].
[Figure 5]
Figure 5
Two adjacent sheets in I3NC, viewed along [100], illustrating the centric stacking mode. Dashed magenta lines represent short contacts in the front layer. Mol­ecules in the rear layer are drawn with smaller balls and sticks, lower opacity, and green dashed lines representing short contacts.

The mean CN⋯X contact lengths can be compared for X = Cl, Br, and I (Table 2[link]). For 4-chloro­benzo­nitrile (4ClCN), 4-bromo­benzo­nitrile (4BrCN), and 4-iodo­benzo­nitrile (4ICN) (Table 2[link], col. 2), the contact distance decreases with increasing halogen size, highlighting the increase in contact strength (Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]). This trend is essentially mirrored among 2,4,6-trihalobenzo­nitriles (Table 2[link], col. 3), although the contact distance in I3CN is 0.01 Å larger than in Br3CN. The N⋯X non-bonded contact radii are listed (Table 2[link], col. 4; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). The `shortness' of contacts in 2,4,6-trihalobenzo­nitriles is expressed as the ratios of contact radii to the respective contact distances (Table 2[link], col. 5). A similar comparison of NC⋯X contact lengths in the corresponding trihalo isocyanides also shows decreasing contact length with increasing halogen size (Table 3[link], col. 2). The NC⋯X contacts have slightly greater shortness (Table 3[link], col. 4) than the corresponding CN⋯X contacts. The N17≡C17⋯I12 contacts in I3NC are the strongest cyano/iso­cyano–halo inter­actions in this series.

Table 2
Mean CN⋯X contact lengths (Å) in 4-halobenzo­nitriles (4XCN) and 2,4,6-trihalobenzo­nitriles (X3CN)

X 4XCN X3CN r [N + X] (Å) [r/X3CN]
Cl 3.370 (4) 3.153 (2) 3.35 1.06
Br 3.249 (5) 3.064 (4) 3.46 1.13
I 3.127 (4) 3.074 (2) 3.61 1.17

Table 3
Mean NC⋯X contact lengths (Å) in 2,4,6-trihalophenyl isocyanides (X3NC)

X X3NC r [C + X] [r/X3NC]
Cl 3.245 (3) 3.49 1.08
Br 3.151 (4) 3.60 1.14
I 3.106 (2) 3.75 1.21

5. Synthesis and crystallization

2,4,6-Tri­iodo­aniline (I3NH2), adapted from the work of Jackson & Whitmore (1915[Jackson, C. L. & Whitmore, F. C. (1915). J. Am. Chem. Soc. 37, 1522-1537.]): Aniline (1.0 mL) and hydro­chloric acid (0.7 M, 850 mL) were combined and stirred in a round-bottomed flask. Iodine monochloride (8.2 g) was placed in a separate flask and then warmed to 315 K. The two flasks were connected with a glass bridge. A slow stream of nitro­gen was passed through the headspace in the second vessel so that the iodine monochloride was gradually swept into the first vessel over 2–4 d. After the transfer was complete, the reaction mixture was neutralized with NaHCO3 solution, followed by reduction of excess iodine by washing with Na2S2O3 solution. Di­chloro­methane (approx. 100 mL) was added, with stirring, until nearly all solids had dissolved. The organic portion was filtered through silica gel (3 cm H × 4 cm D), and then the filter was washed with di­chloro­methane (3 × 20 mL). The filtrate was placed in a loosely-covered beaker. After most of the di­chloro­methane had evaporated, beige needles were collected by suction filtration (4.48 g, 89%). M.p. 459–460 K (lit. 459); 1H NMR (300 MHz, CDCl3) δ 7.864 (s, 2H), 4.658 (s, 2H); 13C NMR (75 MHz, (CD3)2SO) δ 147.0 (1C), 145.4 (2C), 83.0 (2C), 78.8 (1C); IR (KBr, cm−1) 3417, 3056, 2987, 1632, 1422, 1265, 741, 704; MS (EI, m/z) [M]+ calculated for C6H4I3N 470.7472, found 470.7470.

2,4,6-Tri­iodo­benzo­nitrile (I3CN), was prepared from I3NH2 (101 mg; Fig. 6[link]) based on the Sandmeyer procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]). Ethyl acetate (20 mL), toluene-4-sulfonic acid monohydrate (77 mg), and isoamyl nitrite (60 µL) were used in place of water, acetic and sulfuric acids, and sodium nitrite, respectively. The desired chromatographic fraction (Rf = 0.44 in 4:1 hexa­ne–ethyl acetate) was concentrated on a rotary evaporator, giving a beige powder (67 mg, 65%). M.p. 517–518 K; 1H NMR (500 MHz, (CD3)2SO) δ 8.431 (s, 2H, H3); 13C NMR (126 MHz, CD2Cl2) δ 147.5 (2C, C3), 127.3 (1C, C1), 120.7 (1C, C7), 101.1 (1C, C4), 99.6 (2C, C2); IR (NaCl, cm−1) 3070, 2227, 1532, 1359, 1206, 1081, 861, 787, 706; MS (ESI, m/z) [M + Na]+ calculated for C7H2I3N 503.7213, found 503.7216.

[Figure 6]
Figure 6
The synthesis of I3CN and I3NC.

2,4,6-Tri­iodo­formanilide (I3FA) was prepared from I3NH2 (1.01 g) according to the formyl­ation procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), with 1,2-di­chloro­ethane (10 mL and 100 mL) in place of tetra­hydro­furan, giving white needles (962 mg, 90%). M.p. 557–558 K; 1H NMR (300 MHz, (CD3)2SO; 2 conformers observed) δ 10.089 (s, 1H; major), 9.655 (s, 1H; minor), 8.303 (s, 1H; major), 8.278 (s, 2H; minor), 8.233 (s, 2H; major), 7.978 (s, 1H; minor); 13C NMR (126 MHz, (CD3)2SO; 2 conformers observed) δ 164.4 (1C; minor), 159.4 (1C; major), 146.4 (2C; minor), 146.1 (2C; major), 141.0 (1C; major), 140.4 (1C; minor), 102.4 (2C; minor), 101.9 (2C; major), 95.9 (1C; minor), 95.6 (1C; major); IR (NaCl, cm−1) 3221, 3076, 2919, 1637, 1490, 1380, 1232, 1143, 857, 794, 703, 682; MS (ESI, m/z) [M - H] calculated for C7H4I3NO 497.7354, found 497.7365.

2,4,6-Tri­iodo­phenyl isocyanide (I3NC) was prepared from I3FA (397 mg) according to the dehydration procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), giving a white powder (330 mg, 86%). M.p. 467–468 K; 1H NMR (300 MHz, CDCl3) 8.198 (s, 2H, H13); 13C NMR (126 MHz, (CD3)2SO) δ 170.0 (1C, C17), 146.2 (2C, C13), 133.8 (1C, C11), 98.8 (1C, C14), 97.7 (2C, C12); IR (KBr, cm−1) 3073, 3037, 2920, 2126, 1529, 1079, 861, 704; MS (ESI, m/z) [M - H] calculated for C7H2I3N 479.7249, found 479.7226.

Crystallization: Crystals of I3CN and I3NC were prepared by slow evaporation of aceto­nitrile solutions at ambient temperature, followed by deca­ntation and then washing with pentane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. A direct-methods solution was calculated, followed by full-matrix least squares/difference-Fourier cycles. All H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding atoms with Uiso(H) set to 1.2Ueq(C).

Table 4
Experimental details

  I3CN I3NC
Crystal data
Chemical formula C7H2I3N C7H2I3N
Mr 480.80 480.80
Crystal system, space group Orthorhombic, Imma Orthorhombic, Imma
Temperature (K) 100 100
a, b, c (Å) 7.0593 (4), 10.5346 (5), 13.0658 (6) 7.0552 (3), 10.4947 (5), 13.1557 (5)
V3) 971.66 (8) 974.08 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.59 9.56
Crystal size (mm) 0.12 × 0.10 × 0.10 0.15 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker VENTURE PHOTON-II Bruker VENTURE PHOTON-II
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.281, 0.344 0.251, 0.344
No. of measured, independent and observed [I > 2σ(I)] reflections 8436, 1303, 1261 13040, 1314, 1267
Rint 0.024 0.026
(sin θ/λ)max−1) 0.835 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.030, 1.18 0.011, 0.024, 1.14
No. of reflections 1303 1314
No. of parameters 40 40
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.60 0.72, −0.48
Computer programs: APEX3 (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS, Inc., Madison, WI, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS, Inc., Madison, WI, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2,4,6-Triiodobenzonitrile (I3CN) top
Crystal data top
C7H2I3NDx = 3.287 Mg m3
Mr = 480.80Melting point: 517 K
Orthorhombic, ImmaMo Kα radiation, λ = 0.71073 Å
a = 7.0593 (4) ÅCell parameters from 2721 reflections
b = 10.5346 (5) Åθ = 2.5–36.4°
c = 13.0658 (6) ŵ = 9.59 mm1
V = 971.66 (8) Å3T = 100 K
Z = 4Square bipyramid, colorless
F(000) = 8400.12 × 0.10 × 0.10 mm
Data collection top
Bruker VENTURE PHOTON-II
diffractometer
1261 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.024
φ and ω scansθmax = 36.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.281, Tmax = 0.344k = 1717
8436 measured reflectionsl = 2121
1303 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0078P)2 + 1.2371P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.030(Δ/σ)max = 0.001
S = 1.18Δρmax = 0.89 e Å3
1303 reflectionsΔρmin = 0.60 e Å3
40 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00199 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.50000.46395 (2)0.83491 (2)0.01267 (4)
I40.50000.75000.43429 (2)0.01359 (4)
N70.50000.75001.00506 (18)0.0167 (4)
C10.50000.75000.80692 (18)0.0103 (4)
C20.50000.63456 (15)0.75302 (13)0.0105 (3)
C30.50000.63428 (16)0.64671 (13)0.0117 (3)
H30.50000.55650.61000.014*
C40.50000.75000.59458 (19)0.0113 (4)
C70.50000.75000.9170 (2)0.0130 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.01764 (6)0.00914 (5)0.01122 (5)0.0000.0000.00198 (3)
I40.01801 (8)0.01463 (7)0.00812 (6)0.0000.0000.000
N70.0218 (11)0.0137 (9)0.0145 (9)0.0000.0000.000
C10.0104 (9)0.0113 (9)0.0094 (8)0.0000.0000.000
C20.0123 (6)0.0088 (6)0.0104 (6)0.0000.0000.0017 (5)
C30.0157 (7)0.0095 (6)0.0099 (6)0.0000.0000.0002 (5)
C40.0121 (9)0.0115 (9)0.0104 (9)0.0000.0000.000
C70.0137 (10)0.0120 (9)0.0133 (10)0.0000.0000.000
Geometric parameters (Å, º) top
I2—C22.0916 (16)C1—C71.438 (3)
I4—C42.094 (2)C2—C31.389 (2)
N7—C71.151 (3)C3—C41.396 (2)
C1—C21.405 (2)C3—H30.9500
C1—C2i1.405 (2)C4—C3i1.396 (2)
C2—C1—C2i119.9 (2)C2—C3—H3120.5
C2—C1—C7120.07 (11)C4—C3—H3120.5
C2i—C1—C7120.07 (11)C3i—C4—C3121.6 (2)
C3—C2—C1120.19 (16)C3i—C4—I4119.19 (11)
C3—C2—I2120.65 (12)C3—C4—I4119.19 (11)
C1—C2—I2119.16 (13)N7—C7—C1180.0
C2—C3—C4119.07 (16)
C2i—C1—C2—C30.000 (1)C1—C2—C3—C40.000 (1)
C7—C1—C2—C3180.000 (1)I2—C2—C3—C4180.000 (1)
C2i—C1—C2—I2180.000 (1)C2—C3—C4—C3i0.000 (1)
C7—C1—C2—I20.000 (1)C2—C3—C4—I4180.000 (1)
Symmetry code: (i) x+1, y+3/2, z.
2,4,6-Triiodophenyl isocyanide (I3NC) top
Crystal data top
C7H2I3NDx = 3.279 Mg m3
Mr = 480.80Melting point: 467 K
Orthorhombic, ImmaMo Kα radiation, λ = 0.71073 Å
a = 7.0552 (3) ÅCell parameters from 2833 reflections
b = 10.4947 (5) Åθ = 2.5–36.3°
c = 13.1557 (5) ŵ = 9.56 mm1
V = 974.08 (7) Å3T = 100 K
Z = 4Block, colourless
F(000) = 8400.14 × 0.09 × 0.07 mm
Data collection top
Bruker VENTURE PHOTON-II
diffractometer
1267 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.026
φ and ω scansθmax = 36.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.251, Tmax = 0.344k = 1712
13040 measured reflectionsl = 2121
1314 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.011 w = 1/[σ2(Fo2) + (0.0044P)2 + 1.2499P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.024(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.72 e Å3
1314 reflectionsΔρmin = 0.48 e Å3
40 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00312 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I120.50000.46223 (2)0.83472 (2)0.01190 (3)
I140.50000.75000.43715 (2)0.01245 (4)
N170.50000.75000.91223 (14)0.0120 (3)
C110.50000.75000.80681 (15)0.0098 (3)
C120.50000.63389 (13)0.75389 (11)0.0102 (2)
C130.50000.63411 (14)0.64790 (11)0.0112 (2)
H130.50000.55610.61130.013*
C140.50000.75000.59640 (15)0.0108 (3)
C170.50000.75001.00074 (17)0.0150 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I120.01610 (5)0.00910 (4)0.01051 (4)0.0000.0000.00184 (3)
I140.01561 (6)0.01413 (6)0.00761 (5)0.0000.0000.000
N170.0134 (7)0.0125 (7)0.0102 (7)0.0000.0000.000
C110.0106 (8)0.0106 (7)0.0081 (7)0.0000.0000.000
C120.0121 (5)0.0086 (5)0.0098 (5)0.0000.0000.0012 (4)
C130.0138 (6)0.0096 (5)0.0101 (5)0.0000.0000.0000 (4)
C140.0124 (8)0.0116 (8)0.0086 (7)0.0000.0000.000
C170.0174 (9)0.0148 (9)0.0127 (8)0.0000.0000.000
Geometric parameters (Å, º) top
I12—C122.0920 (14)C11—C121.4035 (17)
I14—C142.095 (2)C12—C131.394 (2)
N17—C171.164 (3)C13—C141.3922 (17)
N17—C111.387 (3)C13—H130.9500
C11—C12i1.4035 (17)C14—C13i1.3922 (17)
C17—N17—C11180.0C14—C13—C12119.21 (14)
N17—C11—C12i119.75 (9)C14—C13—H13120.4
N17—C11—C12119.74 (9)C12—C13—H13120.4
C12i—C11—C12120.51 (18)C13i—C14—C13121.76 (18)
C13—C12—C11119.65 (13)C13i—C14—I14119.12 (9)
C13—C12—I12120.65 (10)C13—C14—I14119.12 (9)
C11—C12—I12119.70 (11)
N17—C11—C12—C13180.000 (1)C11—C12—C13—C140.000 (1)
C12i—C11—C12—C130.000 (1)I12—C12—C13—C14180.000 (1)
N17—C11—C12—I120.000 (1)C12—C13—C14—C13i0.000 (1)
C12i—C11—C12—I12180.000 (1)C12—C13—C14—I14180.000 (1)
Symmetry code: (i) x+1, y+3/2, z.
Contact geometry (Å, °) for I3CN and I3NC top
AB···IABB···IAB···I
C7N7···I2i1.151 (3)3.074 (2)132.85 (3)
N17C17···I12i1.164 (3)3.106 (2)134.18 (3)
Symmetry code: (i) -x + 1, y - 1/2, -z + 2
Mean CN···X contact lengths (Å) in 4-halobenzonitriles (4XCN) and 2,4,6-trihalobenzonitriles (X3CN) top
X4XCNX3CNr [N + X] (Å)[r/X3CN]
Cl3.370 (4)3.153 (2)3.351.06
Br3.249 (5)3.064 (4)3.461.13
I3.127 (4)3.074 (2)3.611.17
Mean NC···X contact lengths (Å) in 2,4,6-trihalophenyl isocyanides (X3NC) top
XX3NCr [C + X][r/X3NC]
Cl3.245 (3)3.491.08
Br3.151 (4)3.601.14
I3.106 (2)3.751.21
 

Footnotes

Deceased July 7, 2015.

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017[Tritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.]).

References

First citationBond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231–o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2001). Acta Cryst. E57, o702–o704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2004). Acta Cryst. E60, o184–o186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2005). Acta Cryst. E61, o1726–o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2006). Acta Cryst. B62, 109–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBritton, D. (2008). Acta Cryst. C64, o583–o585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178–183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS, Inc., Madison, WI, USA.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarden, S. J., Custódio, C. de A., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o408–o410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGleason, W. B. & Britton, D. (1978). Cryst. Struct. Commun. 7, 365–370.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJackson, C. L. & Whitmore, F. C. (1915). J. Am. Chem. Soc. 37, 1522–1537.  CrossRef CAS Google Scholar
First citationKetels, M., Konrad, D. B., Karaghiosoff, K., Trauner, D. & Knochel, P. (2017). Org. Lett. 19, 1666–1669.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLam, S. & Britton, D. (1974). Acta Cryst. B30, 1119–1120.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMerz, K. (2006). Cryst. Growth Des. 6, 1615–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoland, W. E. & Tritch, K. J. (2017). IUCrData, 2, x171617.  Google Scholar
First citationPink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSalvati, M. E., Balog, A., Shan, W., Rampulla, R., Giese, S., Mitt, T., Furch, J. A., Vite, G. D., Attar, R. M., Jure-Kunkel, M., Geng, J., Rizzo, C. A., Gottardis, M. M., Krystek, S. R., Gougoutas, J., Galella, M. A., Obermeier, M., Fura, A. & Chandrasena, G. (2008). Bioorg. Med. Chem. Lett. 18, 1910–1915.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTritch, K. J. (2017). PhD thesis, University of Minnesota, Minneapolis, MN, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds