research communications
cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]
of a palladium(II) complex containing the wide bite-angle bis(selenium) ligand,aDepartment of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, LA, 70118, USA
*Correspondence e-mail: chandru@lamar.edu
A palladium(II) complex {systematic name: dichlorido[1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-diselone-κ2Se,Se′]palladium(II)}, cis-[PdCl2{I}], (II), containing a bis(selenium) ligand based on cyclodiphosph(V)azane, cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)], (I), has been synthesized and structurally characterized. The of complex II reveals that the ligand chelates through selenium donors with the natural bite-angle of 110.54 (1)° and a Pd—Se bond distance of 2.444 (1) Å. The coordination around PdII shows a slightly distorted square-planar geometry, as indicated by the angle between the [PdCl2] and [PdSe2] planes of 5.92 (3)°. In the crystal, the molecules are interlinked through weak N—H⋯Cl and C—H⋯Cl hydrogen-bonding interactions.
Keywords: crystal structure; selenium ligand; palladium(II) complex; P-N compounds; cyclodiphosphazanes; bite-angle.
CCDC reference: 1549758
1. Chemical context
Cyclodiphosph(III)azanes are four-membered PIII–N ring systems with general formula, cis-[RP(μ-NtBu)2PR]. The planar nature of the four-membered ring favors a bridging bidentate coordination mode through phosphorus donors rather than to afford structurally interesting macrocyclic and polymeric complexes (Balakrishna, 2016). The main-group chemistry of the corresponding PV analogue cyclodiphosph(V)azanes, cis-[R(E)P(μ-NtBu)2P(E)R] (E = O, S, Se, and Te; R = NHtBu) and its amide derivatives has been studied extensively by Stahl (2000) and Briand and co-workers (Briand et al., 2002). While examples of coordination of cyclodiphosph(V)azanes with transition metal ions are scarce, the sulfur and selenium derivatives are especially interesting as they have a special affinity for soft metals and have the potential to form complexes with wide natural bite-angles through (Chivers et al., 2001). Several late transition-metal complexes containing wide natural bite-angle chelating ligands (L—M—L = 100–134°) have been developed over the years and have shown promising for several reactions (Kamer et al., 2001). The majority of these wide bite-angle ligands are phosphorus and/or nitrogen donor ligands (Motolko et al., 2017; Czauderna et al., 2015). Herein we report the synthesis and of the palladium(II) complex (II) with a wide bite-angle selenium ligand based on cyclodiphosph(V)azane cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)], (I).
2. Structural commentary
A perspective view of the molecular structure of the PdII complex (II) is presented in Fig. 1. The of II confirms the of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (I) through selenium donors to the [PdCl2] moiety, with a Se1—Pd1—Se2 natural bite-angle of 110.54 (1)°. The rigid four-membered cyclodiphosphazane [P(μ-NtBu)2P] ligand backbone enforces large natural bite-angles. The Se1—Pd1—Cl1 and Se2—Pd1—Cl2 bond angles are 79.27 (2) and 79.36 (2)°, respectively, smaller than the natural square-planar angle, whereas the Cl1—Pd1—Cl2 angle [91.19 (2)°] is closer to the typical value for a square-planar angle. In complex II, the exocyclic Se1—P1—N3 and Se2—P2—N4 angles at 114.32 (7) and 117.13 (7)°, respectively, are slightly larger than the corresponding angle in the uncoordinated ligand I [107.3 (1) and 113.2 (1)°; Chivers et al., 2002]. In complex II, the palladium atom shows a slight tetrahedral distortion from a square-planar geometry, as indicated by the dihedral angle between the Se1/Pd1/Se2 and Cl1/Pd1/Cl2 planes of 5.92 (3)°. The Pd1—Se1 and Pd1—Se2 bond distances are 2.4458 (3) and 2.4440 (3) Å, respectively, and are in the typical range for PdII complexes with selenium ligands (Das et al., 2009). In complex II, the P1—Se1 and P2—Se2 bond distances are 2.1543 (6) and 2.1654 (6) Å, respectively; these bonds are slightly elongated compared to the P—Se bond [2.078 (1) Å] in the uncoordinated ligand (I). This may be a result of the coordination of Se to the Pd center. The Pd—Cl bond distances [Pd1—Cl1 = 2.3381 (6) and Pd1—Cl2 = 2.3159 (6) Å] are consistent with those reported for PdII complexes with Se donor ligands (Saleem et al., 2013). The [P(μ-NtBu)2P] ring in complex II is greatly puckered, as indicated by the angle of 22.61 (2)° between the N1/P1/N2 and N1/P2/N2 planes. The corresponding dihedral angle for the uncoordinated ligand is 3.73 (2)°.
3. Supramolecular features
In the crystal, the molecules are connected through weak N—H⋯Cl and C—H⋯Cl hydrogen-bonding interactions (Fig. 2, Table 1). Interestingly, in the solid-state structure II, the exocyclic nitrogen substitutents are arranged in an endo, endo fashion, whereas in ligand I they are arranged in exo, endo orientations (Chivers et al., 2002). An overlay plot of the free ligand molecule I with the ligand fragment of II is shown in Fig. 3. This conformational change upon coordination is possibly caused by the formation of intermolecular hydrogen-bonding interactions. A similar conformational change influenced by hydrogen-bonding interactions has previously been noted (Chandrasekaran et al., 2011).
4. Synthesis and crystallization
The ligand cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)], (I), was prepared following a reported procedure (Chivers et al., 2002).
A dichloromethane solution (10 mL) of [Pd(COD)Cl2] (100 mg, 0.35 mmol) was added dropwise to a solution of cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)] (175 mg, 0.35 mmol) in 10 mL of CH2Cl2 under an N2 atmosphere at ambient temperature. The resultant dark-orange solution was stirred for 6 h. The solution was then concentrated to 10 mL, diluted with 10 mL of pentane, and stored at 248 K for a day to afford the analytically pure orange crystalline product. X-ray quality crystals were obtained by slow evaporation from a DMF solution at room temperature. Yield: 76% (206 mg, 0.067 mmol), m.p. 455–457 K.
1H NMR (400 MHz, DMSO-d6): 1.44 (s, 18H, tBu), 1.57 (s, 18H, tBu), 2.3 (br s, 2H, NH). IR (cm−1): 3175 (br w), 2974 (w), 1469 (w), 1392 (w), 1367 (m), 1367 (m), 1227 (m), 1184 (s), 1028 (s), 893 (s), 837 (w), 733 (m), 683 (m). [CH2Cl2; λmax, nm (∊M, M−1cm−1)]: 247 (12068), 294 (15752), 355 (6827). Analysis calculated for C16H38N4P2Se2PdCl2: C, 28.11; H, 5.60; N, 8.19. Found: C, 28.37; H, 6.01; N, 28.74.
5. Refinement
Crystal data, data collection and structure . All H atoms attached to carbon were placed in calculated positions (C—H = 0.98 Å), while those attached to nitrogen were placed in locations derived from a difference-Fourier map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with Uiso(H) = 1.2-1.5 times those of the parent atoms. The t-butyl group attached to N4 was modeled as rotationally disordered over two sites of approximately equal population. These were refined with restraints so that the geometries of the two components of the disorder are comparable.
details are summarized in Table 2Supporting information
CCDC reference: 1549758
https://doi.org/10.1107/S2056989018000841/nk2239sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000841/nk2239Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[PdCl2(C16H38N4P2Se2)] | Dx = 1.705 Mg m−3 |
Mr = 683.66 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9629 reflections |
a = 17.3733 (10) Å | θ = 2.4–29.1° |
b = 15.7184 (9) Å | µ = 3.76 mm−1 |
c = 19.5052 (11) Å | T = 150 K |
V = 5326.5 (5) Å3 | Block, orange |
Z = 8 | 0.18 × 0.13 × 0.12 mm |
F(000) = 2720 |
Bruker SMART APEX CCD diffractometer | 7112 independent reflections |
Radiation source: fine-focus sealed tube | 6053 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 29.2°, θmin = 2.0° |
φ and ω scans | h = −23→23 |
Absorption correction: numerical (SADABS; Bruker, 2013) | k = −21→21 |
Tmin = 0.44, Tmax = 0.66 | l = −26→26 |
94164 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0283P)2 + 6.7911P] where P = (Fo2 + 2Fc2)/3 |
7112 reflections | (Δ/σ)max = 0.002 |
251 parameters | Δρmax = 1.10 e Å−3 |
45 restraints | Δρmin = −0.82 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The t-butyl group attached to N4 is rotationally disordered over two sites of approximately equal population. These were refined with restraints that the geometries of the two components of the disorder be comparable. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pd1 | 0.82807 (2) | 0.37109 (2) | 0.32897 (2) | 0.01569 (5) | |
Se1 | 0.79075 (2) | 0.43142 (2) | 0.21827 (2) | 0.01764 (6) | |
Se2 | 0.71420 (2) | 0.33024 (2) | 0.39476 (2) | 0.02033 (6) | |
Cl1 | 0.94805 (3) | 0.41297 (5) | 0.28642 (3) | 0.02943 (14) | |
Cl2 | 0.88507 (4) | 0.31003 (5) | 0.42436 (3) | 0.03151 (15) | |
P1 | 0.66761 (3) | 0.41544 (4) | 0.21683 (3) | 0.01258 (10) | |
P2 | 0.61982 (3) | 0.35870 (4) | 0.32597 (3) | 0.01408 (11) | |
N1 | 0.63567 (10) | 0.32168 (11) | 0.24642 (9) | 0.0142 (3) | |
N2 | 0.62529 (10) | 0.45475 (11) | 0.28785 (9) | 0.0138 (3) | |
N3 | 0.62727 (10) | 0.44265 (13) | 0.14563 (9) | 0.0180 (4) | |
H3 | 0.575137 | 0.441740 | 0.150051 | 0.022* | |
N4 | 0.53418 (11) | 0.33921 (13) | 0.35323 (10) | 0.0203 (4) | |
H4 | 0.498851 | 0.355468 | 0.321389 | 0.024* | |
C1 | 0.64163 (14) | 0.23290 (15) | 0.21846 (13) | 0.0224 (5) | |
C2 | 0.72478 (16) | 0.21282 (19) | 0.20073 (19) | 0.0418 (8) | |
H2A | 0.741606 | 0.249383 | 0.162896 | 0.063* | |
H2B | 0.729027 | 0.153044 | 0.186953 | 0.063* | |
H2C | 0.757368 | 0.223065 | 0.240900 | 0.063* | |
C3 | 0.5901 (2) | 0.22733 (19) | 0.15545 (16) | 0.0417 (7) | |
H3A | 0.537340 | 0.242791 | 0.168043 | 0.063* | |
H3B | 0.590870 | 0.169072 | 0.137562 | 0.063* | |
H3C | 0.609019 | 0.266535 | 0.120197 | 0.063* | |
C4 | 0.61299 (18) | 0.17126 (17) | 0.27283 (16) | 0.0358 (6) | |
H4A | 0.644908 | 0.176515 | 0.314045 | 0.054* | |
H4B | 0.616222 | 0.112953 | 0.255264 | 0.054* | |
H4C | 0.559394 | 0.184560 | 0.284242 | 0.054* | |
C5 | 0.62346 (14) | 0.54289 (15) | 0.31730 (12) | 0.0201 (5) | |
C6 | 0.55892 (19) | 0.54603 (18) | 0.36997 (16) | 0.0422 (8) | |
H6A | 0.510622 | 0.527885 | 0.348517 | 0.063* | |
H6B | 0.553355 | 0.604315 | 0.387109 | 0.063* | |
H6C | 0.571202 | 0.507919 | 0.408193 | 0.063* | |
C7 | 0.69939 (18) | 0.56807 (18) | 0.35043 (16) | 0.0361 (7) | |
H7A | 0.710827 | 0.529084 | 0.388296 | 0.054* | |
H7B | 0.695567 | 0.626300 | 0.368064 | 0.054* | |
H7C | 0.740675 | 0.565045 | 0.316289 | 0.054* | |
C8 | 0.60370 (16) | 0.60309 (16) | 0.25870 (14) | 0.0289 (5) | |
H8A | 0.644157 | 0.600390 | 0.223758 | 0.043* | |
H8B | 0.599801 | 0.661335 | 0.276281 | 0.043* | |
H8C | 0.554417 | 0.586272 | 0.238353 | 0.043* | |
C9 | 0.65722 (14) | 0.46705 (17) | 0.07581 (11) | 0.0235 (5) | |
C10 | 0.70489 (17) | 0.3951 (2) | 0.04504 (14) | 0.0360 (6) | |
H10A | 0.750172 | 0.384783 | 0.073815 | 0.054* | |
H10B | 0.721499 | 0.411007 | −0.001237 | 0.054* | |
H10C | 0.673625 | 0.343287 | 0.042754 | 0.054* | |
C11 | 0.58469 (16) | 0.4814 (2) | 0.03314 (13) | 0.0355 (7) | |
H11A | 0.553537 | 0.429424 | 0.033088 | 0.053* | |
H11B | 0.599201 | 0.495780 | −0.014006 | 0.053* | |
H11C | 0.554791 | 0.528195 | 0.052961 | 0.053* | |
C12 | 0.70387 (17) | 0.54828 (19) | 0.07905 (14) | 0.0338 (6) | |
H12A | 0.672869 | 0.593370 | 0.100063 | 0.051* | |
H12B | 0.718703 | 0.565358 | 0.032569 | 0.051* | |
H12C | 0.750228 | 0.538698 | 0.106606 | 0.051* | |
C13 | 0.49714 (15) | 0.30323 (18) | 0.41632 (12) | 0.0295 (6) | |
C14 | 0.4321 (4) | 0.2471 (5) | 0.3901 (3) | 0.0556 (8) | 0.548 (3) |
H14A | 0.401481 | 0.278775 | 0.356477 | 0.083* | 0.548 (3) |
H14B | 0.453769 | 0.196251 | 0.368310 | 0.083* | 0.548 (3) |
H14C | 0.399206 | 0.230116 | 0.428518 | 0.083* | 0.548 (3) |
C15 | 0.4492 (4) | 0.3798 (4) | 0.4498 (3) | 0.0556 (8) | 0.548 (3) |
H15A | 0.414712 | 0.404302 | 0.415257 | 0.083* | 0.548 (3) |
H15B | 0.418821 | 0.358301 | 0.488360 | 0.083* | 0.548 (3) |
H15C | 0.484838 | 0.423715 | 0.466105 | 0.083* | 0.548 (3) |
C16 | 0.5472 (3) | 0.2673 (5) | 0.4654 (3) | 0.0556 (8) | 0.548 (3) |
H16A | 0.517051 | 0.245880 | 0.504238 | 0.083* | 0.548 (3) |
H16B | 0.575834 | 0.220258 | 0.444540 | 0.083* | 0.548 (3) |
H16C | 0.583308 | 0.310757 | 0.481535 | 0.083* | 0.548 (3) |
C14A | 0.4149 (4) | 0.3018 (6) | 0.4084 (4) | 0.0556 (8) | 0.452 (3) |
H14D | 0.401634 | 0.273183 | 0.365383 | 0.083* | 0.452 (3) |
H14E | 0.391776 | 0.271054 | 0.446940 | 0.083* | 0.452 (3) |
H14F | 0.395302 | 0.360261 | 0.407521 | 0.083* | 0.452 (3) |
C15A | 0.5291 (4) | 0.3444 (5) | 0.4791 (3) | 0.0556 (8) | 0.452 (3) |
H15D | 0.585444 | 0.341047 | 0.478162 | 0.083* | 0.452 (3) |
H15E | 0.513235 | 0.404196 | 0.480458 | 0.083* | 0.452 (3) |
H15F | 0.509709 | 0.314989 | 0.519877 | 0.083* | 0.452 (3) |
C16A | 0.5256 (4) | 0.2064 (4) | 0.4239 (4) | 0.0556 (8) | 0.452 (3) |
H16D | 0.581653 | 0.205263 | 0.429416 | 0.083* | 0.452 (3) |
H16E | 0.501260 | 0.180603 | 0.464190 | 0.083* | 0.452 (3) |
H16F | 0.511218 | 0.174341 | 0.382781 | 0.083* | 0.452 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.00934 (8) | 0.02154 (9) | 0.01619 (8) | 0.00250 (6) | −0.00299 (6) | −0.00155 (6) |
Se1 | 0.00884 (10) | 0.02754 (13) | 0.01654 (10) | −0.00158 (8) | −0.00016 (7) | 0.00226 (8) |
Se2 | 0.01424 (11) | 0.02861 (13) | 0.01812 (11) | −0.00049 (9) | −0.00335 (8) | 0.00731 (9) |
Cl1 | 0.0094 (2) | 0.0534 (4) | 0.0255 (3) | −0.0011 (2) | −0.0001 (2) | −0.0038 (3) |
Cl2 | 0.0230 (3) | 0.0455 (4) | 0.0260 (3) | 0.0080 (3) | −0.0106 (2) | 0.0073 (3) |
P1 | 0.0090 (2) | 0.0153 (3) | 0.0134 (2) | 0.00044 (19) | −0.00020 (18) | 0.00051 (19) |
P2 | 0.0099 (2) | 0.0170 (3) | 0.0154 (2) | −0.0007 (2) | −0.00030 (19) | 0.00305 (19) |
N1 | 0.0138 (8) | 0.0129 (9) | 0.0159 (8) | 0.0001 (7) | 0.0002 (7) | −0.0006 (6) |
N2 | 0.0127 (8) | 0.0136 (9) | 0.0150 (8) | 0.0007 (7) | 0.0022 (6) | 0.0009 (6) |
N3 | 0.0101 (8) | 0.0276 (11) | 0.0161 (8) | 0.0001 (7) | −0.0021 (7) | 0.0044 (7) |
N4 | 0.0115 (9) | 0.0320 (11) | 0.0173 (9) | −0.0032 (8) | 0.0008 (7) | 0.0094 (8) |
C1 | 0.0206 (11) | 0.0143 (11) | 0.0323 (13) | 0.0007 (9) | −0.0015 (9) | −0.0062 (9) |
C2 | 0.0291 (15) | 0.0266 (15) | 0.070 (2) | 0.0043 (12) | 0.0118 (14) | −0.0188 (14) |
C3 | 0.054 (2) | 0.0257 (15) | 0.0453 (17) | −0.0056 (14) | −0.0199 (15) | −0.0098 (12) |
C4 | 0.0391 (16) | 0.0162 (13) | 0.0520 (18) | −0.0035 (11) | −0.0010 (13) | 0.0026 (11) |
C5 | 0.0247 (12) | 0.0152 (11) | 0.0204 (11) | 0.0031 (9) | 0.0029 (9) | −0.0033 (8) |
C6 | 0.055 (2) | 0.0264 (14) | 0.0454 (17) | 0.0077 (14) | 0.0282 (15) | −0.0056 (12) |
C7 | 0.0407 (16) | 0.0257 (14) | 0.0420 (16) | 0.0014 (12) | −0.0149 (13) | −0.0123 (12) |
C8 | 0.0333 (14) | 0.0178 (12) | 0.0357 (14) | 0.0025 (11) | −0.0008 (11) | 0.0037 (10) |
C9 | 0.0217 (11) | 0.0364 (14) | 0.0125 (10) | −0.0039 (10) | −0.0019 (8) | 0.0050 (9) |
C10 | 0.0337 (15) | 0.0534 (19) | 0.0207 (12) | 0.0019 (13) | 0.0058 (11) | −0.0034 (12) |
C11 | 0.0314 (14) | 0.0517 (18) | 0.0235 (12) | −0.0045 (13) | −0.0128 (11) | 0.0115 (12) |
C12 | 0.0344 (15) | 0.0417 (16) | 0.0251 (13) | −0.0143 (13) | −0.0037 (11) | 0.0102 (11) |
C13 | 0.0284 (13) | 0.0402 (15) | 0.0197 (11) | −0.0126 (12) | 0.0065 (10) | 0.0086 (10) |
C14 | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
C15 | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
C16 | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
C14A | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
C15A | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
C16A | 0.0535 (17) | 0.076 (2) | 0.0375 (15) | −0.0114 (17) | 0.0209 (13) | 0.0186 (14) |
Pd1—Cl2 | 2.3159 (6) | C8—H8A | 0.9800 |
Pd1—Cl1 | 2.3381 (6) | C8—H8B | 0.9800 |
Pd1—Se2 | 2.4440 (3) | C8—H8C | 0.9800 |
Pd1—Se1 | 2.4458 (3) | C9—C12 | 1.514 (4) |
Se1—P1 | 2.1543 (6) | C9—C10 | 1.525 (4) |
Se2—P2 | 2.1654 (6) | C9—C11 | 1.527 (3) |
P1—N3 | 1.6132 (18) | C10—H10A | 0.9800 |
P1—N1 | 1.6773 (19) | C10—H10B | 0.9800 |
P1—N2 | 1.6855 (18) | C10—H10C | 0.9800 |
P2—N4 | 1.6093 (19) | C11—H11A | 0.9800 |
P2—N1 | 1.6799 (18) | C11—H11B | 0.9800 |
P2—N2 | 1.6856 (19) | C11—H11C | 0.9800 |
N1—C1 | 1.502 (3) | C12—H12A | 0.9800 |
N2—C5 | 1.500 (3) | C12—H12B | 0.9800 |
N3—C9 | 1.508 (3) | C12—H12C | 0.9800 |
N3—H3 | 0.9099 | C13—C16 | 1.411 (6) |
N4—C13 | 1.499 (3) | C13—C14A | 1.437 (7) |
N4—H4 | 0.9099 | C13—C15A | 1.492 (7) |
C1—C2 | 1.519 (4) | C13—C14 | 1.522 (6) |
C1—C4 | 1.520 (4) | C13—C15 | 1.602 (6) |
C1—C3 | 1.523 (4) | C13—C16A | 1.607 (7) |
C2—H2A | 0.9800 | C14—H14A | 0.9800 |
C2—H2B | 0.9800 | C14—H14B | 0.9800 |
C2—H2C | 0.9800 | C14—H14C | 0.9800 |
C3—H3A | 0.9800 | C15—H15A | 0.9800 |
C3—H3B | 0.9800 | C15—H15B | 0.9800 |
C3—H3C | 0.9800 | C15—H15C | 0.9800 |
C4—H4A | 0.9800 | C16—H16A | 0.9800 |
C4—H4B | 0.9800 | C16—H16B | 0.9800 |
C4—H4C | 0.9800 | C16—H16C | 0.9800 |
C5—C7 | 1.521 (4) | C14A—H14D | 0.9800 |
C5—C6 | 1.522 (3) | C14A—H14E | 0.9800 |
C5—C8 | 1.523 (3) | C14A—H14F | 0.9800 |
C6—H6A | 0.9800 | C15A—H15D | 0.9800 |
C6—H6B | 0.9800 | C15A—H15E | 0.9800 |
C6—H6C | 0.9800 | C15A—H15F | 0.9800 |
C7—H7A | 0.9800 | C16A—H16D | 0.9800 |
C7—H7B | 0.9800 | C16A—H16E | 0.9800 |
C7—H7C | 0.9800 | C16A—H16F | 0.9800 |
Cl2—Pd1—Cl1 | 91.19 (2) | H8A—C8—H8B | 109.5 |
Cl2—Pd1—Se2 | 79.364 (18) | C5—C8—H8C | 109.5 |
Cl1—Pd1—Se2 | 169.114 (17) | H8A—C8—H8C | 109.5 |
Cl2—Pd1—Se1 | 169.511 (19) | H8B—C8—H8C | 109.5 |
Cl1—Pd1—Se1 | 79.267 (17) | N3—C9—C12 | 111.2 (2) |
Se2—Pd1—Se1 | 110.536 (10) | N3—C9—C10 | 110.8 (2) |
P1—Se1—Pd1 | 103.275 (17) | C12—C9—C10 | 110.6 (2) |
P2—Se2—Pd1 | 103.496 (18) | N3—C9—C11 | 104.19 (19) |
N3—P1—N1 | 112.67 (10) | C12—C9—C11 | 109.9 (2) |
N3—P1—N2 | 114.88 (9) | C10—C9—C11 | 110.1 (2) |
N1—P1—N2 | 83.97 (9) | C9—C10—H10A | 109.5 |
N3—P1—Se1 | 114.32 (7) | C9—C10—H10B | 109.5 |
N1—P1—Se1 | 115.25 (7) | H10A—C10—H10B | 109.5 |
N2—P1—Se1 | 112.32 (7) | C9—C10—H10C | 109.5 |
N4—P2—N1 | 113.00 (10) | H10A—C10—H10C | 109.5 |
N4—P2—N2 | 111.62 (10) | H10B—C10—H10C | 109.5 |
N1—P2—N2 | 83.89 (9) | C9—C11—H11A | 109.5 |
N4—P2—Se2 | 117.13 (7) | C9—C11—H11B | 109.5 |
N1—P2—Se2 | 112.12 (7) | H11A—C11—H11B | 109.5 |
N2—P2—Se2 | 114.56 (7) | C9—C11—H11C | 109.5 |
C1—N1—P1 | 131.96 (15) | H11A—C11—H11C | 109.5 |
C1—N1—P2 | 131.96 (15) | H11B—C11—H11C | 109.5 |
P1—N1—P2 | 93.88 (9) | C9—C12—H12A | 109.5 |
C5—N2—P1 | 131.49 (14) | C9—C12—H12B | 109.5 |
C5—N2—P2 | 131.07 (14) | H12A—C12—H12B | 109.5 |
P1—N2—P2 | 93.38 (9) | C9—C12—H12C | 109.5 |
C9—N3—P1 | 134.04 (15) | H12A—C12—H12C | 109.5 |
C9—N3—H3 | 115.7 | H12B—C12—H12C | 109.5 |
P1—N3—H3 | 110.3 | C14A—C13—C15A | 117.7 (5) |
C13—N4—P2 | 137.71 (17) | C16—C13—N4 | 116.3 (3) |
C13—N4—H4 | 112.1 | C14A—C13—N4 | 110.1 (3) |
P2—N4—H4 | 110.2 | C15A—C13—N4 | 110.5 (3) |
N1—C1—C2 | 110.0 (2) | C16—C13—C14 | 116.9 (4) |
N1—C1—C4 | 108.4 (2) | N4—C13—C14 | 105.1 (3) |
C2—C1—C4 | 109.7 (2) | C16—C13—C15 | 110.2 (4) |
N1—C1—C3 | 107.8 (2) | N4—C13—C15 | 105.9 (3) |
C2—C1—C3 | 111.3 (2) | C14—C13—C15 | 100.8 (4) |
C4—C1—C3 | 109.5 (2) | C14A—C13—C16A | 107.5 (5) |
C1—C2—H2A | 109.5 | C15A—C13—C16A | 102.7 (4) |
C1—C2—H2B | 109.5 | N4—C13—C16A | 107.5 (3) |
H2A—C2—H2B | 109.5 | C13—C14—H14A | 109.5 |
C1—C2—H2C | 109.5 | C13—C14—H14B | 109.5 |
H2A—C2—H2C | 109.5 | H14A—C14—H14B | 109.5 |
H2B—C2—H2C | 109.5 | C13—C14—H14C | 109.5 |
C1—C3—H3A | 109.5 | H14A—C14—H14C | 109.5 |
C1—C3—H3B | 109.5 | H14B—C14—H14C | 109.5 |
H3A—C3—H3B | 109.5 | C13—C15—H15A | 109.5 |
C1—C3—H3C | 109.5 | C13—C15—H15B | 109.5 |
H3A—C3—H3C | 109.5 | H15A—C15—H15B | 109.5 |
H3B—C3—H3C | 109.5 | C13—C15—H15C | 109.5 |
C1—C4—H4A | 109.5 | H15A—C15—H15C | 109.5 |
C1—C4—H4B | 109.5 | H15B—C15—H15C | 109.5 |
H4A—C4—H4B | 109.5 | C13—C16—H16A | 109.5 |
C1—C4—H4C | 109.5 | C13—C16—H16B | 109.5 |
H4A—C4—H4C | 109.5 | H16A—C16—H16B | 109.5 |
H4B—C4—H4C | 109.5 | C13—C16—H16C | 109.5 |
N2—C5—C7 | 112.62 (19) | H16A—C16—H16C | 109.5 |
N2—C5—C6 | 107.7 (2) | H16B—C16—H16C | 109.5 |
C7—C5—C6 | 110.1 (2) | C13—C14A—H14D | 109.5 |
N2—C5—C8 | 106.93 (18) | C13—C14A—H14E | 109.5 |
C7—C5—C8 | 110.7 (2) | H14D—C14A—H14E | 109.5 |
C6—C5—C8 | 108.7 (2) | C13—C14A—H14F | 109.5 |
C5—C6—H6A | 109.5 | H14D—C14A—H14F | 109.5 |
C5—C6—H6B | 109.5 | H14E—C14A—H14F | 109.5 |
H6A—C6—H6B | 109.5 | C13—C15A—H15D | 109.5 |
C5—C6—H6C | 109.5 | C13—C15A—H15E | 109.5 |
H6A—C6—H6C | 109.5 | H15D—C15A—H15E | 109.5 |
H6B—C6—H6C | 109.5 | C13—C15A—H15F | 109.5 |
C5—C7—H7A | 109.5 | H15D—C15A—H15F | 109.5 |
C5—C7—H7B | 109.5 | H15E—C15A—H15F | 109.5 |
H7A—C7—H7B | 109.5 | C13—C16A—H16D | 109.5 |
C5—C7—H7C | 109.5 | C13—C16A—H16E | 109.5 |
H7A—C7—H7C | 109.5 | H16D—C16A—H16E | 109.5 |
H7B—C7—H7C | 109.5 | C13—C16A—H16F | 109.5 |
C5—C8—H8A | 109.5 | H16D—C16A—H16F | 109.5 |
C5—C8—H8B | 109.5 | H16E—C16A—H16F | 109.5 |
N3—P1—N1—C1 | 64.6 (2) | Se1—P1—N3—C9 | 9.1 (3) |
N2—P1—N1—C1 | 179.1 (2) | N1—P2—N4—C13 | 131.3 (3) |
Se1—P1—N1—C1 | −69.0 (2) | N2—P2—N4—C13 | −136.2 (3) |
N3—P1—N1—P2 | −131.16 (9) | Se2—P2—N4—C13 | −1.3 (3) |
N2—P1—N1—P2 | −16.68 (9) | P1—N1—C1—C2 | 51.1 (3) |
Se1—P1—N1—P2 | 95.18 (7) | P2—N1—C1—C2 | −107.5 (3) |
N4—P2—N1—C1 | −68.2 (2) | P1—N1—C1—C4 | 171.10 (18) |
N2—P2—N1—C1 | −179.1 (2) | P2—N1—C1—C4 | 12.5 (3) |
Se2—P2—N1—C1 | 66.8 (2) | P1—N1—C1—C3 | −70.4 (3) |
N4—P2—N1—P1 | 127.60 (10) | P2—N1—C1—C3 | 131.0 (2) |
N2—P2—N1—P1 | 16.68 (9) | P1—N2—C5—C7 | −74.2 (3) |
Se2—P2—N1—P1 | −97.38 (7) | P2—N2—C5—C7 | 76.9 (3) |
N3—P1—N2—C5 | −72.6 (2) | P1—N2—C5—C6 | 164.2 (2) |
N1—P1—N2—C5 | 175.2 (2) | P2—N2—C5—C6 | −44.7 (3) |
Se1—P1—N2—C5 | 60.3 (2) | P1—N2—C5—C8 | 47.6 (3) |
N3—P1—N2—P2 | 128.84 (10) | P2—N2—C5—C8 | −161.39 (17) |
N1—P1—N2—P2 | 16.61 (9) | P1—N3—C9—C12 | −63.8 (3) |
Se1—P1—N2—P2 | −98.24 (7) | P1—N3—C9—C10 | 59.6 (3) |
N4—P2—N2—C5 | 72.4 (2) | P1—N3—C9—C11 | 177.9 (2) |
N1—P2—N2—C5 | −175.3 (2) | P2—N4—C13—C16 | −8.1 (5) |
Se2—P2—N2—C5 | −63.7 (2) | P2—N4—C13—C14A | −179.4 (4) |
N4—P2—N2—P1 | −128.94 (10) | P2—N4—C13—C15A | 48.9 (5) |
N1—P2—N2—P1 | −16.59 (9) | P2—N4—C13—C14 | −139.3 (4) |
Se2—P2—N2—P1 | 94.97 (7) | P2—N4—C13—C15 | 114.6 (4) |
N1—P1—N3—C9 | −125.0 (2) | P2—N4—C13—C16A | −62.5 (4) |
N2—P1—N3—C9 | 141.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···Cl1i | 0.91 | 2.45 | 3.317 (2) | 159 |
N3—H3···Cl1i | 0.91 | 2.57 | 3.4160 (19) | 155 |
C16—H16A···Cl2ii | 0.98 | 2.82 | 3.746 (5) | 157 |
C14A—H14E···Cl2ii | 0.98 | 2.82 | 3.742 (7) | 157 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x−1/2, −y+1/2, −z+1. |
Funding information
This work is funded in part by the Welch Foundation (V-0004). We thank Tulane University for support of the Tulane Crystallography Laboratory.
References
Balakrishna, M. S. (2016). Dalton Trans. 45, 12252–12282. CrossRef CAS PubMed Google Scholar
Briand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233–234, 237–254. CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264–2272. Web of Science CSD CrossRef Google Scholar
Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936–1942. CSD CrossRef PubMed CAS Google Scholar
Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348–4354. CSD CrossRef PubMed CAS Google Scholar
Czauderna, C. F., Jarvis, A. G., Heutz, F. J. L., Cordes, D. B., Slawin, A. M. Z., van der Vlugt, J. I. & Kamer, P. C. J. (2015). Organometallics, 34, 1608–1618. CSD CrossRef CAS Google Scholar
Das, D., Rao, G. K. & Singh, A. K. (2009). Organometallics, 28, 6054–6058. CSD CrossRef CAS Google Scholar
Kamer, P. C. J., van Leeuwen, P. W. N. M. & Reek, J. N. H. (2001). Acc. Chem. Res. 34, 895–904. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Motolko, K. S. A., Emslie, D. J. H. & Jenkins, H. A. (2017). Organometallics, 36, 1601–1608. CSD CrossRef CAS Google Scholar
Saleem, F., Rao, G. K., Singh, P. & Singh, A. K. (2013). Organometallics, 32, 387–395. CrossRef CAS Google Scholar
Stahl, L. (2000). Coord. Chem. Rev. 210, 203-250. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.