research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a palladium(II) complex containing the wide bite-angle bis­­(selenium) ligand, cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, LA, 70118, USA
*Correspondence e-mail: chandru@lamar.edu

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 21 August 2017; accepted 12 January 2018; online 19 January 2018)

A palladium(II) complex {systematic name: dichlorido[1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-diselone-κ2Se,Se′]pal­ladium(II)}, cis-[PdCl2{I}], (II), containing a bis­(selenium) ligand based on cyclo­diphosph(V)azane, cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)], (I), has been synthesized and structurally characterized. The crystal structure of complex II reveals that the ligand chelates through selenium donors with the natural bite-angle of 110.54 (1)° and a Pd—Se bond distance of 2.444 (1) Å. The coordination around PdII shows a slightly distorted square-planar geometry, as indicated by the angle between the [PdCl2] and [PdSe2] planes of 5.92 (3)°. In the crystal, the mol­ecules are inter­linked through weak N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions.

1. Chemical context

Cyclo­diphosph(III)aza­nes are four-membered PIII–N ring systems with general formula, cis-[RP(μ-NtBu)2PR]. The planar nature of the four-membered ring favors a bridging bidentate coordination mode through phospho­rus donors rather than chelation, to afford structurally inter­esting macrocyclic and polymeric complexes (Balakrishna, 2016[Balakrishna, M. S. (2016). Dalton Trans. 45, 12252-12282.]). The main-group chemistry of the corresponding PV analogue cyclo­diphosph(V)aza­nes, cis-[R(E)P(μ-NtBu)2P(E)R] (E = O, S, Se, and Te; R = NHtBu) and its amide derivatives has been studied extensively by Stahl (2000[Stahl, L. (2000). Coord. Chem. Rev. 210, 203-250.]) and Briand and co-workers (Briand et al., 2002[Briand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233-234, 237-254.]). While examples of coordination of cyclo­diphosph(V)aza­nes with transition metal ions are scarce, the sulfur and selenium derivatives are especially inter­esting as they have a special affinity for soft metals and have the potential to form complexes with wide natural bite-angles through chelation (Chivers et al., 2001[Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936-1942.]). Several late transition-metal complexes containing wide natural bite-angle chelating ligands (LML = 100–134°) have been developed over the years and have shown promising catalytic activity for several reactions (Kamer et al., 2001[Kamer, P. C. J., van Leeuwen, P. W. N. M. & Reek, J. N. H. (2001). Acc. Chem. Res. 34, 895-904.]). The majority of these wide bite-angle ligands are phospho­rus and/or nitro­gen donor ligands (Motolko et al., 2017[Motolko, K. S. A., Emslie, D. J. H. & Jenkins, H. A. (2017). Organometallics, 36, 1601-1608.]; Czauderna et al., 2015[Czauderna, C. F., Jarvis, A. G., Heutz, F. J. L., Cordes, D. B., Slawin, A. M. Z., van der Vlugt, J. I. & Kamer, P. C. J. (2015). Organometallics, 34, 1608-1618.]). Herein we report the synthesis and crystal structure of the palladium(II) complex (II) with a wide bite-angle selenium ligand based on cyclo­diphosph(V)azane cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)], (I).

[Scheme 1]

2. Structural commentary

A perspective view of the mol­ecular structure of the PdII complex (II) is presented in Fig. 1[link]. The crystal structure of II confirms the chelation of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (I) through selenium donors to the [PdCl2] moiety, with a Se1—Pd1—Se2 natural bite-angle of 110.54 (1)°. The rigid four-membered cyclo­diphosphazane [P(μ-NtBu)2P] ligand backbone enforces large natural bite-angles. The Se1—Pd1—Cl1 and Se2—Pd1—Cl2 bond angles are 79.27 (2) and 79.36 (2)°, respectively, smaller than the natural square-planar angle, whereas the Cl1—Pd1—Cl2 angle [91.19 (2)°] is closer to the typical value for a square-planar angle. In complex II, the exocyclic Se1—P1—N3 and Se2—P2—N4 angles at 114.32 (7) and 117.13 (7)°, respectively, are slightly larger than the corresponding angle in the uncoordin­ated ligand I [107.3 (1) and 113.2 (1)°; Chivers et al., 2002[Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348-4354.]]. In complex II, the palladium atom shows a slight tetra­hedral distortion from a square-planar geometry, as indicated by the dihedral angle between the Se1/Pd1/Se2 and Cl1/Pd1/Cl2 planes of 5.92 (3)°. The Pd1—Se1 and Pd1—Se2 bond distances are 2.4458 (3) and 2.4440 (3) Å, respectively, and are in the typical range for PdII complexes with selenium ligands (Das et al., 2009[Das, D., Rao, G. K. & Singh, A. K. (2009). Organometallics, 28, 6054-6058.]). In complex II, the P1—Se1 and P2—Se2 bond distances are 2.1543 (6) and 2.1654 (6) Å, respectively; these bonds are slightly elongated compared to the P—Se bond [2.078 (1) Å] in the uncoordinated ligand (I). This may be a result of the coordination of Se to the Pd center. The Pd—Cl bond distances [Pd1—Cl1 = 2.3381 (6) and Pd1—Cl2 = 2.3159 (6) Å] are consistent with those reported for PdII complexes with Se donor ligands (Saleem et al., 2013[Saleem, F., Rao, G. K., Singh, P. & Singh, A. K. (2013). Organometallics, 32, 387-395.]). The [P(μ-NtBu)2P] ring in complex II is greatly puckered, as indicated by the angle of 22.61 (2)° between the N1/P1/N2 and N1/P2/N2 planes. The corresponding dihedral angle for the uncoordinated ligand is 3.73 (2)°.

[Figure 1]
Figure 1
Perspective view of palladium complex II with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity except at N3 and N4. Only the major occupancy component of the disordered t-butyl group is shown.

3. Supra­molecular features

In the crystal, the mol­ecules are connected through weak N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions (Fig. 2[link], Table 1[link]). Inter­estingly, in the solid-state structure II, the exocyclic nitro­gen substitutents are arranged in an endo, endo fashion, whereas in ligand I they are arranged in exo, endo orientations (Chivers et al., 2002[Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348-4354.]). An overlay plot of the free ligand mol­ecule I with the ligand fragment of II is shown in Fig. 3[link]. This conformational change upon coordination is possibly caused by the formation of inter­molecular hydrogen-bonding inter­actions. A similar conformational change influenced by hydrogen-bonding inter­actions has previously been noted (Chandrasekaran et al., 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264-2272.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.91 2.45 3.317 (2) 159
N3—H3⋯Cl1i 0.91 2.57 3.4160 (19) 155
C16—H16A⋯Cl2ii 0.98 2.82 3.746 (5) 157
C14A—H14E⋯Cl2ii 0.98 2.82 3.742 (7) 157
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions in the crystal lattice.
[Figure 3]
Figure 3
Overlay of the uncoordinated ligand I (gray) with the coordinated ligand fragment in complex II (purple).

4. Synthesis and crystallization

The ligand cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)], (I), was prepared following a reported procedure (Chivers et al., 2002[Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348-4354.]).

A di­chloro­methane solution (10 mL) of [Pd(COD)Cl2] (100 mg, 0.35 mmol) was added dropwise to a solution of cis-[(tBuHN)(Se)P(μ-tBuN)2P(Se)(NHtBu)] (175 mg, 0.35 mmol) in 10 mL of CH2Cl2 under an N2 atmosphere at ambient temperature. The resultant dark-orange solution was stirred for 6 h. The solution was then concentrated to 10 mL, diluted with 10 mL of pentane, and stored at 248 K for a day to afford the analytically pure orange crystalline product. X-ray quality crystals were obtained by slow evaporation from a DMF solution at room temperature. Yield: 76% (206 mg, 0.067 mmol), m.p. 455–457 K.

1H NMR (400 MHz, DMSO-d6): 1.44 (s, 18H, tBu), 1.57 (s, 18H, tBu), 2.3 (br s, 2H, NH). IR (cm−1): 3175 (br w), 2974 (w), 1469 (w), 1392 (w), 1367 (m), 1367 (m), 1227 (m), 1184 (s), 1028 (s), 893 (s), 837 (w), 733 (m), 683 (m). Absorption spectrum [CH2Cl2; λmax, nm (M, M−1cm−1)]: 247 (12068), 294 (15752), 355 (6827). Analysis calculated for C16H38N4P2Se2PdCl2: C, 28.11; H, 5.60; N, 8.19. Found: C, 28.37; H, 6.01; N, 28.74.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to carbon were placed in calculated positions (C—H = 0.98 Å), while those attached to nitro­gen were placed in locations derived from a difference-Fourier map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with Uiso(H) = 1.2-1.5 times those of the parent atoms. The t-butyl group attached to N4 was modeled as rotationally disordered over two sites of approximately equal population. These were refined with restraints so that the geometries of the two components of the disorder are comparable.

Table 2
Experimental details

Crystal data
Chemical formula [PdCl2(C16H38N4P2Se2)]
Mr 683.66
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 17.3733 (10), 15.7184 (9), 19.5052 (11)
V3) 5326.5 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.76
Crystal size (mm) 0.18 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Numerical (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.44, 0.66
No. of measured, independent and observed [I > 2σ(I)] reflections 94164, 7112, 6053
Rint 0.053
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.03
No. of reflections 7112
No. of parameters 251
No. of restraints 45
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.10, −0.82
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Dichlorido[1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-diselone-κ2Se,Se']palladium(II) top
Crystal data top
[PdCl2(C16H38N4P2Se2)]Dx = 1.705 Mg m3
Mr = 683.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9629 reflections
a = 17.3733 (10) Åθ = 2.4–29.1°
b = 15.7184 (9) ŵ = 3.76 mm1
c = 19.5052 (11) ÅT = 150 K
V = 5326.5 (5) Å3Block, orange
Z = 80.18 × 0.13 × 0.12 mm
F(000) = 2720
Data collection top
Bruker SMART APEX CCD
diffractometer
7112 independent reflections
Radiation source: fine-focus sealed tube6053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.3660 pixels mm-1θmax = 29.2°, θmin = 2.0°
φ and ω scansh = 2323
Absorption correction: numerical
(SADABS; Bruker, 2013)
k = 2121
Tmin = 0.44, Tmax = 0.66l = 2626
94164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.064H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 6.7911P]
where P = (Fo2 + 2Fc2)/3
7112 reflections(Δ/σ)max = 0.002
251 parametersΔρmax = 1.10 e Å3
45 restraintsΔρmin = 0.82 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The t-butyl group attached to N4 is rotationally disordered over two sites of approximately equal population. These were refined with restraints that the geometries of the two components of the disorder be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.82807 (2)0.37109 (2)0.32897 (2)0.01569 (5)
Se10.79075 (2)0.43142 (2)0.21827 (2)0.01764 (6)
Se20.71420 (2)0.33024 (2)0.39476 (2)0.02033 (6)
Cl10.94805 (3)0.41297 (5)0.28642 (3)0.02943 (14)
Cl20.88507 (4)0.31003 (5)0.42436 (3)0.03151 (15)
P10.66761 (3)0.41544 (4)0.21683 (3)0.01258 (10)
P20.61982 (3)0.35870 (4)0.32597 (3)0.01408 (11)
N10.63567 (10)0.32168 (11)0.24642 (9)0.0142 (3)
N20.62529 (10)0.45475 (11)0.28785 (9)0.0138 (3)
N30.62727 (10)0.44265 (13)0.14563 (9)0.0180 (4)
H30.5751370.4417400.1500510.022*
N40.53418 (11)0.33921 (13)0.35323 (10)0.0203 (4)
H40.4988510.3554680.3213890.024*
C10.64163 (14)0.23290 (15)0.21846 (13)0.0224 (5)
C20.72478 (16)0.21282 (19)0.20073 (19)0.0418 (8)
H2A0.7416060.2493830.1628960.063*
H2B0.7290270.1530440.1869530.063*
H2C0.7573680.2230650.2409000.063*
C30.5901 (2)0.22733 (19)0.15545 (16)0.0417 (7)
H3A0.5373400.2427910.1680430.063*
H3B0.5908700.1690720.1375620.063*
H3C0.6090190.2665350.1201970.063*
C40.61299 (18)0.17126 (17)0.27283 (16)0.0358 (6)
H4A0.6449080.1765150.3140450.054*
H4B0.6162220.1129530.2552640.054*
H4C0.5593940.1845600.2842420.054*
C50.62346 (14)0.54289 (15)0.31730 (12)0.0201 (5)
C60.55892 (19)0.54603 (18)0.36997 (16)0.0422 (8)
H6A0.5106220.5278850.3485170.063*
H6B0.5533550.6043150.3871090.063*
H6C0.5712020.5079190.4081930.063*
C70.69939 (18)0.56807 (18)0.35043 (16)0.0361 (7)
H7A0.7108270.5290840.3882960.054*
H7B0.6955670.6263000.3680640.054*
H7C0.7406750.5650450.3162890.054*
C80.60370 (16)0.60309 (16)0.25870 (14)0.0289 (5)
H8A0.6441570.6003900.2237580.043*
H8B0.5998010.6613350.2762810.043*
H8C0.5544170.5862720.2383530.043*
C90.65722 (14)0.46705 (17)0.07581 (11)0.0235 (5)
C100.70489 (17)0.3951 (2)0.04504 (14)0.0360 (6)
H10A0.7501720.3847830.0738150.054*
H10B0.7214990.4110070.0012370.054*
H10C0.6736250.3432870.0427540.054*
C110.58469 (16)0.4814 (2)0.03314 (13)0.0355 (7)
H11A0.5535370.4294240.0330880.053*
H11B0.5992010.4957800.0140060.053*
H11C0.5547910.5281950.0529610.053*
C120.70387 (17)0.54828 (19)0.07905 (14)0.0338 (6)
H12A0.6728690.5933700.1000630.051*
H12B0.7187030.5653580.0325690.051*
H12C0.7502280.5386980.1066060.051*
C130.49714 (15)0.30323 (18)0.41632 (12)0.0295 (6)
C140.4321 (4)0.2471 (5)0.3901 (3)0.0556 (8)0.548 (3)
H14A0.4014810.2787750.3564770.083*0.548 (3)
H14B0.4537690.1962510.3683100.083*0.548 (3)
H14C0.3992060.2301160.4285180.083*0.548 (3)
C150.4492 (4)0.3798 (4)0.4498 (3)0.0556 (8)0.548 (3)
H15A0.4147120.4043020.4152570.083*0.548 (3)
H15B0.4188210.3583010.4883600.083*0.548 (3)
H15C0.4848380.4237150.4661050.083*0.548 (3)
C160.5472 (3)0.2673 (5)0.4654 (3)0.0556 (8)0.548 (3)
H16A0.5170510.2458800.5042380.083*0.548 (3)
H16B0.5758340.2202580.4445400.083*0.548 (3)
H16C0.5833080.3107570.4815350.083*0.548 (3)
C14A0.4149 (4)0.3018 (6)0.4084 (4)0.0556 (8)0.452 (3)
H14D0.4016340.2731830.3653830.083*0.452 (3)
H14E0.3917760.2710540.4469400.083*0.452 (3)
H14F0.3953020.3602610.4075210.083*0.452 (3)
C15A0.5291 (4)0.3444 (5)0.4791 (3)0.0556 (8)0.452 (3)
H15D0.5854440.3410470.4781620.083*0.452 (3)
H15E0.5132350.4041960.4804580.083*0.452 (3)
H15F0.5097090.3149890.5198770.083*0.452 (3)
C16A0.5256 (4)0.2064 (4)0.4239 (4)0.0556 (8)0.452 (3)
H16D0.5816530.2052630.4294160.083*0.452 (3)
H16E0.5012600.1806030.4641900.083*0.452 (3)
H16F0.5112180.1743410.3827810.083*0.452 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00934 (8)0.02154 (9)0.01619 (8)0.00250 (6)0.00299 (6)0.00155 (6)
Se10.00884 (10)0.02754 (13)0.01654 (10)0.00158 (8)0.00016 (7)0.00226 (8)
Se20.01424 (11)0.02861 (13)0.01812 (11)0.00049 (9)0.00335 (8)0.00731 (9)
Cl10.0094 (2)0.0534 (4)0.0255 (3)0.0011 (2)0.0001 (2)0.0038 (3)
Cl20.0230 (3)0.0455 (4)0.0260 (3)0.0080 (3)0.0106 (2)0.0073 (3)
P10.0090 (2)0.0153 (3)0.0134 (2)0.00044 (19)0.00020 (18)0.00051 (19)
P20.0099 (2)0.0170 (3)0.0154 (2)0.0007 (2)0.00030 (19)0.00305 (19)
N10.0138 (8)0.0129 (9)0.0159 (8)0.0001 (7)0.0002 (7)0.0006 (6)
N20.0127 (8)0.0136 (9)0.0150 (8)0.0007 (7)0.0022 (6)0.0009 (6)
N30.0101 (8)0.0276 (11)0.0161 (8)0.0001 (7)0.0021 (7)0.0044 (7)
N40.0115 (9)0.0320 (11)0.0173 (9)0.0032 (8)0.0008 (7)0.0094 (8)
C10.0206 (11)0.0143 (11)0.0323 (13)0.0007 (9)0.0015 (9)0.0062 (9)
C20.0291 (15)0.0266 (15)0.070 (2)0.0043 (12)0.0118 (14)0.0188 (14)
C30.054 (2)0.0257 (15)0.0453 (17)0.0056 (14)0.0199 (15)0.0098 (12)
C40.0391 (16)0.0162 (13)0.0520 (18)0.0035 (11)0.0010 (13)0.0026 (11)
C50.0247 (12)0.0152 (11)0.0204 (11)0.0031 (9)0.0029 (9)0.0033 (8)
C60.055 (2)0.0264 (14)0.0454 (17)0.0077 (14)0.0282 (15)0.0056 (12)
C70.0407 (16)0.0257 (14)0.0420 (16)0.0014 (12)0.0149 (13)0.0123 (12)
C80.0333 (14)0.0178 (12)0.0357 (14)0.0025 (11)0.0008 (11)0.0037 (10)
C90.0217 (11)0.0364 (14)0.0125 (10)0.0039 (10)0.0019 (8)0.0050 (9)
C100.0337 (15)0.0534 (19)0.0207 (12)0.0019 (13)0.0058 (11)0.0034 (12)
C110.0314 (14)0.0517 (18)0.0235 (12)0.0045 (13)0.0128 (11)0.0115 (12)
C120.0344 (15)0.0417 (16)0.0251 (13)0.0143 (13)0.0037 (11)0.0102 (11)
C130.0284 (13)0.0402 (15)0.0197 (11)0.0126 (12)0.0065 (10)0.0086 (10)
C140.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
C150.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
C160.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
C14A0.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
C15A0.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
C16A0.0535 (17)0.076 (2)0.0375 (15)0.0114 (17)0.0209 (13)0.0186 (14)
Geometric parameters (Å, º) top
Pd1—Cl22.3159 (6)C8—H8A0.9800
Pd1—Cl12.3381 (6)C8—H8B0.9800
Pd1—Se22.4440 (3)C8—H8C0.9800
Pd1—Se12.4458 (3)C9—C121.514 (4)
Se1—P12.1543 (6)C9—C101.525 (4)
Se2—P22.1654 (6)C9—C111.527 (3)
P1—N31.6132 (18)C10—H10A0.9800
P1—N11.6773 (19)C10—H10B0.9800
P1—N21.6855 (18)C10—H10C0.9800
P2—N41.6093 (19)C11—H11A0.9800
P2—N11.6799 (18)C11—H11B0.9800
P2—N21.6856 (19)C11—H11C0.9800
N1—C11.502 (3)C12—H12A0.9800
N2—C51.500 (3)C12—H12B0.9800
N3—C91.508 (3)C12—H12C0.9800
N3—H30.9099C13—C161.411 (6)
N4—C131.499 (3)C13—C14A1.437 (7)
N4—H40.9099C13—C15A1.492 (7)
C1—C21.519 (4)C13—C141.522 (6)
C1—C41.520 (4)C13—C151.602 (6)
C1—C31.523 (4)C13—C16A1.607 (7)
C2—H2A0.9800C14—H14A0.9800
C2—H2B0.9800C14—H14B0.9800
C2—H2C0.9800C14—H14C0.9800
C3—H3A0.9800C15—H15A0.9800
C3—H3B0.9800C15—H15B0.9800
C3—H3C0.9800C15—H15C0.9800
C4—H4A0.9800C16—H16A0.9800
C4—H4B0.9800C16—H16B0.9800
C4—H4C0.9800C16—H16C0.9800
C5—C71.521 (4)C14A—H14D0.9800
C5—C61.522 (3)C14A—H14E0.9800
C5—C81.523 (3)C14A—H14F0.9800
C6—H6A0.9800C15A—H15D0.9800
C6—H6B0.9800C15A—H15E0.9800
C6—H6C0.9800C15A—H15F0.9800
C7—H7A0.9800C16A—H16D0.9800
C7—H7B0.9800C16A—H16E0.9800
C7—H7C0.9800C16A—H16F0.9800
Cl2—Pd1—Cl191.19 (2)H8A—C8—H8B109.5
Cl2—Pd1—Se279.364 (18)C5—C8—H8C109.5
Cl1—Pd1—Se2169.114 (17)H8A—C8—H8C109.5
Cl2—Pd1—Se1169.511 (19)H8B—C8—H8C109.5
Cl1—Pd1—Se179.267 (17)N3—C9—C12111.2 (2)
Se2—Pd1—Se1110.536 (10)N3—C9—C10110.8 (2)
P1—Se1—Pd1103.275 (17)C12—C9—C10110.6 (2)
P2—Se2—Pd1103.496 (18)N3—C9—C11104.19 (19)
N3—P1—N1112.67 (10)C12—C9—C11109.9 (2)
N3—P1—N2114.88 (9)C10—C9—C11110.1 (2)
N1—P1—N283.97 (9)C9—C10—H10A109.5
N3—P1—Se1114.32 (7)C9—C10—H10B109.5
N1—P1—Se1115.25 (7)H10A—C10—H10B109.5
N2—P1—Se1112.32 (7)C9—C10—H10C109.5
N4—P2—N1113.00 (10)H10A—C10—H10C109.5
N4—P2—N2111.62 (10)H10B—C10—H10C109.5
N1—P2—N283.89 (9)C9—C11—H11A109.5
N4—P2—Se2117.13 (7)C9—C11—H11B109.5
N1—P2—Se2112.12 (7)H11A—C11—H11B109.5
N2—P2—Se2114.56 (7)C9—C11—H11C109.5
C1—N1—P1131.96 (15)H11A—C11—H11C109.5
C1—N1—P2131.96 (15)H11B—C11—H11C109.5
P1—N1—P293.88 (9)C9—C12—H12A109.5
C5—N2—P1131.49 (14)C9—C12—H12B109.5
C5—N2—P2131.07 (14)H12A—C12—H12B109.5
P1—N2—P293.38 (9)C9—C12—H12C109.5
C9—N3—P1134.04 (15)H12A—C12—H12C109.5
C9—N3—H3115.7H12B—C12—H12C109.5
P1—N3—H3110.3C14A—C13—C15A117.7 (5)
C13—N4—P2137.71 (17)C16—C13—N4116.3 (3)
C13—N4—H4112.1C14A—C13—N4110.1 (3)
P2—N4—H4110.2C15A—C13—N4110.5 (3)
N1—C1—C2110.0 (2)C16—C13—C14116.9 (4)
N1—C1—C4108.4 (2)N4—C13—C14105.1 (3)
C2—C1—C4109.7 (2)C16—C13—C15110.2 (4)
N1—C1—C3107.8 (2)N4—C13—C15105.9 (3)
C2—C1—C3111.3 (2)C14—C13—C15100.8 (4)
C4—C1—C3109.5 (2)C14A—C13—C16A107.5 (5)
C1—C2—H2A109.5C15A—C13—C16A102.7 (4)
C1—C2—H2B109.5N4—C13—C16A107.5 (3)
H2A—C2—H2B109.5C13—C14—H14A109.5
C1—C2—H2C109.5C13—C14—H14B109.5
H2A—C2—H2C109.5H14A—C14—H14B109.5
H2B—C2—H2C109.5C13—C14—H14C109.5
C1—C3—H3A109.5H14A—C14—H14C109.5
C1—C3—H3B109.5H14B—C14—H14C109.5
H3A—C3—H3B109.5C13—C15—H15A109.5
C1—C3—H3C109.5C13—C15—H15B109.5
H3A—C3—H3C109.5H15A—C15—H15B109.5
H3B—C3—H3C109.5C13—C15—H15C109.5
C1—C4—H4A109.5H15A—C15—H15C109.5
C1—C4—H4B109.5H15B—C15—H15C109.5
H4A—C4—H4B109.5C13—C16—H16A109.5
C1—C4—H4C109.5C13—C16—H16B109.5
H4A—C4—H4C109.5H16A—C16—H16B109.5
H4B—C4—H4C109.5C13—C16—H16C109.5
N2—C5—C7112.62 (19)H16A—C16—H16C109.5
N2—C5—C6107.7 (2)H16B—C16—H16C109.5
C7—C5—C6110.1 (2)C13—C14A—H14D109.5
N2—C5—C8106.93 (18)C13—C14A—H14E109.5
C7—C5—C8110.7 (2)H14D—C14A—H14E109.5
C6—C5—C8108.7 (2)C13—C14A—H14F109.5
C5—C6—H6A109.5H14D—C14A—H14F109.5
C5—C6—H6B109.5H14E—C14A—H14F109.5
H6A—C6—H6B109.5C13—C15A—H15D109.5
C5—C6—H6C109.5C13—C15A—H15E109.5
H6A—C6—H6C109.5H15D—C15A—H15E109.5
H6B—C6—H6C109.5C13—C15A—H15F109.5
C5—C7—H7A109.5H15D—C15A—H15F109.5
C5—C7—H7B109.5H15E—C15A—H15F109.5
H7A—C7—H7B109.5C13—C16A—H16D109.5
C5—C7—H7C109.5C13—C16A—H16E109.5
H7A—C7—H7C109.5H16D—C16A—H16E109.5
H7B—C7—H7C109.5C13—C16A—H16F109.5
C5—C8—H8A109.5H16D—C16A—H16F109.5
C5—C8—H8B109.5H16E—C16A—H16F109.5
N3—P1—N1—C164.6 (2)Se1—P1—N3—C99.1 (3)
N2—P1—N1—C1179.1 (2)N1—P2—N4—C13131.3 (3)
Se1—P1—N1—C169.0 (2)N2—P2—N4—C13136.2 (3)
N3—P1—N1—P2131.16 (9)Se2—P2—N4—C131.3 (3)
N2—P1—N1—P216.68 (9)P1—N1—C1—C251.1 (3)
Se1—P1—N1—P295.18 (7)P2—N1—C1—C2107.5 (3)
N4—P2—N1—C168.2 (2)P1—N1—C1—C4171.10 (18)
N2—P2—N1—C1179.1 (2)P2—N1—C1—C412.5 (3)
Se2—P2—N1—C166.8 (2)P1—N1—C1—C370.4 (3)
N4—P2—N1—P1127.60 (10)P2—N1—C1—C3131.0 (2)
N2—P2—N1—P116.68 (9)P1—N2—C5—C774.2 (3)
Se2—P2—N1—P197.38 (7)P2—N2—C5—C776.9 (3)
N3—P1—N2—C572.6 (2)P1—N2—C5—C6164.2 (2)
N1—P1—N2—C5175.2 (2)P2—N2—C5—C644.7 (3)
Se1—P1—N2—C560.3 (2)P1—N2—C5—C847.6 (3)
N3—P1—N2—P2128.84 (10)P2—N2—C5—C8161.39 (17)
N1—P1—N2—P216.61 (9)P1—N3—C9—C1263.8 (3)
Se1—P1—N2—P298.24 (7)P1—N3—C9—C1059.6 (3)
N4—P2—N2—C572.4 (2)P1—N3—C9—C11177.9 (2)
N1—P2—N2—C5175.3 (2)P2—N4—C13—C168.1 (5)
Se2—P2—N2—C563.7 (2)P2—N4—C13—C14A179.4 (4)
N4—P2—N2—P1128.94 (10)P2—N4—C13—C15A48.9 (5)
N1—P2—N2—P116.59 (9)P2—N4—C13—C14139.3 (4)
Se2—P2—N2—P194.97 (7)P2—N4—C13—C15114.6 (4)
N1—P1—N3—C9125.0 (2)P2—N4—C13—C16A62.5 (4)
N2—P1—N3—C9141.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.912.453.317 (2)159
N3—H3···Cl1i0.912.573.4160 (19)155
C16—H16A···Cl2ii0.982.823.746 (5)157
C14A—H14E···Cl2ii0.982.823.742 (7)157
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Funding information

This work is funded in part by the Welch Foundation (V-0004). We thank Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBalakrishna, M. S. (2016). Dalton Trans. 45, 12252–12282.  CrossRef CAS PubMed Google Scholar
First citationBriand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233–234, 237–254.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264–2272.  Web of Science CSD CrossRef Google Scholar
First citationChivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1936–1942.  CSD CrossRef PubMed CAS Google Scholar
First citationChivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348–4354.  CSD CrossRef PubMed CAS Google Scholar
First citationCzauderna, C. F., Jarvis, A. G., Heutz, F. J. L., Cordes, D. B., Slawin, A. M. Z., van der Vlugt, J. I. & Kamer, P. C. J. (2015). Organometallics, 34, 1608–1618.  CSD CrossRef CAS Google Scholar
First citationDas, D., Rao, G. K. & Singh, A. K. (2009). Organometallics, 28, 6054–6058.  CSD CrossRef CAS Google Scholar
First citationKamer, P. C. J., van Leeuwen, P. W. N. M. & Reek, J. N. H. (2001). Acc. Chem. Res. 34, 895–904.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMotolko, K. S. A., Emslie, D. J. H. & Jenkins, H. A. (2017). Organometallics, 36, 1601–1608.  CSD CrossRef CAS Google Scholar
First citationSaleem, F., Rao, G. K., Singh, P. & Singh, A. K. (2013). Organometallics, 32, 387–395.  CrossRef CAS Google Scholar
First citationStahl, L. (2000). Coord. Chem. Rev. 210, 203-250.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds