research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tri­benzyl­bis­­(tetra­hydro­furan-κO)lutetium(III)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
*Correspondence e-mail: bob.mcdonald@ualberta.ca

Edited by T. J. Prior, University of Hull, England (Received 20 December 2017; accepted 20 December 2017; online 9 January 2018)

In the title compound, [Lu(C7H7)3(C4H8O)2] (1), the Lu ion is coordinated by three benzyl and two tetra­hydro­furan ligands. Two of the benzyl groups are bonded in a classical η1-fashion through the methyl­ene via the ipso-carbon atom of the benzyl ligand in addition to bonding through the methyl­ene C atom, resulting in a modified trigonal–bipyramidal coordination geometry about the Lu center.

1. Chemical context

The chemistry of σ-bonded rare-earth metal (RE) hydro­carbyl complexes has a long and rich history (Zimmermann & Anwander, 2010[Zimmermann, M. & Anwander, R. (2010). Chem. Rev. 110, 6194-6259.]), with the compounds being versatile synthetic precursors and involved in important polymerization and various catalytic transformations. Lappert & Pearce (1973[Lappert, M. F. & Pearce, R. (1973). J. Chem. Soc. Chem. Commun. p. 126.]) reported the synthesis of the first well-defined homoleptic trialkyl compounds utilizing neopentyl and tri­methyl­silylmethyl ligands, [RE(CH2tBu)3(THF)2] and [RE(CH2SiMe3)3(THF)2] (RE = Sc, Y). More recently, the benzyl ligand (CH2Ph) has been successfully employed to provide access to a wide range of [RE(CH2Ph)3(THF)x] (x = 2, 3) compounds (Bambirra et al., 2006[Bambirra, S., Meetsma, A. & Hessen, B. (2006). Organometallics, 25, 3454-3462.]; Döring & Kempe, 2008[Döring, C. & Kempe, R. (2008). Z. Kristallogr. New Cryst. Struct. 223, 397-398.]; Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]; Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]; Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]). The bonding between the rare-earth metal and benzyl ligands depends both on the size of metal and the number of coord­inated THF ligands. In the series of tris-THF derivatives [RE(CH2Ph)3(THF)3], in line with the lanthanide contraction, the bonding changes from three η2-bonded benzyl ligands for the large early, to a mix of η1-/η2-benzyls for the mid- and three η1-benzyls for the smaller, late metals (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]). Metal size also matters for bis-THF compounds, [RE(CH2Ph)3(THF)2]; the small scandium atom can only support three η1-bound benzyls (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]) whereas [Er(CH2Ph)3(THF)2] features one η2- and two η1-coordinated benzyl ligands (Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]). Here we report the solid-state X-ray structure of [Lu(CH2Ph)3(THF)2].

2. Structural commentary

The mol­ecular structure of [Lu(CH2Ph)3(THF)2] (1) (Fig. 1[link]) reveals that the Lu center is coordinated by two oxygen atoms of the THF ligands and three methyl­ene carbon atoms of the benzyl groups. The disposition of the two THF ligands about the lutetium center is almost linear [O1—Lu—O2 = 177.10 (6)°], thus suggesting a trigonal–bipyramidal structure with the two THF ligands occupying the axial sites and the benzyl groups in the equatorial positions, consistent with the observed solution behavior (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]). The Lu—C distances are essentially equal [Lu—C10 = 2.401 (3), Lu—C20 = 2.380 (3), Lu—C30 = 2.404 (3) Å] and the equatorial C—Lu—C angles are close to the expected value of 120° [C10—Lu—C20 = 121.59 (10), C10—Lu—C30 = 123.98 (9), C20—Lu—C30 = 114.38 (10)°], albeit with some deviation from the ideal value. This deviation can be attributed to the presence of an additional inter­action from the ipso carbon atom of one of the benzyl ligands, as reflected in the Lu—Cipso distances and Lu—C—Cipso angles: Lu—C11 = 2.920 (3) vs 3.317 (2) and 3.267 (3) Å, for Lu—C21 and Lu—C31, respectively, and Lu—C10—C11 = 94.94 (16) vs Lu—C20—C21 116.79 (17) and Lu—C30—C31 112.80 (17)°. At the same time, the bond distance between the benzylic and ipso carbon atoms for the η2-bonded benzyl group [C10—C11 = 1.467 (4) Å] is not significantly different from those of the η1-bonded benzyls [C20—C21 = 1.475 (3), C30—C31 = 1.470 (4) Å].

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of 1 in the crystal. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are shown with arbitrarily small displacement parameters.

The mixed modes of benzyl coordination in the title compound are in contrast to the structure of the related hexa­coordinate tris-THF compound, [Lu(CH2Ph)3(THF)3], in which all of the benzyl ligands are η1-coordinated (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.], 2013[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2013). Organometallics, 32, 3427-3427.]). The structural results provide yet another example of the importance of the metal size in the series of homologous [RE(CH2Ph)3(THF)2] (RE = Sc, Er, Lu) compounds: the complex featuring the small scandium center shows all three benzyl ligands adopting the η1-bonding mode (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]), whereas the larger lutetium can allow one of the three benzyl ligands to adopt the more sterically-demanding η2-bonding mode; indeed, the Lu compound is isomorphous with the similarly-sized erbium complex, [Er(η2-CH2Ph)(η1-CH2Ph)2(THF)2] (Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]), with metrical parameters reflecting the small decrease in ionic radius from erbium to lutetium (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

3. Supra­molecular features

The closest inter­molecular contacts are between benzyl carbons C11 and C12 and the THF methyl­ene-group hydrogen H1B (at x − 1, y, z), at 2.80 and 2.89 Å, respectively, and between the benzyl carbon C16 and the phenyl-group hydrogen H22 (at −x, −y, 1 − z), at 2.86 Å. These interactions connect the complexes in a supramolecular ribbon running along the a-axis direction

4. Database survey

For related lanthanide complexes of the form [M(CH2Ph)3(THF)2], only the structure of the Er analogue has been reported (Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]); the structure of the related Sc complex has also been described (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]). The structures of the [M(CH2Ph)3(THF)3] complexes have been more exhaustively determined, with the lanthanides La (Bambirra et al., 2006[Bambirra, S., Meetsma, A. & Hessen, B. (2006). Organometallics, 25, 3454-3462.]), Ce (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]), Pr (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]), Nd (Döring & Kempe, 2008[Döring, C. & Kempe, R. (2008). Z. Kristallogr. New Cryst. Struct. 223, 397-398.]; Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]), Sm (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]), Gd (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]; Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]), Dy (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]), Ho (Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]), Er (Wooles et al., 2010[Wooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500-510.]; Huang et al., 2013[Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379-1386.]), and Lu (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]) being reported, the related Sc (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]) and Y (Hardera et al., 2008[Hardera, S., Ruspic, C., Bhriain, N. N., Berkermann, F. & Schuermann, M. (2008). Z. Naturforsch. Teil B, 63, 267-274.]; Mills et al. 2009[Mills, D. P., Cooper, O. J., McMaster, J., Lewis, W. & Liddle, S. T. (2009). Dalton Trans. pp. 4547-4555.]) analogues are also known.

5. Synthesis and crystallization

The synthesis, solution structure and spectroscopic characterization of [Lu(CH2Ph)3(THF)2] (1) have been reported previously (Meyer et al., 2008[Meyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501-1505.]). The preparation and characterization of the related compounds [Sc(CH2Ph)3(THF)2] and [RE(CH2Ph)3(THF)2] (RE = Sc, Lu) were also reported at that time.

X-ray quality crystals of compound 1 were obtained by cooling a dilute toluene solution of the compound to 243 K for several days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were generated in idealized positions according to the sp2 or sp3 geometries of their attached carbon atoms, and given isotropic displacement parameters Uiso(H) = 1.2Ueq(parent atom). C—H distances in the CH2 groups were constrained to 0.99 Å and those in phenyl-ring C–H groups to 0.95 Å.

Table 1
Experimental details

Crystal data
Chemical formula [Lu(C7H7)3(C4H8O)2]
Mr 592.55
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.7103 (7), 12.7416 (11), 14.2187 (12)
α, β, γ (°) 75.1572 (11), 77.8324 (11), 73.4904 (11)
V3) 1280.16 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.88
Crystal size (mm) 0.48 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker SMART 1000 CCD detector/PLATFORM
Absorption correction Numerical (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.216, 0.764
No. of measured, independent and observed [I > 2σ(I)] reflections 11301, 5803, 5331
Rint 0.020
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.07
No. of reflections 5803
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.36
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tribenzylbis(tetrahydrofuran-κO)lutetium(III) top
Crystal data top
[Lu(C7H7)3(C4H8O)2]Z = 2
Mr = 592.55F(000) = 596
Triclinic, P1Dx = 1.537 Mg m3
a = 7.7103 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7416 (11) ÅCell parameters from 5362 reflections
c = 14.2187 (12) Åθ = 2.8–27.4°
α = 75.1572 (11)°µ = 3.88 mm1
β = 77.8324 (11)°T = 193 K
γ = 73.4904 (11)°Prism, colorless
V = 1280.16 (19) Å30.48 × 0.10 × 0.09 mm
Data collection top
Bruker SMART 1000 CCD detector/PLATFORM
diffractometer
5331 reflections with I > 2σ(I)
ω scansRint = 0.020
Absorption correction: numerical
(SADABS; Bruker, 2015)
θmax = 27.5°, θmin = 1.7°
Tmin = 0.216, Tmax = 0.764h = 1010
11301 measured reflectionsk = 1616
5803 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5803 reflectionsΔρmax = 1.00 e Å3
289 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu0.13939 (2)0.09124 (2)0.27792 (2)0.02548 (4)
O10.3538 (2)0.07199 (15)0.26404 (13)0.0309 (4)
O20.0789 (3)0.25126 (16)0.30019 (14)0.0364 (4)
C10.4592 (4)0.1372 (2)0.3424 (2)0.0389 (6)
H1A0.39420.12090.40690.047*
H1B0.58080.12050.33050.047*
C20.4779 (5)0.2566 (2)0.3395 (2)0.0497 (8)
H2A0.37150.28360.37980.060*
H2B0.59100.30540.36440.060*
C30.4862 (4)0.2552 (2)0.2311 (2)0.0434 (7)
H3A0.61440.27810.19950.052*
H3B0.41720.30660.22350.052*
C40.3991 (4)0.1345 (2)0.1856 (2)0.0349 (6)
H4A0.48570.10350.13090.042*
H4B0.28740.13040.15960.042*
C50.1912 (4)0.2700 (3)0.3927 (2)0.0477 (8)
H5A0.12550.22600.44850.057*
H5B0.30660.24710.40050.057*
C60.2297 (6)0.3907 (3)0.3903 (3)0.0657 (11)
H6A0.14790.40530.42800.079*
H6B0.35810.41910.41900.079*
C70.1960 (6)0.4459 (3)0.2846 (3)0.0719 (12)
H7A0.31170.49420.26250.086*
H7B0.10830.49290.27460.086*
C80.1194 (5)0.3550 (3)0.2286 (3)0.0578 (9)
H8A0.20940.35280.18910.069*
H8B0.00680.36730.18360.069*
C100.0726 (4)0.0116 (2)0.3812 (2)0.0362 (6)
H10A0.02310.06270.43980.043*
H10B0.19270.03750.40110.043*
C110.0786 (3)0.0711 (2)0.30660 (19)0.0303 (5)
C120.1372 (3)0.0116 (2)0.2159 (2)0.0352 (6)
H120.18480.06720.20630.042*
C130.1277 (4)0.0643 (3)0.1403 (2)0.0423 (7)
H130.16490.02110.07950.051*
C140.0648 (4)0.1785 (3)0.1527 (2)0.0442 (7)
H140.05970.21490.10120.053*
C150.0090 (4)0.2399 (3)0.2413 (2)0.0405 (6)
H150.03310.31900.25090.049*
C160.0139 (3)0.1875 (2)0.3159 (2)0.0327 (6)
H160.02780.23150.37540.039*
C200.3638 (4)0.1353 (2)0.3431 (2)0.0343 (6)
H20A0.37660.08590.40870.041*
H20B0.48250.11690.30020.041*
C210.3296 (3)0.2520 (2)0.35345 (18)0.0284 (5)
C220.2680 (4)0.2820 (2)0.44517 (19)0.0323 (5)
H220.25370.22510.50220.039*
C230.2274 (4)0.3919 (2)0.4553 (2)0.0406 (7)
H230.18440.40920.51860.049*
C240.2491 (4)0.4766 (2)0.3739 (2)0.0466 (7)
H240.22190.55220.38060.056*
C250.3113 (5)0.4489 (3)0.2824 (2)0.0483 (8)
H250.32710.50610.22580.058*
C260.3506 (4)0.3393 (3)0.2724 (2)0.0396 (6)
H260.39310.32270.20890.048*
C300.1539 (4)0.1513 (2)0.10243 (19)0.0347 (6)
H30A0.18600.08460.07280.042*
H30B0.03160.19610.08700.042*
C310.2885 (4)0.2184 (2)0.05797 (18)0.0327 (6)
C320.4758 (4)0.1712 (2)0.0604 (2)0.0385 (6)
H320.51540.09380.08840.046*
C330.6049 (5)0.2338 (3)0.0233 (2)0.0494 (8)
H330.73070.19850.02560.059*
C340.5541 (6)0.3459 (3)0.0166 (2)0.0586 (10)
H340.64280.38880.04090.070*
C350.3700 (6)0.3952 (3)0.0209 (2)0.0580 (10)
H350.33290.47270.04890.070*
C360.2393 (5)0.3337 (2)0.0149 (2)0.0441 (7)
H360.11440.36960.01040.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu0.02754 (6)0.02497 (6)0.02355 (6)0.00524 (4)0.00317 (4)0.00625 (4)
O10.0330 (9)0.0288 (9)0.0321 (9)0.0021 (7)0.0084 (7)0.0117 (8)
O20.0355 (10)0.0323 (10)0.0362 (10)0.0003 (8)0.0041 (8)0.0079 (8)
C10.0440 (15)0.0323 (14)0.0418 (16)0.0057 (12)0.0175 (12)0.0051 (12)
C20.064 (2)0.0316 (16)0.054 (2)0.0066 (14)0.0202 (16)0.0051 (14)
C30.0460 (16)0.0315 (15)0.0531 (19)0.0040 (13)0.0076 (14)0.0154 (13)
C40.0382 (14)0.0343 (14)0.0339 (14)0.0088 (11)0.0003 (11)0.0148 (12)
C50.0514 (18)0.0472 (18)0.0407 (17)0.0029 (14)0.0001 (13)0.0182 (14)
C60.075 (3)0.049 (2)0.069 (2)0.0114 (18)0.017 (2)0.0295 (19)
C70.074 (3)0.0370 (19)0.094 (3)0.0066 (18)0.007 (2)0.019 (2)
C80.069 (2)0.0347 (18)0.052 (2)0.0083 (15)0.0066 (17)0.0025 (14)
C100.0388 (14)0.0396 (15)0.0318 (14)0.0131 (12)0.0000 (11)0.0109 (12)
C110.0237 (12)0.0372 (14)0.0306 (13)0.0116 (10)0.0004 (9)0.0068 (11)
C120.0287 (13)0.0381 (15)0.0346 (14)0.0088 (11)0.0040 (10)0.0002 (12)
C130.0316 (14)0.062 (2)0.0317 (14)0.0145 (13)0.0062 (11)0.0035 (13)
C140.0427 (16)0.060 (2)0.0379 (16)0.0173 (15)0.0035 (12)0.0213 (14)
C150.0346 (14)0.0392 (16)0.0513 (18)0.0105 (12)0.0042 (12)0.0158 (13)
C160.0316 (13)0.0352 (14)0.0320 (14)0.0126 (11)0.0049 (10)0.0031 (11)
C200.0338 (13)0.0333 (14)0.0384 (15)0.0063 (11)0.0051 (11)0.0143 (12)
C210.0242 (11)0.0346 (14)0.0311 (13)0.0104 (10)0.0052 (9)0.0105 (11)
C220.0356 (13)0.0349 (14)0.0279 (13)0.0104 (11)0.0051 (10)0.0069 (11)
C230.0447 (16)0.0444 (17)0.0376 (15)0.0083 (13)0.0085 (12)0.0183 (13)
C240.061 (2)0.0310 (15)0.0554 (19)0.0121 (14)0.0175 (15)0.0138 (14)
C250.068 (2)0.0383 (16)0.0426 (17)0.0247 (15)0.0144 (15)0.0032 (13)
C260.0464 (16)0.0466 (17)0.0308 (14)0.0174 (13)0.0027 (12)0.0126 (12)
C300.0377 (14)0.0403 (15)0.0262 (13)0.0108 (12)0.0058 (10)0.0049 (11)
C310.0468 (15)0.0342 (14)0.0187 (11)0.0139 (12)0.0034 (10)0.0051 (10)
C320.0454 (16)0.0413 (16)0.0298 (14)0.0151 (13)0.0012 (11)0.0078 (12)
C330.0524 (18)0.067 (2)0.0346 (16)0.0300 (16)0.0032 (13)0.0123 (15)
C340.084 (3)0.074 (3)0.0341 (17)0.055 (2)0.0032 (16)0.0087 (16)
C350.109 (3)0.0387 (17)0.0314 (16)0.0331 (19)0.0090 (17)0.0009 (13)
C360.0621 (19)0.0396 (16)0.0268 (14)0.0100 (14)0.0068 (13)0.0030 (12)
Geometric parameters (Å, º) top
Lu—O12.2839 (17)C12—C131.385 (4)
Lu—O22.2902 (18)C12—H120.9500
Lu—C202.380 (3)C13—C141.375 (5)
Lu—C102.401 (3)C13—H130.9500
Lu—C302.404 (3)C14—C151.385 (4)
Lu—C112.920 (3)C14—H140.9500
O1—C11.455 (3)C15—C161.379 (4)
O1—C41.461 (3)C15—H150.9500
O2—C81.446 (4)C16—H160.9500
O2—C51.450 (3)C20—C211.475 (3)
C1—C21.498 (4)C20—H20A0.9900
C1—H1A0.9900C20—H20B0.9900
C1—H1B0.9900C21—C261.399 (4)
C2—C31.526 (4)C21—C221.401 (3)
C2—H2A0.9900C22—C231.383 (4)
C2—H2B0.9900C22—H220.9500
C3—C41.523 (4)C23—C241.384 (4)
C3—H3A0.9900C23—H230.9500
C3—H3B0.9900C24—C251.387 (4)
C4—H4A0.9900C24—H240.9500
C4—H4B0.9900C25—C261.380 (4)
C5—C61.474 (4)C25—H250.9500
C5—H5A0.9900C26—H260.9500
C5—H5B0.9900C30—C311.470 (4)
C6—C71.489 (5)C30—H30A0.9900
C6—H6A0.9900C30—H30B0.9900
C6—H6B0.9900C31—C321.402 (4)
C7—C81.488 (5)C31—C361.413 (4)
C7—H7A0.9900C32—C331.386 (4)
C7—H7B0.9900C32—H320.9500
C8—H8A0.9900C33—C341.369 (5)
C8—H8B0.9900C33—H330.9500
C10—C111.467 (4)C34—C351.386 (5)
C10—H10A0.9900C34—H340.9500
C10—H10B0.9900C35—C361.384 (5)
C11—C161.405 (4)C35—H350.9500
C11—C121.412 (4)C36—H360.9500
O1—Lu—O2177.10 (6)C11—C10—H10B112.7
O1—Lu—C2084.95 (8)Lu—C10—H10B112.7
O2—Lu—C2094.44 (8)H10A—C10—H10B110.2
O1—Lu—C1090.54 (8)C16—C11—C12115.5 (2)
O2—Lu—C1087.36 (8)C16—C11—C10123.5 (2)
C20—Lu—C10121.59 (10)C12—C11—C10120.8 (3)
O1—Lu—C3092.12 (8)C16—C11—Lu127.02 (17)
O2—Lu—C3090.72 (8)C12—C11—Lu86.53 (16)
C20—Lu—C30114.38 (10)C10—C11—Lu55.02 (13)
C10—Lu—C30123.98 (9)C13—C12—C11122.2 (3)
O1—Lu—C1176.43 (7)C13—C12—H12118.9
O2—Lu—C11102.58 (7)C11—C12—H12118.9
C20—Lu—C11143.56 (9)C14—C13—C12120.4 (3)
C10—Lu—C1130.04 (8)C14—C13—H13119.8
C30—Lu—C1197.55 (8)C12—C13—H13119.8
C1—O1—C4108.2 (2)C13—C14—C15119.0 (3)
C1—O1—Lu122.45 (15)C13—C14—H14120.5
C4—O1—Lu129.13 (16)C15—C14—H14120.5
C8—O2—C5107.1 (2)C16—C15—C14120.8 (3)
C8—O2—Lu127.16 (18)C16—C15—H15119.6
C5—O2—Lu125.49 (17)C14—C15—H15119.6
O1—C1—C2104.6 (2)C15—C16—C11122.0 (3)
O1—C1—H1A110.8C15—C16—H16119.0
C2—C1—H1A110.8C11—C16—H16119.0
O1—C1—H1B110.8C21—C20—Lu116.79 (17)
C2—C1—H1B110.8C21—C20—H20A108.1
H1A—C1—H1B108.9Lu—C20—H20A108.1
C1—C2—C3104.5 (2)C21—C20—H20B108.1
C1—C2—H2A110.9Lu—C20—H20B108.1
C3—C2—H2A110.8H20A—C20—H20B107.3
C1—C2—H2B110.8C26—C21—C22116.3 (2)
C3—C2—H2B110.9C26—C21—C20122.2 (2)
H2A—C2—H2B108.9C22—C21—C20121.5 (2)
C4—C3—C2105.1 (2)C23—C22—C21122.1 (3)
C4—C3—H3A110.7C23—C22—H22118.9
C2—C3—H3A110.7C21—C22—H22118.9
C4—C3—H3B110.7C22—C23—C24120.4 (3)
C2—C3—H3B110.7C22—C23—H23119.8
H3A—C3—H3B108.8C24—C23—H23119.8
O1—C4—C3106.5 (2)C23—C24—C25118.5 (3)
O1—C4—H4A110.4C23—C24—H24120.7
C3—C4—H4A110.4C25—C24—H24120.7
O1—C4—H4B110.4C26—C25—C24120.9 (3)
C3—C4—H4B110.4C26—C25—H25119.5
H4A—C4—H4B108.6C24—C25—H25119.5
O2—C5—C6106.9 (3)C25—C26—C21121.7 (3)
O2—C5—H5A110.3C25—C26—H26119.1
C6—C5—H5A110.3C21—C26—H26119.1
O2—C5—H5B110.3C31—C30—Lu112.80 (17)
C6—C5—H5B110.3C31—C30—H30A109.0
H5A—C5—H5B108.6Lu—C30—H30A109.0
C5—C6—C7106.0 (3)C31—C30—H30B109.0
C5—C6—H6A110.5Lu—C30—H30B109.0
C7—C6—H6A110.5H30A—C30—H30B107.8
C5—C6—H6B110.5C32—C31—C36115.9 (3)
C7—C6—H6B110.5C32—C31—C30120.8 (2)
H6A—C6—H6B108.7C36—C31—C30123.2 (3)
C8—C7—C6106.8 (3)C33—C32—C31122.1 (3)
C8—C7—H7A110.4C33—C32—H32119.0
C6—C7—H7A110.4C31—C32—H32119.0
C8—C7—H7B110.4C34—C33—C32121.0 (3)
C6—C7—H7B110.4C34—C33—H33119.5
H7A—C7—H7B108.6C32—C33—H33119.5
O2—C8—C7106.8 (3)C33—C34—C35118.4 (3)
O2—C8—H8A110.4C33—C34—H34120.8
C7—C8—H8A110.4C35—C34—H34120.8
O2—C8—H8B110.4C36—C35—C34121.3 (3)
C7—C8—H8B110.4C36—C35—H35119.3
H8A—C8—H8B108.6C34—C35—H35119.3
C11—C10—Lu94.94 (16)C35—C36—C31121.2 (3)
C11—C10—H10A112.7C35—C36—H36119.4
Lu—C10—H10A112.7C31—C36—H36119.4
O2—Lu—O1—C133.1 (13)C20—Lu—C11—C12173.55 (15)
C20—Lu—O1—C145.0 (2)C10—Lu—C11—C12131.9 (2)
C10—Lu—O1—C176.7 (2)C30—Lu—C11—C1221.82 (17)
C30—Lu—O1—C1159.2 (2)O1—Lu—C11—C10115.88 (17)
C11—Lu—O1—C1103.5 (2)O2—Lu—C11—C1061.32 (17)
O2—Lu—O1—C4140.7 (11)C20—Lu—C11—C1054.5 (2)
C20—Lu—O1—C4141.2 (2)C30—Lu—C11—C10153.75 (17)
C10—Lu—O1—C497.1 (2)C16—C11—C12—C131.4 (4)
C30—Lu—O1—C426.9 (2)C10—C11—C12—C13173.6 (2)
C11—Lu—O1—C470.3 (2)Lu—C11—C12—C13128.4 (2)
O1—Lu—O2—C8173.0 (11)C11—C12—C13—C142.0 (4)
C20—Lu—O2—C895.2 (3)C12—C13—C14—C150.8 (4)
C10—Lu—O2—C8143.3 (3)C13—C14—C15—C160.8 (4)
C30—Lu—O2—C819.3 (3)C14—C15—C16—C111.4 (4)
C11—Lu—O2—C8117.2 (3)C12—C11—C16—C150.3 (4)
O1—Lu—O2—C50.9 (13)C10—C11—C16—C15175.1 (3)
C20—Lu—O2—C578.7 (2)Lu—C11—C16—C15106.3 (3)
C10—Lu—O2—C542.7 (2)O1—Lu—C20—C21167.8 (2)
C30—Lu—O2—C5166.7 (2)O2—Lu—C20—C2115.0 (2)
C11—Lu—O2—C568.8 (2)C10—Lu—C20—C21104.7 (2)
C4—O1—C1—C232.1 (3)C30—Lu—C20—C2177.8 (2)
Lu—O1—C1—C2142.9 (2)C11—Lu—C20—C21133.25 (18)
O1—C1—C2—C332.7 (3)Lu—C20—C21—C2674.3 (3)
C1—C2—C3—C421.5 (3)Lu—C20—C21—C22103.4 (2)
C1—O1—C4—C318.3 (3)C26—C21—C22—C230.9 (4)
Lu—O1—C4—C3156.28 (18)C20—C21—C22—C23177.0 (2)
C2—C3—C4—O12.6 (3)C21—C22—C23—C240.8 (4)
C8—O2—C5—C626.3 (4)C22—C23—C24—C250.3 (5)
Lu—O2—C5—C6148.7 (2)C23—C24—C25—C260.1 (5)
O2—C5—C6—C719.6 (4)C24—C25—C26—C210.0 (5)
C5—C6—C7—C85.9 (5)C22—C21—C26—C250.5 (4)
C5—O2—C8—C722.3 (4)C20—C21—C26—C25177.4 (3)
Lu—O2—C8—C7152.5 (2)O1—Lu—C30—C3191.35 (19)
C6—C7—C8—O29.9 (5)O2—Lu—C30—C3189.27 (19)
O1—Lu—C10—C1161.00 (16)C20—Lu—C30—C315.9 (2)
O2—Lu—C10—C11121.00 (17)C10—Lu—C30—C31176.57 (17)
C20—Lu—C10—C11145.40 (15)C11—Lu—C30—C31167.94 (19)
C30—Lu—C10—C1131.9 (2)Lu—C30—C31—C3265.0 (3)
Lu—C10—C11—C16114.7 (2)Lu—C30—C31—C36112.0 (2)
Lu—C10—C11—C1259.8 (2)C36—C31—C32—C330.3 (4)
O1—Lu—C11—C167.5 (2)C30—C31—C32—C33176.8 (3)
O2—Lu—C11—C16169.7 (2)C31—C32—C33—C340.8 (5)
C20—Lu—C11—C1653.9 (3)C32—C33—C34—C351.2 (5)
C10—Lu—C11—C16108.4 (3)C33—C34—C35—C360.5 (5)
C30—Lu—C11—C1697.9 (2)C34—C35—C36—C310.6 (5)
O1—Lu—C11—C12112.19 (16)C32—C31—C36—C351.0 (4)
O2—Lu—C11—C1270.62 (16)C30—C31—C36—C35176.1 (3)
 

Footnotes

X-ray Crystallography Laboratory

Funding information

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the University of Alberta.

References

First citationBambirra, S., Meetsma, A. & Hessen, B. (2006). Organometallics, 25, 3454–3462.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDöring, C. & Kempe, R. (2008). Z. Kristallogr. New Cryst. Struct. 223, 397–398.  Google Scholar
First citationHardera, S., Ruspic, C., Bhriain, N. N., Berkermann, F. & Schuermann, M. (2008). Z. Naturforsch. Teil B, 63, 267–274.  CAS Google Scholar
First citationHuang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. (2013). Organometallics, 32, 1379–1386.  Web of Science CSD CrossRef CAS Google Scholar
First citationLappert, M. F. & Pearce, R. (1973). J. Chem. Soc. Chem. Commun. p. 126.  CrossRef Web of Science Google Scholar
First citationMeyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2008). Organometallics, 27, 1501–1505.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeyer, N., Roesky, P. W., Bambirra, S., Meetsma, A., Hessen, B., Saliu, K. & Takats, J. (2013). Organometallics, 32, 3427–3427.  Web of Science CrossRef CAS Google Scholar
First citationMills, D. P., Cooper, O. J., McMaster, J., Lewis, W. & Liddle, S. T. (2009). Dalton Trans. pp. 4547–4555.  Web of Science CSD CrossRef Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWooles, A. J., Mills, D. P., Lewis, W., Blake, A. J. & Liddle, S. T. (2010). Dalton Trans. 39, 500–510.  Web of Science CSD CrossRef CAS Google Scholar
First citationZimmermann, M. & Anwander, R. (2010). Chem. Rev. 110, 6194–6259.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds