research communications
[4-tert-Butyl-2,6-bis(diphenylmethyl)phenolato-κO]diethyl(tetrahydrofuran-κO)aluminium
aA.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru
The title compound, {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)} or [Al(C2H5)2(C36H33O)(C4H8O)], was formed in the reaction between 4-tert-butyl-2,6-bis(diphenylmethyl)phenol and triethylaluminum in the presence of THF (THF is tetrahydrofuran) and recrystallized from hexane. The structure has monoclinic (P21/n) symmetry with a single Al atom in the The terminal C atom of one ethyl substituent is nearly equally disordered over two positions. The complex possesses in the of ∊-caprolactone.
Keywords: crystal structure; aluminium; phenoxide complex; 4-tert-butyl-2,6-bis(diphenylmethyl)phenol; caprolactone polymerization; NMR.
CCDC reference: 1817894
1. Chemical context
Over the last decade, the number of phenoxide complexes of main group and transition metals has greatly increased due to interest in studies of their et al., 2009). The design of promising new ROP catalysts bearing bulky phenoxide ligands is under way (see Sarazin & Carpentier, 2015; Nifant'ev et al., 2016, 2017b and references therein; Chen et al., 2012). One such ligand is the 4-tert-butyl-2,6-bis(diphenylmethyl)phenoxide anion, [O-2,6-(Ph2H)2-4-tBuC6H2]−, which has recently been obtained from the corresponding phenol and characterized crystallographically as sodium salt (Searles et al., 2013). However, almost all metal complexes with this ligand contain early transition metals (see below). Very recently, we have synthesized complexes with Mg, Ca, and Zn (Nifant'ev et al., 2017a), and have demonstrated their in the ROP of rac-lactide and ∊-caprolactone. Herein we report synthesis and structure of an Al complex containing this ligand.
in the (ROP) of cyclic (DuboisReaction of 4-tert-butyl-2,6-bis(diphenylmethyl)phenol with triethylaluminium (1:1 molar ratio) in a hexane/THF mixture followed by recrystallization from hexane leads to the formation of crystals of {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)} in 87% yield (Fig. 1).
The obtained Al complex activated by benzyl alcohol demonstrates moderate ∊-caprolactone polymerization in THF, with 14% conversion after 10 min and 100% after 4 h for a 1 M monomer solution (Fig. 2). However, we have found that this catalytic system is not able to catalyse the ROP of rac-lactide under the same conditions.
in2. Structural commentary
The Al atom of the title compound, {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)}, is in a distorted tetrahedral environment (Fig. 3). The C40 atom of one ethyl group is equally disordered over two positions with an occupancy ratio of 0.50 (2):0.50 (2). As expected, the largest Al–ligand distances correspond to Al—Et bonds [1.9732 (19) for Al—C37 and 1.970 (2) Å for Al—C39]. The shortest Al–ligand length is for the Al—O1 bond [1.7171 (12) Å], presumably because of the presence of a negative charge at the phenoxide anion OAr− regardless of its bulkiness, whereas the Al—OTHF bond is somewhat longer [1.8966 (13) Å, Al—O2]. The bond angles around the Al atom range from 100.55 (6)° for O1—Al1—O2 to 116.75 (10)° for C37—Al1—C39, with the O—Al—C angles lying in the middle of this range. All phenyl groups are directed away from the Al atom because of the substantial of the phenoxide ligand. No non-coordinating solvent molecules are present in the and no significant non-valence intermolecular interactions have been found.
3. Database survey
The crystal structures of the phenol HO-2,6-(Ph2CH)2-4-tBuC6H2 (CSD refcode BIPXEF) and of its sodium salt [NaO-2,6-(Ph2CH)2-4-tBuC6H2]2 (BIPXUV) have been recently established by Searles et al. (2013). Coordination metal complexes with the [O-2,6-(Ph2CH)2-4-tBuC6H2] anion are still poorly studied with the exception of complexes with early transition metals. Thus, according to the Cambridge Structural Database (CSD version 5.38 with updates; Groom et al., 2016), 24 complexes with only M = Ti, V, Cr, Nb, and Ta have been reported to date: ISEWIO, RUYHEA01, UWEDEH, BIPXIJ, BIPXOP, BIPYAC, DIZNEH, DIZNIL, DIZNOR, DIZNUX, EPUJIK, QOSDEJ, QOSPEV, QOSPIZ, QOSPOF, QOSPUL, RUYHIE, RUYHOK, RUYHUQ, SONTUM, SONVAU, SONVEY, WUWHON, WUWQOW (see also Searles et al., 2013, 2014a,b, 2015a,b, 2016; Solowey et al., 2016). [Zn(Et)(μ-O-2,6-(Ph2CH)2-4-tBuC6H2)]2, [Mg(O-2,6-(Ph2CH)2-4-tBuC6H2)2(THF)2] [Ca(O-2,6-(Ph2CH)2-4-tBuC6H2)2(THF)3]3(THF)8 have been recently synthesized and studied by our group (CCDC numbers: 1511142–1511144; Nifant'ev et al., 2017a).
4. Synthesis and crystallization
All synthetic manipulations were performed under a purified argon atmosphere, using Schlenk glassware, dry-box techniques and absolute solvents. NMR spectra were recorded with a Bruker AVANCE 400 spectrometer at 298 K. C/H elemental analysis was performed with a Perkin–Elmer 2400 Series II elemental analyzer.
(GPC) measurements were recorded on an Agilent PL-GPC 220 equipped with a PLgel column (eluent: THF, 1 ml/min, 313 K), using with a polystyrene standard.4.1. Synthesis of the complex
A solution of AlEt3 in hexane (0.5 M, 2.0 ml, 1.0 mmol) was added dropwise to a stirred solution of HO-2,6-(Ph2CH)2-4-tBuC6H2 (0.483 g, 1.0 mmol) in THF (4 ml). The reaction mixture was stirred for 2 h. All solvent was then evaporated under reduced pressure. The microcrystalline residue was dissolved in a minimal amount of boiling hexane. After two weeks, crystals were obtained. The mother liquor was then decanted and the crystals were washed with hexane (2 x 0.5 ml) and dried under dynamic vacuum. The yield was 87% (559 mg, 0.87 mmol) of colourless crystals. Calculated for C44H51AlO2: C, 82.72%; H, 8.05%. Found: C, 82.51%; H, 8.10%. 1H NMR (400MHz, C6D6): δ 0.28 (4H, quadruplet, 3JHH = 8.1Hz AlCH2CH3), 0.78–0.86 (4H, m, CH2CH2OTHF), 1.13 [9H, s –C(CH3)3], 1.38 (6H, t, 3JHH = 8.1Hz, –AlCH2CH3), 2.84–2.92 (4H, m, CH2OTHF), 6.31 (2H, s, Ph2CH), 7.00 (4H, t, 3JHH = 7.3Hz, p-HPh), 7.10 (10H, t, m-HPh+m-HOAr), 7.29 (8H, d, 3JHH = 7.6Hz, o-HPh). 13C{1H} NMR (100MHz, C6D6): δ 0.54, 9.83, 24.69, 31.70, 34.23, 51.00, 70.19, 125.92, 126.29, 130.29, 131.76, 139.75, 146.13, 153.32 (see Supporting information).
4.2. Polymerization experiments
A solution of the Al complex (69 µmol) in THF was injected into a solution of a monomer [either rac-lactide (rac-LA) or ∊-caprolactone (∊-CL), 6.9 mmol] and PhCH2OH (69 µmol) in THF. The monomer concentration was 1.0 M. The reaction was carried out for 10 min and for 4 h. According to 1H NMR (in CDCl3), conversion of rac-LA was 0% in both cases. Conversion of ∊-CL was 14% after 10 min, and 100% after 4 h. In the latter case, the recorded 1H NMR spectrum showed the disappearance of the CH2OC=O resonance signal of ∊-CL at 4.14 ppm and the presence of the poly-∊-caprolactone (PCL) resonance signal at 3.98 ppm (CH2OC=O). The polymer solution was quenched with THF containing an excess of acetic acid. The polymer solution was precipitated from Et2O, filtered off, reprecipitated from a THF/Et2O mixture at 253 K, filtered off, and dried under vacuum. The isolated PCL had a regular 1H NMR spectrum for PCL. GPC data (THF, 313 K): Mn = 1.73 × 104 PDI = 1.67.
5. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methylene and 1.00 Å for tertiary H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups. Reflection (0 0 2) was affected by the beam stop, and was therefore omitted from the SADI and SIMU SHELXL (Sheldrick, 2015) restraints were applied for modelling the C40A/C40B disorder.
details are summarized in Table 1The five highest residual electron-density peaks are located at the t-Bu group and near THF atoms C42 and C43, pointing to some minor remaining disorder. Using a set of positional and bond-parameter restraints, estimated ratios for the t-Bu rotational disorder and for the disorder in the THF molecule (atoms C42, C43) were found to be 0.939 (2):0.061 (2) and 0.904 (7):0.096 (7), respectively. However, the residual electron density was not sufficient to adequately model the mentioned disorders, which were therefore not included in the final crystallographic model.
Supporting information
CCDC reference: 1817894
https://doi.org/10.1107/S2056989018001172/pj2049sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001172/pj2049Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001172/pj2049Isup3.cdx
1H and 13C{1H} NMR spectra. DOI: https://doi.org/10.1107/S2056989018001172/pj2049sup4.pdf
1H NMR spectrum in the JDX format. DOI: https://doi.org/10.1107/S2056989018001172/pj2049sup5.txt
13C{1H} NMR spectrum in the JDX format. DOI: https://doi.org/10.1107/S2056989018001172/pj2049sup6.txt
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Al(C2H5)2(C36H33O)(C4H8O)] | F(000) = 1376 |
Mr = 638.82 | Dx = 1.125 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9357 (13) Å | Cell parameters from 8876 reflections |
b = 9.7571 (13) Å | θ = 2.2–30.4° |
c = 38.999 (5) Å | µ = 0.09 mm−1 |
β = 93.586 (2)° | T = 150 K |
V = 3773.3 (8) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.35 × 0.20 mm |
Bruker SMART APEXII diffractometer | 9098 independent reflections |
Radiation source: fine-focus sealed tube | 7153 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 28.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −13→13 |
Tmin = 0.966, Tmax = 0.983 | k = −12→12 |
38112 measured reflections | l = −51→51 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0624P)2 + 1.8357P] where P = (Fo2 + 2Fc2)/3 |
9098 reflections | (Δ/σ)max = 0.001 |
440 parameters | Δρmax = 0.45 e Å−3 |
19 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Al1 | 0.49790 (5) | 0.32265 (5) | 0.60880 (2) | 0.02744 (12) | |
O1 | 0.41331 (11) | 0.47332 (12) | 0.61488 (3) | 0.0321 (3) | |
C1 | 0.32620 (14) | 0.57380 (15) | 0.62056 (4) | 0.0232 (3) | |
C2 | 0.28061 (14) | 0.59587 (15) | 0.65362 (4) | 0.0227 (3) | |
C3 | 0.19413 (14) | 0.70439 (16) | 0.65873 (4) | 0.0234 (3) | |
H3 | 0.163470 | 0.718139 | 0.681066 | 0.028* | |
C4 | 0.15005 (14) | 0.79428 (15) | 0.63262 (4) | 0.0227 (3) | |
C5 | 0.19566 (14) | 0.77008 (16) | 0.60014 (4) | 0.0242 (3) | |
H5 | 0.166924 | 0.829414 | 0.581799 | 0.029* | |
C6 | 0.28190 (15) | 0.66204 (16) | 0.59356 (4) | 0.0238 (3) | |
C7 | 0.33456 (14) | 0.50553 (16) | 0.68328 (4) | 0.0228 (3) | |
H7 | 0.346015 | 0.411598 | 0.673627 | 0.027* | |
C8 | 0.47382 (15) | 0.55159 (16) | 0.69782 (4) | 0.0254 (3) | |
C9 | 0.54383 (18) | 0.4695 (2) | 0.72202 (5) | 0.0407 (4) | |
H9 | 0.503715 | 0.387328 | 0.729566 | 0.049* | |
C10 | 0.6717 (2) | 0.5062 (2) | 0.73529 (6) | 0.0533 (6) | |
H10 | 0.718594 | 0.448610 | 0.751636 | 0.064* | |
C11 | 0.73113 (18) | 0.6257 (2) | 0.72491 (5) | 0.0445 (5) | |
H11 | 0.818548 | 0.650755 | 0.734052 | 0.053* | |
C12 | 0.66264 (16) | 0.70799 (18) | 0.70125 (4) | 0.0329 (4) | |
H12 | 0.702795 | 0.790575 | 0.694003 | 0.040* | |
C13 | 0.53444 (15) | 0.67121 (17) | 0.68777 (4) | 0.0275 (3) | |
H13 | 0.488083 | 0.729283 | 0.671433 | 0.033* | |
C14 | 0.23441 (14) | 0.49260 (16) | 0.71110 (4) | 0.0238 (3) | |
C15 | 0.13885 (16) | 0.38879 (18) | 0.70910 (5) | 0.0322 (4) | |
H15 | 0.138694 | 0.324503 | 0.690798 | 0.039* | |
C16 | 0.04341 (18) | 0.3776 (2) | 0.73348 (5) | 0.0442 (5) | |
H16 | −0.021263 | 0.305824 | 0.731817 | 0.053* | |
C17 | 0.04235 (18) | 0.4705 (2) | 0.76009 (5) | 0.0433 (5) | |
H17 | −0.022829 | 0.462780 | 0.776800 | 0.052* | |
C18 | 0.13626 (18) | 0.5746 (2) | 0.76236 (4) | 0.0397 (4) | |
H18 | 0.135123 | 0.639287 | 0.780552 | 0.048* | |
C19 | 0.23270 (16) | 0.58538 (19) | 0.73812 (4) | 0.0314 (4) | |
H19 | 0.297862 | 0.656663 | 0.740056 | 0.038* | |
C20 | 0.05529 (15) | 0.91216 (16) | 0.64069 (4) | 0.0275 (3) | |
C21 | 0.1230 (2) | 1.0046 (2) | 0.66799 (6) | 0.0556 (6) | |
H21A | 0.202521 | 1.047611 | 0.658939 | 0.083* | |
H21B | 0.150549 | 0.949999 | 0.688324 | 0.083* | |
H21C | 0.059496 | 1.075772 | 0.674316 | 0.083* | |
C22 | −0.07402 (19) | 0.8525 (2) | 0.65444 (6) | 0.0464 (5) | |
H22A | −0.050894 | 0.798384 | 0.675147 | 0.070* | |
H22B | −0.119069 | 0.793652 | 0.636885 | 0.070* | |
H22C | −0.134545 | 0.927419 | 0.660056 | 0.070* | |
C23 | 0.0138 (2) | 0.9983 (2) | 0.60899 (5) | 0.0425 (4) | |
H23A | 0.093852 | 1.041607 | 0.600275 | 0.064* | |
H23B | −0.050023 | 1.069317 | 0.615232 | 0.064* | |
H23C | −0.029039 | 0.939222 | 0.591152 | 0.064* | |
C24 | 0.33693 (15) | 0.63812 (16) | 0.55835 (4) | 0.0252 (3) | |
H24 | 0.331929 | 0.537242 | 0.553916 | 0.030* | |
C25 | 0.48478 (15) | 0.67832 (17) | 0.55785 (4) | 0.0267 (3) | |
C26 | 0.53720 (17) | 0.79190 (19) | 0.57539 (5) | 0.0351 (4) | |
H26 | 0.480716 | 0.844599 | 0.589091 | 0.042* | |
C27 | 0.67139 (18) | 0.8297 (2) | 0.57319 (5) | 0.0409 (4) | |
H27 | 0.705511 | 0.908388 | 0.585181 | 0.049* | |
C28 | 0.75546 (18) | 0.7532 (2) | 0.55359 (5) | 0.0398 (4) | |
H28 | 0.846960 | 0.779297 | 0.551962 | 0.048* | |
C29 | 0.70512 (18) | 0.6391 (2) | 0.53651 (5) | 0.0389 (4) | |
H29 | 0.762362 | 0.585713 | 0.523163 | 0.047* | |
C30 | 0.57119 (17) | 0.60144 (18) | 0.53865 (4) | 0.0324 (4) | |
H30 | 0.537932 | 0.522033 | 0.526838 | 0.039* | |
C31 | 0.24906 (16) | 0.70749 (17) | 0.52972 (4) | 0.0269 (3) | |
C32 | 0.12342 (17) | 0.6520 (2) | 0.52021 (4) | 0.0349 (4) | |
H32 | 0.096596 | 0.568918 | 0.530481 | 0.042* | |
C33 | 0.03632 (18) | 0.7159 (2) | 0.49596 (4) | 0.0403 (4) | |
H33 | −0.048865 | 0.676020 | 0.489656 | 0.048* | |
C34 | 0.07328 (19) | 0.8373 (2) | 0.48102 (4) | 0.0405 (4) | |
H34 | 0.013006 | 0.882370 | 0.464853 | 0.049* | |
C35 | 0.1983 (2) | 0.8924 (2) | 0.48974 (5) | 0.0430 (4) | |
H35 | 0.224843 | 0.975224 | 0.479265 | 0.052* | |
C36 | 0.28629 (19) | 0.82776 (19) | 0.51380 (4) | 0.0360 (4) | |
H36 | 0.372675 | 0.866347 | 0.519385 | 0.043* | |
C37 | 0.45654 (19) | 0.2349 (2) | 0.56378 (5) | 0.0397 (4) | |
H37A | 0.478759 | 0.299435 | 0.545380 | 0.048* | |
H37B | 0.514314 | 0.152878 | 0.561953 | 0.048* | |
C38 | 0.3092 (2) | 0.1923 (3) | 0.55819 (7) | 0.0708 (7) | |
H38A | 0.293602 | 0.152920 | 0.535172 | 0.106* | |
H38B | 0.251276 | 0.272752 | 0.560367 | 0.106* | |
H38C | 0.287985 | 0.123910 | 0.575445 | 0.106* | |
C39 | 0.5079 (2) | 0.2015 (2) | 0.64930 (6) | 0.0489 (5) | |
H39A | 0.549655 | 0.253510 | 0.668998 | 0.059* | 0.50 (2) |
H39B | 0.414722 | 0.178418 | 0.654891 | 0.059* | 0.50 (2) |
H39C | 0.505157 | 0.258851 | 0.670186 | 0.059* | 0.50 (2) |
H39D | 0.426939 | 0.142099 | 0.648245 | 0.059* | 0.50 (2) |
C40A | 0.5844 (16) | 0.0708 (10) | 0.6461 (3) | 0.076 (2) | 0.50 (2) |
H40A | 0.603195 | 0.030664 | 0.668896 | 0.114* | 0.50 (2) |
H40B | 0.669590 | 0.089546 | 0.635576 | 0.114* | 0.50 (2) |
H40C | 0.530617 | 0.006462 | 0.631592 | 0.114* | 0.50 (2) |
C40B | 0.6333 (10) | 0.1103 (12) | 0.6529 (3) | 0.069 (2) | 0.50 (2) |
H40D | 0.632455 | 0.057379 | 0.674213 | 0.104* | 0.50 (2) |
H40E | 0.714369 | 0.167626 | 0.653399 | 0.104* | 0.50 (2) |
H40F | 0.633353 | 0.047410 | 0.633269 | 0.104* | 0.50 (2) |
O2 | 0.67660 (11) | 0.38879 (12) | 0.60647 (3) | 0.0321 (3) | |
C41 | 0.73991 (19) | 0.4833 (2) | 0.63165 (5) | 0.0450 (5) | |
H41A | 0.703611 | 0.470620 | 0.654504 | 0.054* | |
H41B | 0.726090 | 0.579735 | 0.624334 | 0.054* | |
C42 | 0.8875 (2) | 0.4444 (3) | 0.63231 (6) | 0.0577 (6) | |
H42A | 0.945857 | 0.522902 | 0.639446 | 0.069* | |
H42B | 0.907573 | 0.366618 | 0.648122 | 0.069* | |
C43 | 0.9067 (2) | 0.4046 (3) | 0.59586 (6) | 0.0546 (6) | |
H43A | 0.985176 | 0.342825 | 0.594466 | 0.066* | |
H43B | 0.920339 | 0.486585 | 0.581517 | 0.066* | |
C44 | 0.77753 (17) | 0.3322 (2) | 0.58452 (5) | 0.0376 (4) | |
H44A | 0.752501 | 0.350769 | 0.559987 | 0.045* | |
H44B | 0.786660 | 0.231944 | 0.587857 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0264 (2) | 0.0267 (2) | 0.0298 (3) | 0.00459 (19) | 0.00663 (18) | 0.00271 (19) |
O1 | 0.0341 (6) | 0.0352 (6) | 0.0276 (6) | 0.0143 (5) | 0.0073 (5) | 0.0031 (5) |
C1 | 0.0203 (7) | 0.0258 (7) | 0.0237 (7) | 0.0028 (6) | 0.0028 (5) | 0.0008 (6) |
C2 | 0.0201 (7) | 0.0268 (7) | 0.0212 (7) | 0.0011 (6) | 0.0010 (5) | 0.0037 (6) |
C3 | 0.0209 (7) | 0.0290 (8) | 0.0206 (7) | 0.0009 (6) | 0.0041 (5) | 0.0008 (6) |
C4 | 0.0176 (6) | 0.0243 (7) | 0.0264 (7) | 0.0012 (5) | 0.0019 (5) | 0.0011 (6) |
C5 | 0.0214 (7) | 0.0275 (8) | 0.0234 (7) | 0.0010 (6) | 0.0002 (5) | 0.0059 (6) |
C6 | 0.0222 (7) | 0.0284 (8) | 0.0209 (7) | 0.0000 (6) | 0.0029 (5) | 0.0018 (6) |
C7 | 0.0219 (7) | 0.0253 (7) | 0.0213 (7) | 0.0035 (6) | 0.0023 (5) | 0.0033 (6) |
C8 | 0.0202 (7) | 0.0307 (8) | 0.0256 (7) | 0.0052 (6) | 0.0037 (6) | 0.0016 (6) |
C9 | 0.0303 (9) | 0.0418 (10) | 0.0488 (11) | −0.0013 (8) | −0.0066 (8) | 0.0167 (8) |
C10 | 0.0348 (10) | 0.0570 (13) | 0.0653 (14) | 0.0020 (9) | −0.0190 (9) | 0.0217 (11) |
C11 | 0.0242 (8) | 0.0505 (12) | 0.0574 (12) | 0.0013 (8) | −0.0077 (8) | 0.0012 (10) |
C12 | 0.0254 (8) | 0.0333 (9) | 0.0407 (9) | −0.0009 (7) | 0.0070 (7) | −0.0034 (7) |
C13 | 0.0250 (7) | 0.0297 (8) | 0.0282 (8) | 0.0058 (6) | 0.0041 (6) | 0.0003 (6) |
C14 | 0.0213 (7) | 0.0292 (8) | 0.0208 (7) | 0.0050 (6) | 0.0006 (5) | 0.0068 (6) |
C15 | 0.0284 (8) | 0.0308 (9) | 0.0372 (9) | −0.0001 (7) | 0.0017 (7) | 0.0063 (7) |
C16 | 0.0285 (9) | 0.0446 (11) | 0.0606 (13) | −0.0032 (8) | 0.0106 (8) | 0.0186 (10) |
C17 | 0.0315 (9) | 0.0601 (12) | 0.0398 (10) | 0.0127 (9) | 0.0154 (7) | 0.0222 (9) |
C18 | 0.0382 (9) | 0.0570 (12) | 0.0246 (8) | 0.0140 (9) | 0.0067 (7) | 0.0049 (8) |
C19 | 0.0291 (8) | 0.0411 (9) | 0.0242 (8) | 0.0018 (7) | 0.0025 (6) | 0.0001 (7) |
C20 | 0.0248 (7) | 0.0260 (8) | 0.0320 (8) | 0.0045 (6) | 0.0042 (6) | 0.0018 (6) |
C21 | 0.0569 (13) | 0.0409 (11) | 0.0674 (15) | 0.0107 (10) | −0.0089 (11) | −0.0186 (10) |
C22 | 0.0329 (9) | 0.0449 (11) | 0.0632 (13) | 0.0118 (8) | 0.0166 (9) | 0.0149 (10) |
C23 | 0.0405 (10) | 0.0367 (10) | 0.0509 (11) | 0.0129 (8) | 0.0087 (8) | 0.0123 (8) |
C24 | 0.0269 (7) | 0.0279 (8) | 0.0211 (7) | 0.0023 (6) | 0.0035 (6) | 0.0018 (6) |
C25 | 0.0274 (8) | 0.0323 (8) | 0.0205 (7) | 0.0038 (6) | 0.0031 (6) | 0.0050 (6) |
C26 | 0.0300 (8) | 0.0382 (9) | 0.0377 (9) | 0.0027 (7) | 0.0072 (7) | −0.0066 (7) |
C27 | 0.0329 (9) | 0.0429 (10) | 0.0470 (11) | −0.0040 (8) | 0.0040 (8) | −0.0073 (8) |
C28 | 0.0282 (8) | 0.0449 (11) | 0.0472 (11) | 0.0011 (8) | 0.0104 (7) | 0.0067 (8) |
C29 | 0.0367 (9) | 0.0418 (10) | 0.0403 (10) | 0.0072 (8) | 0.0177 (8) | 0.0029 (8) |
C30 | 0.0371 (9) | 0.0342 (9) | 0.0268 (8) | 0.0023 (7) | 0.0092 (7) | 0.0000 (7) |
C31 | 0.0296 (8) | 0.0330 (8) | 0.0184 (7) | 0.0037 (6) | 0.0039 (6) | 0.0001 (6) |
C32 | 0.0314 (8) | 0.0458 (10) | 0.0277 (8) | −0.0023 (7) | 0.0042 (7) | 0.0057 (7) |
C33 | 0.0278 (8) | 0.0635 (13) | 0.0295 (9) | 0.0027 (8) | 0.0012 (7) | 0.0000 (8) |
C34 | 0.0418 (10) | 0.0551 (12) | 0.0245 (8) | 0.0176 (9) | 0.0005 (7) | 0.0017 (8) |
C35 | 0.0575 (12) | 0.0387 (10) | 0.0325 (9) | 0.0060 (9) | 0.0005 (8) | 0.0101 (8) |
C36 | 0.0402 (9) | 0.0368 (9) | 0.0307 (8) | −0.0025 (8) | −0.0013 (7) | 0.0049 (7) |
C37 | 0.0419 (10) | 0.0358 (10) | 0.0422 (10) | −0.0026 (8) | 0.0077 (8) | −0.0068 (8) |
C38 | 0.0526 (14) | 0.0809 (18) | 0.0782 (18) | −0.0189 (13) | −0.0007 (12) | −0.0226 (15) |
C39 | 0.0578 (12) | 0.0416 (11) | 0.0489 (11) | 0.0129 (9) | 0.0170 (10) | 0.0166 (9) |
C40A | 0.130 (6) | 0.040 (3) | 0.062 (4) | 0.036 (4) | 0.036 (4) | 0.014 (3) |
C40B | 0.081 (4) | 0.060 (4) | 0.072 (5) | 0.031 (3) | 0.034 (3) | 0.036 (4) |
O2 | 0.0260 (6) | 0.0356 (6) | 0.0354 (6) | 0.0035 (5) | 0.0070 (5) | −0.0070 (5) |
C41 | 0.0382 (10) | 0.0453 (11) | 0.0516 (12) | −0.0022 (8) | 0.0037 (8) | −0.0162 (9) |
C42 | 0.0360 (11) | 0.0707 (15) | 0.0653 (15) | 0.0005 (10) | −0.0055 (10) | −0.0120 (12) |
C43 | 0.0314 (10) | 0.0607 (14) | 0.0728 (15) | 0.0031 (9) | 0.0106 (10) | −0.0023 (12) |
C44 | 0.0302 (8) | 0.0417 (10) | 0.0423 (10) | 0.0088 (7) | 0.0125 (7) | −0.0025 (8) |
Al1—O1 | 1.7171 (12) | C24—H24 | 1.0000 |
Al1—O2 | 1.8966 (13) | C25—C26 | 1.387 (2) |
Al1—C39 | 1.970 (2) | C25—C30 | 1.393 (2) |
Al1—C37 | 1.9732 (19) | C26—C27 | 1.391 (2) |
O1—C1 | 1.3355 (18) | C26—H26 | 0.9500 |
C1—C6 | 1.409 (2) | C27—C28 | 1.386 (3) |
C1—C2 | 1.410 (2) | C27—H27 | 0.9500 |
C2—C3 | 1.386 (2) | C28—C29 | 1.376 (3) |
C2—C7 | 1.525 (2) | C28—H28 | 0.9500 |
C3—C4 | 1.394 (2) | C29—C30 | 1.388 (2) |
C3—H3 | 0.9500 | C29—H29 | 0.9500 |
C4—C5 | 1.392 (2) | C30—H30 | 0.9500 |
C4—C20 | 1.532 (2) | C31—C36 | 1.388 (2) |
C5—C6 | 1.392 (2) | C31—C32 | 1.390 (2) |
C5—H5 | 0.9500 | C32—C33 | 1.389 (2) |
C6—C24 | 1.527 (2) | C32—H32 | 0.9500 |
C7—C14 | 1.523 (2) | C33—C34 | 1.379 (3) |
C7—C8 | 1.530 (2) | C33—H33 | 0.9500 |
C7—H7 | 1.0000 | C34—C35 | 1.377 (3) |
C8—C13 | 1.381 (2) | C34—H34 | 0.9500 |
C8—C9 | 1.391 (2) | C35—C36 | 1.393 (3) |
C9—C10 | 1.388 (3) | C35—H35 | 0.9500 |
C9—H9 | 0.9500 | C36—H36 | 0.9500 |
C10—C11 | 1.379 (3) | C37—C38 | 1.524 (3) |
C10—H10 | 0.9500 | C37—H37A | 0.9900 |
C11—C12 | 1.371 (3) | C37—H37B | 0.9900 |
C11—H11 | 0.9500 | C38—H38A | 0.9800 |
C12—C13 | 1.394 (2) | C38—H38B | 0.9800 |
C12—H12 | 0.9500 | C38—H38C | 0.9800 |
C13—H13 | 0.9500 | C39—C40A | 1.494 (6) |
C14—C15 | 1.387 (2) | C39—C40B | 1.531 (6) |
C14—C19 | 1.390 (2) | C39—H39A | 0.9900 |
C15—C16 | 1.389 (2) | C39—H39B | 0.9900 |
C15—H15 | 0.9500 | C39—H39C | 0.9900 |
C16—C17 | 1.378 (3) | C39—H39D | 0.9900 |
C16—H16 | 0.9500 | C40A—H40A | 0.9800 |
C17—C18 | 1.378 (3) | C40A—H40B | 0.9800 |
C17—H17 | 0.9500 | C40A—H40C | 0.9800 |
C18—C19 | 1.391 (2) | C40B—H40D | 0.9800 |
C18—H18 | 0.9500 | C40B—H40E | 0.9800 |
C19—H19 | 0.9500 | C40B—H40F | 0.9800 |
C20—C21 | 1.520 (3) | O2—C41 | 1.461 (2) |
C20—C23 | 1.530 (2) | O2—C44 | 1.4669 (19) |
C20—C22 | 1.537 (2) | C41—C42 | 1.514 (3) |
C21—H21A | 0.9800 | C41—H41A | 0.9900 |
C21—H21B | 0.9800 | C41—H41B | 0.9900 |
C21—H21C | 0.9800 | C42—C43 | 1.497 (3) |
C22—H22A | 0.9800 | C42—H42A | 0.9900 |
C22—H22B | 0.9800 | C42—H42B | 0.9900 |
C22—H22C | 0.9800 | C43—C44 | 1.507 (3) |
C23—H23A | 0.9800 | C43—H43A | 0.9900 |
C23—H23B | 0.9800 | C43—H43B | 0.9900 |
C23—H23C | 0.9800 | C44—H44A | 0.9900 |
C24—C25 | 1.522 (2) | C44—H44B | 0.9900 |
C24—C31 | 1.531 (2) | ||
O1—Al1—O2 | 100.55 (6) | C26—C25—C24 | 122.21 (14) |
O1—Al1—C39 | 113.79 (8) | C30—C25—C24 | 119.72 (15) |
O2—Al1—C39 | 104.01 (8) | C25—C26—C27 | 120.91 (16) |
O1—Al1—C37 | 114.70 (7) | C25—C26—H26 | 119.5 |
O2—Al1—C37 | 104.40 (7) | C27—C26—H26 | 119.5 |
C39—Al1—C37 | 116.75 (10) | C28—C27—C26 | 120.27 (18) |
C1—O1—Al1 | 168.32 (11) | C28—C27—H27 | 119.9 |
O1—C1—C6 | 119.98 (13) | C26—C27—H27 | 119.9 |
O1—C1—C2 | 120.85 (13) | C29—C28—C27 | 119.34 (17) |
C6—C1—C2 | 119.14 (13) | C29—C28—H28 | 120.3 |
C3—C2—C1 | 119.08 (13) | C27—C28—H28 | 120.3 |
C3—C2—C7 | 121.62 (13) | C28—C29—C30 | 120.40 (16) |
C1—C2—C7 | 119.19 (13) | C28—C29—H29 | 119.8 |
C2—C3—C4 | 123.02 (13) | C30—C29—H29 | 119.8 |
C2—C3—H3 | 118.5 | C29—C30—C25 | 121.01 (17) |
C4—C3—H3 | 118.5 | C29—C30—H30 | 119.5 |
C5—C4—C3 | 116.94 (13) | C25—C30—H30 | 119.5 |
C5—C4—C20 | 123.63 (13) | C36—C31—C32 | 118.02 (15) |
C3—C4—C20 | 119.43 (13) | C36—C31—C24 | 122.95 (15) |
C4—C5—C6 | 122.36 (13) | C32—C31—C24 | 118.95 (15) |
C4—C5—H5 | 118.8 | C33—C32—C31 | 121.19 (17) |
C6—C5—H5 | 118.8 | C33—C32—H32 | 119.4 |
C5—C6—C1 | 119.46 (13) | C31—C32—H32 | 119.4 |
C5—C6—C24 | 122.71 (13) | C34—C33—C32 | 120.13 (17) |
C1—C6—C24 | 117.76 (13) | C34—C33—H33 | 119.9 |
C14—C7—C2 | 111.97 (12) | C32—C33—H33 | 119.9 |
C14—C7—C8 | 112.11 (12) | C35—C34—C33 | 119.40 (17) |
C2—C7—C8 | 112.23 (12) | C35—C34—H34 | 120.3 |
C14—C7—H7 | 106.7 | C33—C34—H34 | 120.3 |
C2—C7—H7 | 106.7 | C34—C35—C36 | 120.52 (18) |
C8—C7—H7 | 106.7 | C34—C35—H35 | 119.7 |
C13—C8—C9 | 118.09 (15) | C36—C35—H35 | 119.7 |
C13—C8—C7 | 122.91 (13) | C31—C36—C35 | 120.71 (18) |
C9—C8—C7 | 119.00 (15) | C31—C36—H36 | 119.6 |
C10—C9—C8 | 120.74 (18) | C35—C36—H36 | 119.6 |
C10—C9—H9 | 119.6 | C38—C37—Al1 | 112.97 (15) |
C8—C9—H9 | 119.6 | C38—C37—H37A | 109.0 |
C11—C10—C9 | 120.51 (18) | Al1—C37—H37A | 109.0 |
C11—C10—H10 | 119.7 | C38—C37—H37B | 109.0 |
C9—C10—H10 | 119.7 | Al1—C37—H37B | 109.0 |
C12—C11—C10 | 119.27 (17) | H37A—C37—H37B | 107.8 |
C12—C11—H11 | 120.4 | C37—C38—H38A | 109.5 |
C10—C11—H11 | 120.4 | C37—C38—H38B | 109.5 |
C11—C12—C13 | 120.41 (17) | H38A—C38—H38B | 109.5 |
C11—C12—H12 | 119.8 | C37—C38—H38C | 109.5 |
C13—C12—H12 | 119.8 | H38A—C38—H38C | 109.5 |
C8—C13—C12 | 120.98 (15) | H38B—C38—H38C | 109.5 |
C8—C13—H13 | 119.5 | C40A—C39—Al1 | 116.4 (4) |
C12—C13—H13 | 119.5 | C40B—C39—Al1 | 114.9 (4) |
C15—C14—C19 | 118.52 (15) | C40A—C39—H39A | 108.2 |
C15—C14—C7 | 119.72 (14) | Al1—C39—H39A | 108.2 |
C19—C14—C7 | 121.72 (14) | C40A—C39—H39B | 108.2 |
C14—C15—C16 | 120.87 (17) | Al1—C39—H39B | 108.2 |
C14—C15—H15 | 119.6 | H39A—C39—H39B | 107.3 |
C16—C15—H15 | 119.6 | C40B—C39—H39C | 108.5 |
C17—C16—C15 | 120.11 (18) | Al1—C39—H39C | 108.5 |
C17—C16—H16 | 119.9 | C40B—C39—H39D | 108.5 |
C15—C16—H16 | 119.9 | Al1—C39—H39D | 108.5 |
C16—C17—C18 | 119.73 (16) | H39C—C39—H39D | 107.5 |
C16—C17—H17 | 120.1 | C39—C40A—H40A | 109.5 |
C18—C17—H17 | 120.1 | C39—C40A—H40B | 109.5 |
C17—C18—C19 | 120.27 (18) | H40A—C40A—H40B | 109.5 |
C17—C18—H18 | 119.9 | C39—C40A—H40C | 109.5 |
C19—C18—H18 | 119.9 | H40A—C40A—H40C | 109.5 |
C14—C19—C18 | 120.49 (17) | H40B—C40A—H40C | 109.5 |
C14—C19—H19 | 119.8 | C39—C40B—H40D | 109.5 |
C18—C19—H19 | 119.8 | C39—C40B—H40E | 109.5 |
C21—C20—C23 | 108.97 (16) | H40D—C40B—H40E | 109.5 |
C21—C20—C4 | 109.82 (14) | C39—C40B—H40F | 109.5 |
C23—C20—C4 | 112.60 (14) | H40D—C40B—H40F | 109.5 |
C21—C20—C22 | 108.86 (17) | H40E—C40B—H40F | 109.5 |
C23—C20—C22 | 107.52 (14) | C41—O2—C44 | 110.42 (13) |
C4—C20—C22 | 108.98 (13) | C41—O2—Al1 | 123.22 (10) |
C20—C21—H21A | 109.5 | C44—O2—Al1 | 125.17 (11) |
C20—C21—H21B | 109.5 | O2—C41—C42 | 103.24 (15) |
H21A—C21—H21B | 109.5 | O2—C41—H41A | 111.1 |
C20—C21—H21C | 109.5 | C42—C41—H41A | 111.1 |
H21A—C21—H21C | 109.5 | O2—C41—H41B | 111.1 |
H21B—C21—H21C | 109.5 | C42—C41—H41B | 111.1 |
C20—C22—H22A | 109.5 | H41A—C41—H41B | 109.1 |
C20—C22—H22B | 109.5 | C43—C42—C41 | 103.26 (17) |
H22A—C22—H22B | 109.5 | C43—C42—H42A | 111.1 |
C20—C22—H22C | 109.5 | C41—C42—H42A | 111.1 |
H22A—C22—H22C | 109.5 | C43—C42—H42B | 111.1 |
H22B—C22—H22C | 109.5 | C41—C42—H42B | 111.1 |
C20—C23—H23A | 109.5 | H42A—C42—H42B | 109.1 |
C20—C23—H23B | 109.5 | C42—C43—C44 | 104.10 (17) |
H23A—C23—H23B | 109.5 | C42—C43—H43A | 110.9 |
C20—C23—H23C | 109.5 | C44—C43—H43A | 110.9 |
H23A—C23—H23C | 109.5 | C42—C43—H43B | 110.9 |
H23B—C23—H23C | 109.5 | C44—C43—H43B | 110.9 |
C25—C24—C6 | 111.85 (13) | H43A—C43—H43B | 109.0 |
C25—C24—C31 | 112.55 (13) | O2—C44—C43 | 104.63 (15) |
C6—C24—C31 | 111.60 (12) | O2—C44—H44A | 110.8 |
C25—C24—H24 | 106.8 | C43—C44—H44A | 110.8 |
C6—C24—H24 | 106.8 | O2—C44—H44B | 110.8 |
C31—C24—H24 | 106.8 | C43—C44—H44B | 110.8 |
C26—C25—C30 | 118.06 (15) | H44A—C44—H44B | 108.9 |
O2—Al1—O1—C1 | −172.5 (5) | C17—C18—C19—C14 | 0.9 (3) |
C39—Al1—O1—C1 | −61.9 (5) | C5—C4—C20—C21 | −120.32 (18) |
C37—Al1—O1—C1 | 76.1 (5) | C3—C4—C20—C21 | 60.0 (2) |
Al1—O1—C1—C6 | −111.1 (5) | C5—C4—C20—C23 | 1.3 (2) |
Al1—O1—C1—C2 | 70.9 (6) | C3—C4—C20—C23 | −178.41 (15) |
O1—C1—C2—C3 | 177.62 (14) | C5—C4—C20—C22 | 120.51 (17) |
C6—C1—C2—C3 | −0.4 (2) | C3—C4—C20—C22 | −59.20 (19) |
O1—C1—C2—C7 | 1.5 (2) | C5—C6—C24—C25 | 105.73 (17) |
C6—C1—C2—C7 | −176.60 (13) | C1—C6—C24—C25 | −71.32 (18) |
C1—C2—C3—C4 | −0.4 (2) | C5—C6—C24—C31 | −21.4 (2) |
C7—C2—C3—C4 | 175.68 (14) | C1—C6—C24—C31 | 161.58 (14) |
C2—C3—C4—C5 | 0.8 (2) | C6—C24—C25—C26 | −38.0 (2) |
C2—C3—C4—C20 | −179.51 (14) | C31—C24—C25—C26 | 88.63 (18) |
C3—C4—C5—C6 | −0.3 (2) | C6—C24—C25—C30 | 143.55 (15) |
C20—C4—C5—C6 | 179.97 (14) | C31—C24—C25—C30 | −89.87 (18) |
C4—C5—C6—C1 | −0.5 (2) | C30—C25—C26—C27 | 1.5 (3) |
C4—C5—C6—C24 | −177.48 (14) | C24—C25—C26—C27 | −177.03 (16) |
O1—C1—C6—C5 | −177.22 (14) | C25—C26—C27—C28 | −0.6 (3) |
C2—C1—C6—C5 | 0.9 (2) | C26—C27—C28—C29 | −0.4 (3) |
O1—C1—C6—C24 | −0.1 (2) | C27—C28—C29—C30 | 0.5 (3) |
C2—C1—C6—C24 | 178.00 (14) | C28—C29—C30—C25 | 0.4 (3) |
C3—C2—C7—C14 | 31.4 (2) | C26—C25—C30—C29 | −1.4 (2) |
C1—C2—C7—C14 | −152.54 (14) | C24—C25—C30—C29 | 177.18 (15) |
C3—C2—C7—C8 | −95.71 (16) | C25—C24—C31—C36 | −22.4 (2) |
C1—C2—C7—C8 | 80.35 (17) | C6—C24—C31—C36 | 104.31 (18) |
C14—C7—C8—C13 | −119.55 (16) | C25—C24—C31—C32 | 160.81 (15) |
C2—C7—C8—C13 | 7.5 (2) | C6—C24—C31—C32 | −72.47 (19) |
C14—C7—C8—C9 | 61.04 (19) | C36—C31—C32—C33 | −1.1 (3) |
C2—C7—C8—C9 | −171.93 (15) | C24—C31—C32—C33 | 175.83 (15) |
C13—C8—C9—C10 | −0.8 (3) | C31—C32—C33—C34 | −0.5 (3) |
C7—C8—C9—C10 | 178.60 (18) | C32—C33—C34—C35 | 1.6 (3) |
C8—C9—C10—C11 | 0.6 (3) | C33—C34—C35—C36 | −1.0 (3) |
C9—C10—C11—C12 | −0.1 (3) | C32—C31—C36—C35 | 1.7 (3) |
C10—C11—C12—C13 | −0.1 (3) | C24—C31—C36—C35 | −175.07 (16) |
C9—C8—C13—C12 | 0.6 (2) | C34—C35—C36—C31 | −0.7 (3) |
C7—C8—C13—C12 | −178.82 (14) | O1—Al1—O2—C41 | 48.96 (14) |
C11—C12—C13—C8 | −0.1 (3) | C39—Al1—O2—C41 | −69.03 (15) |
C2—C7—C14—C15 | 89.07 (17) | C37—Al1—O2—C41 | 168.09 (14) |
C8—C7—C14—C15 | −143.75 (14) | O1—Al1—O2—C44 | −144.71 (13) |
C2—C7—C14—C19 | −88.66 (17) | C39—Al1—O2—C44 | 97.30 (14) |
C8—C7—C14—C19 | 38.52 (19) | C37—Al1—O2—C44 | −25.59 (15) |
C19—C14—C15—C16 | 0.1 (2) | C44—O2—C41—C42 | −19.2 (2) |
C7—C14—C15—C16 | −177.75 (15) | Al1—O2—C41—C42 | 148.89 (14) |
C14—C15—C16—C17 | 0.2 (3) | O2—C41—C42—C43 | 34.7 (2) |
C15—C16—C17—C18 | 0.1 (3) | C41—C42—C43—C44 | −37.4 (2) |
C16—C17—C18—C19 | −0.6 (3) | C41—O2—C44—C43 | −3.8 (2) |
C15—C14—C19—C18 | −0.6 (2) | Al1—O2—C44—C43 | −171.65 (13) |
C7—C14—C19—C18 | 177.17 (14) | C42—C43—C44—O2 | 25.7 (2) |
Funding information
This work was partially supported by the TIPS RAS State Plan.
References
Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252–5261. Web of Science CrossRef CAS Google Scholar
Dubois, P., Coulembier, O. & Raquez, J.-M. (2009). Handbook of ring-opening polymerization, pp. 1–408. Weinheim: Wiley-VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nifant'ev, I. E., Minyaev, M. E., Shlyakhtin, A. V., Ivchenko, P. V. & Churakov, A. V. (2017a). Mendeleev Commun. 27, 341–343. CAS Google Scholar
Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017b). Dalton Trans. 46, 12132–12146. CAS PubMed Google Scholar
Nifant'ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106–111. CAS Google Scholar
Sarazin, Y. & Carpentier, J.-F. (2015). Chem. Rev. 115, 3564–3614. CrossRef CAS PubMed Google Scholar
Searles, K., Carroll, P. J., Chen, Ch.-H., Pink, M. & Mindiola, D. J. (2015b). Chem. Commun. 51, 3526–3528. CSD CrossRef CAS Google Scholar
Searles, K., Carroll, P. J. & Mindiola, D. J. (2015a). Organometallics, 34, 4641–4643. CSD CrossRef CAS Google Scholar
Searles, K., Keijzer, K., Chen, Ch.-H., Baik, M.-H. & Mindiola, D. J. (2014b). Chem. Commun. 50, 6267–6269. CSD CrossRef CAS Google Scholar
Searles, K., Pinter, B., Chen, Ch.-H. & Mindiola, D. J. (2014a). Organometallics, 33, 4192–4199. CSD CrossRef CAS Google Scholar
Searles, K., Smith, K. T., Kurogi, T., Chen, Ch.-H., Carroll, P. J. & Mindiola, D. J. (2016). Angew. Chem. Int. Ed. 55, 6642–6645. CSD CrossRef CAS Google Scholar
Searles, K., Tran, B. L., Pink, M., Chen, Ch.-H. & Mindiola, D. J. (2013). Inorg. Chem. 52, 11126–11135. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solowey, D. P., Kurogi, T., Manor, B. C., Carroll, P. J. & Mindiola, D. J. (2016). Dalton Trans. 45, 15894–15901. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.