research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-tert-Butyl-2,6-bis­­(di­phenyl­meth­yl)phenolato-κO]dieth­yl(tetra­hydro­furan-κO)aluminium

CROSSMARK_Color_square_no_text.svg

aA.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by T. J. Prior, University of Hull, England (Received 17 January 2018; accepted 18 January 2018; online 26 January 2018)

The title compound, {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)} or [Al(C2H5)2(C36H33O)(C4H8O)], was formed in the reaction between 4-tert-butyl-2,6-bis­(di­phenyl­meth­yl)phenol and tri­ethyl­aluminum in the presence of THF (THF is tetra­hydro­furan) and recrystallized from hexane. The structure has monoclinic (P21/n) symmetry with a single Al atom in the asymmetric unit. The terminal C atom of one ethyl substituent is nearly equally disordered over two positions. The complex possesses catalytic activity in the ring-opening polymerization of -caprolactone.

1. Chemical context

Over the last decade, the number of phenoxide complexes of main group and transition metals has greatly increased due to inter­est in studies of their catalytic activity in the ring-opening polymerization (ROP) of cyclic esters (Dubois et al., 2009[Dubois, P., Coulembier, O. & Raquez, J.-M. (2009). Handbook of ring-opening polymerization, pp. 1-408. Weinheim: Wiley-VCH.]). The design of promising new ROP catalysts bearing bulky phenoxide ligands is under way (see Sarazin & Carpentier, 2015[Sarazin, Y. & Carpentier, J.-F. (2015). Chem. Rev. 115, 3564-3614.]; Nifant'ev et al., 2016[Nifant'ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106-111.], 2017b[Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017b). Dalton Trans. 46, 12132-12146.] and references therein; Chen et al., 2012[Chen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252-5261.]). One such ligand is the 4-tert-butyl-2,6-bis­(di­phenyl­meth­yl)phenoxide anion, [O-2,6-(Ph2H)2-4-tBuC6H2], which has recently been obtained from the corresponding phenol and characterized crystallographically as sodium salt (Searles et al., 2013[Searles, K., Tran, B. L., Pink, M., Chen, Ch.-H. & Mindiola, D. J. (2013). Inorg. Chem. 52, 11126-11135.]). However, almost all metal complexes with this ligand contain early transition metals (see below). Very recently, we have synthesized complexes with Mg, Ca, and Zn (Nifant'ev et al., 2017a[Nifant'ev, I. E., Minyaev, M. E., Shlyakhtin, A. V., Ivchenko, P. V. & Churakov, A. V. (2017a). Mendeleev Commun. 27, 341-343.]), and have demonstrated their catalytic activity in the ROP of rac-lactide and -caprolactone. Herein we report synthesis and structure of an Al complex containing this ligand.

[Scheme 1]

Reaction of 4-tert-butyl-2,6-bis­(di­phenyl­meth­yl)phenol with tri­ethyl­aluminium (1:1 molar ratio) in a hexa­ne/THF mixture followed by recrystallization from hexane leads to the formation of crystals of {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)} in 87% yield (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)}.

The obtained Al complex activated by benzyl alcohol demonstrates moderate catalytic activity in -caprolactone polymerization in THF, with 14% conversion after 10 min and 100% after 4 h for a 1 M monomer solution (Fig. 2[link]). However, we have found that this catalytic system is not able to catalyse the ROP of rac-lactide under the same conditions.

[Figure 2]
Figure 2
Polymerization reaction of rac-lactide and -caprolactone.

2. Structural commentary

The Al atom of the title compound, {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)}, is in a distorted tetra­hedral environment (Fig. 3[link]). The C40 atom of one ethyl group is equally disordered over two positions with an occupancy ratio of 0.50 (2):0.50 (2). As expected, the largest Al–ligand distances correspond to Al—Et bonds [1.9732 (19) for Al—C37 and 1.970 (2) Å for Al—C39]. The shortest Al–ligand length is for the Al—O1 bond [1.7171 (12) Å], presumably because of the presence of a negative charge at the phenoxide anion OAr regardless of its bulkiness, whereas the Al—OTHF bond is somewhat longer [1.8966 (13) Å, Al—O2]. The bond angles around the Al atom range from 100.55 (6)° for O1—Al1—O2 to 116.75 (10)° for C37—Al1—C39, with the O—Al—C angles lying in the middle of this range. All phenyl groups are directed away from the Al atom because of the substantial steric hindrance of the phenoxide ligand. No non-coordinating solvent mol­ecules are present in the crystal structure, and no significant non-valence inter­molecular inter­actions have been found.

[Figure 3]
Figure 3
Mol­ecular structure of {Al[O-2,6-(Ph2CH)2-4-tBuC6H2]Et2(THF)} (50% atomic displacement ellipsoids). Hydrogen atoms are omitted for clarity. The second disorder component for one of the ethyl groups (atom C40B) is shown with an open solid line.

3. Database survey

The crystal structures of the phenol HO-2,6-(Ph2CH)2-4-tBuC6H2 (CSD refcode BIPXEF) and of its sodium salt [NaO-2,6-(Ph2CH)2-4-tBuC6H2]2 (BIPXUV) have been recently established by Searles et al. (2013[Searles, K., Tran, B. L., Pink, M., Chen, Ch.-H. & Mindiola, D. J. (2013). Inorg. Chem. 52, 11126-11135.]). Coordination metal complexes with the [O-2,6-(Ph2CH)2-4-tBuC6H2] anion are still poorly studied with the exception of complexes with early transition metals. Thus, according to the Cambridge Structural Database (CSD version 5.38 with updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 24 complexes with only M = Ti, V, Cr, Nb, and Ta have been reported to date: ISEWIO, RUYHEA01, UWEDEH, BIPXIJ, BIPXOP, BIPYAC, DIZNEH, DIZNIL, DIZNOR, DIZNUX, EPUJIK, QOSDEJ, QOSPEV, QOSPIZ, QOSPOF, QOSPUL, RUYHIE, RUYHOK, RUYHUQ, SONTUM, SONVAU, SONVEY, WUWHON, WUWQOW (see also Searles et al., 2013[Searles, K., Tran, B. L., Pink, M., Chen, Ch.-H. & Mindiola, D. J. (2013). Inorg. Chem. 52, 11126-11135.], 2014a[Searles, K., Pinter, B., Chen, Ch.-H. & Mindiola, D. J. (2014a). Organometallics, 33, 4192-4199.],b[Searles, K., Keijzer, K., Chen, Ch.-H., Baik, M.-H. & Mindiola, D. J. (2014b). Chem. Commun. 50, 6267-6269.], 2015a[Searles, K., Carroll, P. J. & Mindiola, D. J. (2015a). Organometallics, 34, 4641-4643.],b[Searles, K., Carroll, P. J., Chen, Ch.-H., Pink, M. & Mindiola, D. J. (2015b). Chem. Commun. 51, 3526-3528.], 2016[Searles, K., Smith, K. T., Kurogi, T., Chen, Ch.-H., Carroll, P. J. & Mindiola, D. J. (2016). Angew. Chem. Int. Ed. 55, 6642-6645.]; Solowey et al., 2016[Solowey, D. P., Kurogi, T., Manor, B. C., Carroll, P. J. & Mindiola, D. J. (2016). Dalton Trans. 45, 15894-15901.]). [Zn(Et)(μ-O-2,6-(Ph2CH)2-4-tBuC6H2)]2, [Mg(O-2,6-(Ph2CH)2-4-tBuC6H2)2(THF)2] [Ca(O-2,6-(Ph2CH)2-4-tBuC6H2)2(THF)3]3(THF)8 have been recently synthesized and studied by our group (CCDC numbers: 1511142–1511144; Nifant'ev et al., 2017a[Nifant'ev, I. E., Minyaev, M. E., Shlyakhtin, A. V., Ivchenko, P. V. & Churakov, A. V. (2017a). Mendeleev Commun. 27, 341-343.]).

4. Synthesis and crystallization

All synthetic manipulations were performed under a purified argon atmosphere, using Schlenk glassware, dry-box tech­niques and absolute solvents. NMR spectra were recorded with a Bruker AVANCE 400 spectrometer at 298 K. C/H elemental analysis was performed with a Perkin–Elmer 2400 Series II elemental analyzer. Gel permeation chromatography (GPC) measurements were recorded on an Agilent PL-GPC 220 chromatograph equipped with a PLgel column (eluent: THF, 1 ml/min, 313 K), using universal calibration with a polystyrene standard.

4.1. Synthesis of the complex

A solution of AlEt3 in hexane (0.5 M, 2.0 ml, 1.0 mmol) was added dropwise to a stirred solution of HO-2,6-(Ph2CH)2-4-tBuC6H2 (0.483 g, 1.0 mmol) in THF (4 ml). The reaction mixture was stirred for 2 h. All solvent was then evaporated under reduced pressure. The microcrystalline residue was dissolved in a minimal amount of boiling hexane. After two weeks, crystals were obtained. The mother liquor was then deca­nted and the crystals were washed with hexane (2 x 0.5 ml) and dried under dynamic vacuum. The yield was 87% (559 mg, 0.87 mmol) of colourless crystals. Calculated for C44H51AlO2: C, 82.72%; H, 8.05%. Found: C, 82.51%; H, 8.10%. 1H NMR (400MHz, C6D6): δ 0.28 (4H, quadruplet, 3JHH = 8.1Hz AlCH2CH3), 0.78–0.86 (4H, m, CH2CH2OTHF), 1.13 [9H, s –C(CH3)3], 1.38 (6H, t, 3JHH = 8.1Hz, –AlCH2CH3), 2.84–2.92 (4H, m, CH2OTHF), 6.31 (2H, s, Ph2CH), 7.00 (4H, t, 3JHH = 7.3Hz, p-HPh), 7.10 (10H, t, m-HPh+m-HOAr), 7.29 (8H, d, 3JHH = 7.6Hz, o-HPh). 13C{1H} NMR (100MHz, C6D6): δ 0.54, 9.83, 24.69, 31.70, 34.23, 51.00, 70.19, 125.92, 126.29, 130.29, 131.76, 139.75, 146.13, 153.32 (see Supporting information).

4.2. Polymerization experiments

A solution of the Al complex (69 µmol) in THF was injected into a solution of a monomer [either rac-lactide (rac-LA) or -caprolactone (-CL), 6.9 mmol] and PhCH2OH (69 µmol) in THF. The monomer concentration was 1.0 M. The reaction was carried out for 10 min and for 4 h. According to 1H NMR (in CDCl3), conversion of rac-LA was 0% in both cases. Conversion of -CL was 14% after 10 min, and 100% after 4 h. In the latter case, the recorded 1H NMR spectrum showed the disappearance of the CH2OC=O resonance signal of -CL at 4.14 ppm and the presence of the poly--caprolactone (PCL) resonance signal at 3.98 ppm (CH2OC=O). The polymer solution was quenched with THF containing an excess of acetic acid. The polymer solution was precipitated from Et2O, filtered off, reprecipitated from a THF/Et2O mixture at 253 K, filtered off, and dried under vacuum. The isolated PCL had a regular 1H NMR spectrum for PCL. GPC data (THF, 313 K): Mn = 1.73 × 104 PDI = 1.67.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The hydrogen atoms were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methyl­ene and 1.00 Å for tertiary H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups. Reflection (0 0 2) was affected by the beam stop, and was therefore omitted from the refinement. SADI and SIMU SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) restraints were applied for modelling the C40A/C40B disorder.

Table 1
Experimental details

Crystal data
Chemical formula [Al(C2H5)2(C36H33O)(C4H8O)]
Mr 638.82
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.9357 (13), 9.7571 (13), 38.999 (5)
β (°) 93.586 (2)
V3) 3773.3 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.966, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 38112, 9098, 7153
Rint 0.033
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.04
No. of reflections 9098
No. of parameters 440
No. of restraints 19
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The five highest residual electron-density peaks are located at the t-Bu group and near THF atoms C42 and C43, pointing to some minor remaining disorder. Using a set of positional and bond-parameter restraints, estimated ratios for the t-Bu rotational disorder and for the disorder in the THF mol­ecule (atoms C42, C43) were found to be 0.939 (2):0.061 (2) and 0.904 (7):0.096 (7), respectively. However, the residual electron density was not sufficient to adequately model the mentioned disorders, which were therefore not included in the final crystallographic model.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

[4-tert-Butyl-2,6-bis(diphenylmethyl)phenolato-κO]diethyl(tetrahydrofuran-κO)aluminium top
Crystal data top
[Al(C2H5)2(C36H33O)(C4H8O)]F(000) = 1376
Mr = 638.82Dx = 1.125 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9357 (13) ÅCell parameters from 8876 reflections
b = 9.7571 (13) Åθ = 2.2–30.4°
c = 38.999 (5) ŵ = 0.09 mm1
β = 93.586 (2)°T = 150 K
V = 3773.3 (8) Å3Prism, colourless
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Bruker SMART APEXII
diffractometer
9098 independent reflections
Radiation source: fine-focus sealed tube7153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1313
Tmin = 0.966, Tmax = 0.983k = 1212
38112 measured reflectionsl = 5151
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 1.8357P]
where P = (Fo2 + 2Fc2)/3
9098 reflections(Δ/σ)max = 0.001
440 parametersΔρmax = 0.45 e Å3
19 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.49790 (5)0.32265 (5)0.60880 (2)0.02744 (12)
O10.41331 (11)0.47332 (12)0.61488 (3)0.0321 (3)
C10.32620 (14)0.57380 (15)0.62056 (4)0.0232 (3)
C20.28061 (14)0.59587 (15)0.65362 (4)0.0227 (3)
C30.19413 (14)0.70439 (16)0.65873 (4)0.0234 (3)
H30.1634700.7181390.6810660.028*
C40.15005 (14)0.79428 (15)0.63262 (4)0.0227 (3)
C50.19566 (14)0.77008 (16)0.60014 (4)0.0242 (3)
H50.1669240.8294140.5817990.029*
C60.28190 (15)0.66204 (16)0.59356 (4)0.0238 (3)
C70.33456 (14)0.50553 (16)0.68328 (4)0.0228 (3)
H70.3460150.4115980.6736270.027*
C80.47382 (15)0.55159 (16)0.69782 (4)0.0254 (3)
C90.54383 (18)0.4695 (2)0.72202 (5)0.0407 (4)
H90.5037150.3873280.7295660.049*
C100.6717 (2)0.5062 (2)0.73529 (6)0.0533 (6)
H100.7185940.4486100.7516360.064*
C110.73113 (18)0.6257 (2)0.72491 (5)0.0445 (5)
H110.8185480.6507550.7340520.053*
C120.66264 (16)0.70799 (18)0.70125 (4)0.0329 (4)
H120.7027950.7905750.6940030.040*
C130.53444 (15)0.67121 (17)0.68777 (4)0.0275 (3)
H130.4880830.7292830.6714330.033*
C140.23441 (14)0.49260 (16)0.71110 (4)0.0238 (3)
C150.13885 (16)0.38879 (18)0.70910 (5)0.0322 (4)
H150.1386940.3245030.6907980.039*
C160.04341 (18)0.3776 (2)0.73348 (5)0.0442 (5)
H160.0212630.3058240.7318170.053*
C170.04235 (18)0.4705 (2)0.76009 (5)0.0433 (5)
H170.0228290.4627800.7768000.052*
C180.13626 (18)0.5746 (2)0.76236 (4)0.0397 (4)
H180.1351230.6392870.7805520.048*
C190.23270 (16)0.58538 (19)0.73812 (4)0.0314 (4)
H190.2978620.6566630.7400560.038*
C200.05529 (15)0.91216 (16)0.64069 (4)0.0275 (3)
C210.1230 (2)1.0046 (2)0.66799 (6)0.0556 (6)
H21A0.2025211.0476110.6589390.083*
H21B0.1505490.9499990.6883240.083*
H21C0.0594961.0757720.6743160.083*
C220.07402 (19)0.8525 (2)0.65444 (6)0.0464 (5)
H22A0.0508940.7983840.6751470.070*
H22B0.1190690.7936520.6368850.070*
H22C0.1345450.9274190.6600560.070*
C230.0138 (2)0.9983 (2)0.60899 (5)0.0425 (4)
H23A0.0938521.0416070.6002750.064*
H23B0.0500231.0693170.6152320.064*
H23C0.0290390.9392220.5911520.064*
C240.33693 (15)0.63812 (16)0.55835 (4)0.0252 (3)
H240.3319290.5372420.5539160.030*
C250.48478 (15)0.67832 (17)0.55785 (4)0.0267 (3)
C260.53720 (17)0.79190 (19)0.57539 (5)0.0351 (4)
H260.4807160.8445990.5890910.042*
C270.67139 (18)0.8297 (2)0.57319 (5)0.0409 (4)
H270.7055110.9083880.5851810.049*
C280.75546 (18)0.7532 (2)0.55359 (5)0.0398 (4)
H280.8469600.7792970.5519620.048*
C290.70512 (18)0.6391 (2)0.53651 (5)0.0389 (4)
H290.7623620.5857130.5231630.047*
C300.57119 (17)0.60144 (18)0.53865 (4)0.0324 (4)
H300.5379320.5220330.5268380.039*
C310.24906 (16)0.70749 (17)0.52972 (4)0.0269 (3)
C320.12342 (17)0.6520 (2)0.52021 (4)0.0349 (4)
H320.0965960.5689180.5304810.042*
C330.03632 (18)0.7159 (2)0.49596 (4)0.0403 (4)
H330.0488650.6760200.4896560.048*
C340.07328 (19)0.8373 (2)0.48102 (4)0.0405 (4)
H340.0130060.8823700.4648530.049*
C350.1983 (2)0.8924 (2)0.48974 (5)0.0430 (4)
H350.2248430.9752240.4792650.052*
C360.28629 (19)0.82776 (19)0.51380 (4)0.0360 (4)
H360.3726750.8663470.5193850.043*
C370.45654 (19)0.2349 (2)0.56378 (5)0.0397 (4)
H37A0.4787590.2994350.5453800.048*
H37B0.5143140.1528780.5619530.048*
C380.3092 (2)0.1923 (3)0.55819 (7)0.0708 (7)
H38A0.2936020.1529200.5351720.106*
H38B0.2512760.2727520.5603670.106*
H38C0.2879850.1239100.5754450.106*
C390.5079 (2)0.2015 (2)0.64930 (6)0.0489 (5)
H39A0.5496550.2535100.6689980.059*0.50 (2)
H39B0.4147220.1784180.6548910.059*0.50 (2)
H39C0.5051570.2588510.6701860.059*0.50 (2)
H39D0.4269390.1420990.6482450.059*0.50 (2)
C40A0.5844 (16)0.0708 (10)0.6461 (3)0.076 (2)0.50 (2)
H40A0.6031950.0306640.6688960.114*0.50 (2)
H40B0.6695900.0895460.6355760.114*0.50 (2)
H40C0.5306170.0064620.6315920.114*0.50 (2)
C40B0.6333 (10)0.1103 (12)0.6529 (3)0.069 (2)0.50 (2)
H40D0.6324550.0573790.6742130.104*0.50 (2)
H40E0.7143690.1676260.6533990.104*0.50 (2)
H40F0.6333530.0474100.6332690.104*0.50 (2)
O20.67660 (11)0.38879 (12)0.60647 (3)0.0321 (3)
C410.73991 (19)0.4833 (2)0.63165 (5)0.0450 (5)
H41A0.7036110.4706200.6545040.054*
H41B0.7260900.5797350.6243340.054*
C420.8875 (2)0.4444 (3)0.63231 (6)0.0577 (6)
H42A0.9458570.5229020.6394460.069*
H42B0.9075730.3666180.6481220.069*
C430.9067 (2)0.4046 (3)0.59586 (6)0.0546 (6)
H43A0.9851760.3428250.5944660.066*
H43B0.9203390.4865850.5815170.066*
C440.77753 (17)0.3322 (2)0.58452 (5)0.0376 (4)
H44A0.7525010.3507690.5599870.045*
H44B0.7866600.2319440.5878570.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0264 (2)0.0267 (2)0.0298 (3)0.00459 (19)0.00663 (18)0.00271 (19)
O10.0341 (6)0.0352 (6)0.0276 (6)0.0143 (5)0.0073 (5)0.0031 (5)
C10.0203 (7)0.0258 (7)0.0237 (7)0.0028 (6)0.0028 (5)0.0008 (6)
C20.0201 (7)0.0268 (7)0.0212 (7)0.0011 (6)0.0010 (5)0.0037 (6)
C30.0209 (7)0.0290 (8)0.0206 (7)0.0009 (6)0.0041 (5)0.0008 (6)
C40.0176 (6)0.0243 (7)0.0264 (7)0.0012 (5)0.0019 (5)0.0011 (6)
C50.0214 (7)0.0275 (8)0.0234 (7)0.0010 (6)0.0002 (5)0.0059 (6)
C60.0222 (7)0.0284 (8)0.0209 (7)0.0000 (6)0.0029 (5)0.0018 (6)
C70.0219 (7)0.0253 (7)0.0213 (7)0.0035 (6)0.0023 (5)0.0033 (6)
C80.0202 (7)0.0307 (8)0.0256 (7)0.0052 (6)0.0037 (6)0.0016 (6)
C90.0303 (9)0.0418 (10)0.0488 (11)0.0013 (8)0.0066 (8)0.0167 (8)
C100.0348 (10)0.0570 (13)0.0653 (14)0.0020 (9)0.0190 (9)0.0217 (11)
C110.0242 (8)0.0505 (12)0.0574 (12)0.0013 (8)0.0077 (8)0.0012 (10)
C120.0254 (8)0.0333 (9)0.0407 (9)0.0009 (7)0.0070 (7)0.0034 (7)
C130.0250 (7)0.0297 (8)0.0282 (8)0.0058 (6)0.0041 (6)0.0003 (6)
C140.0213 (7)0.0292 (8)0.0208 (7)0.0050 (6)0.0006 (5)0.0068 (6)
C150.0284 (8)0.0308 (9)0.0372 (9)0.0001 (7)0.0017 (7)0.0063 (7)
C160.0285 (9)0.0446 (11)0.0606 (13)0.0032 (8)0.0106 (8)0.0186 (10)
C170.0315 (9)0.0601 (12)0.0398 (10)0.0127 (9)0.0154 (7)0.0222 (9)
C180.0382 (9)0.0570 (12)0.0246 (8)0.0140 (9)0.0067 (7)0.0049 (8)
C190.0291 (8)0.0411 (9)0.0242 (8)0.0018 (7)0.0025 (6)0.0001 (7)
C200.0248 (7)0.0260 (8)0.0320 (8)0.0045 (6)0.0042 (6)0.0018 (6)
C210.0569 (13)0.0409 (11)0.0674 (15)0.0107 (10)0.0089 (11)0.0186 (10)
C220.0329 (9)0.0449 (11)0.0632 (13)0.0118 (8)0.0166 (9)0.0149 (10)
C230.0405 (10)0.0367 (10)0.0509 (11)0.0129 (8)0.0087 (8)0.0123 (8)
C240.0269 (7)0.0279 (8)0.0211 (7)0.0023 (6)0.0035 (6)0.0018 (6)
C250.0274 (8)0.0323 (8)0.0205 (7)0.0038 (6)0.0031 (6)0.0050 (6)
C260.0300 (8)0.0382 (9)0.0377 (9)0.0027 (7)0.0072 (7)0.0066 (7)
C270.0329 (9)0.0429 (10)0.0470 (11)0.0040 (8)0.0040 (8)0.0073 (8)
C280.0282 (8)0.0449 (11)0.0472 (11)0.0011 (8)0.0104 (7)0.0067 (8)
C290.0367 (9)0.0418 (10)0.0403 (10)0.0072 (8)0.0177 (8)0.0029 (8)
C300.0371 (9)0.0342 (9)0.0268 (8)0.0023 (7)0.0092 (7)0.0000 (7)
C310.0296 (8)0.0330 (8)0.0184 (7)0.0037 (6)0.0039 (6)0.0001 (6)
C320.0314 (8)0.0458 (10)0.0277 (8)0.0023 (7)0.0042 (7)0.0057 (7)
C330.0278 (8)0.0635 (13)0.0295 (9)0.0027 (8)0.0012 (7)0.0000 (8)
C340.0418 (10)0.0551 (12)0.0245 (8)0.0176 (9)0.0005 (7)0.0017 (8)
C350.0575 (12)0.0387 (10)0.0325 (9)0.0060 (9)0.0005 (8)0.0101 (8)
C360.0402 (9)0.0368 (9)0.0307 (8)0.0025 (8)0.0013 (7)0.0049 (7)
C370.0419 (10)0.0358 (10)0.0422 (10)0.0026 (8)0.0077 (8)0.0068 (8)
C380.0526 (14)0.0809 (18)0.0782 (18)0.0189 (13)0.0007 (12)0.0226 (15)
C390.0578 (12)0.0416 (11)0.0489 (11)0.0129 (9)0.0170 (10)0.0166 (9)
C40A0.130 (6)0.040 (3)0.062 (4)0.036 (4)0.036 (4)0.014 (3)
C40B0.081 (4)0.060 (4)0.072 (5)0.031 (3)0.034 (3)0.036 (4)
O20.0260 (6)0.0356 (6)0.0354 (6)0.0035 (5)0.0070 (5)0.0070 (5)
C410.0382 (10)0.0453 (11)0.0516 (12)0.0022 (8)0.0037 (8)0.0162 (9)
C420.0360 (11)0.0707 (15)0.0653 (15)0.0005 (10)0.0055 (10)0.0120 (12)
C430.0314 (10)0.0607 (14)0.0728 (15)0.0031 (9)0.0106 (10)0.0023 (12)
C440.0302 (8)0.0417 (10)0.0423 (10)0.0088 (7)0.0125 (7)0.0025 (8)
Geometric parameters (Å, º) top
Al1—O11.7171 (12)C24—H241.0000
Al1—O21.8966 (13)C25—C261.387 (2)
Al1—C391.970 (2)C25—C301.393 (2)
Al1—C371.9732 (19)C26—C271.391 (2)
O1—C11.3355 (18)C26—H260.9500
C1—C61.409 (2)C27—C281.386 (3)
C1—C21.410 (2)C27—H270.9500
C2—C31.386 (2)C28—C291.376 (3)
C2—C71.525 (2)C28—H280.9500
C3—C41.394 (2)C29—C301.388 (2)
C3—H30.9500C29—H290.9500
C4—C51.392 (2)C30—H300.9500
C4—C201.532 (2)C31—C361.388 (2)
C5—C61.392 (2)C31—C321.390 (2)
C5—H50.9500C32—C331.389 (2)
C6—C241.527 (2)C32—H320.9500
C7—C141.523 (2)C33—C341.379 (3)
C7—C81.530 (2)C33—H330.9500
C7—H71.0000C34—C351.377 (3)
C8—C131.381 (2)C34—H340.9500
C8—C91.391 (2)C35—C361.393 (3)
C9—C101.388 (3)C35—H350.9500
C9—H90.9500C36—H360.9500
C10—C111.379 (3)C37—C381.524 (3)
C10—H100.9500C37—H37A0.9900
C11—C121.371 (3)C37—H37B0.9900
C11—H110.9500C38—H38A0.9800
C12—C131.394 (2)C38—H38B0.9800
C12—H120.9500C38—H38C0.9800
C13—H130.9500C39—C40A1.494 (6)
C14—C151.387 (2)C39—C40B1.531 (6)
C14—C191.390 (2)C39—H39A0.9900
C15—C161.389 (2)C39—H39B0.9900
C15—H150.9500C39—H39C0.9900
C16—C171.378 (3)C39—H39D0.9900
C16—H160.9500C40A—H40A0.9800
C17—C181.378 (3)C40A—H40B0.9800
C17—H170.9500C40A—H40C0.9800
C18—C191.391 (2)C40B—H40D0.9800
C18—H180.9500C40B—H40E0.9800
C19—H190.9500C40B—H40F0.9800
C20—C211.520 (3)O2—C411.461 (2)
C20—C231.530 (2)O2—C441.4669 (19)
C20—C221.537 (2)C41—C421.514 (3)
C21—H21A0.9800C41—H41A0.9900
C21—H21B0.9800C41—H41B0.9900
C21—H21C0.9800C42—C431.497 (3)
C22—H22A0.9800C42—H42A0.9900
C22—H22B0.9800C42—H42B0.9900
C22—H22C0.9800C43—C441.507 (3)
C23—H23A0.9800C43—H43A0.9900
C23—H23B0.9800C43—H43B0.9900
C23—H23C0.9800C44—H44A0.9900
C24—C251.522 (2)C44—H44B0.9900
C24—C311.531 (2)
O1—Al1—O2100.55 (6)C26—C25—C24122.21 (14)
O1—Al1—C39113.79 (8)C30—C25—C24119.72 (15)
O2—Al1—C39104.01 (8)C25—C26—C27120.91 (16)
O1—Al1—C37114.70 (7)C25—C26—H26119.5
O2—Al1—C37104.40 (7)C27—C26—H26119.5
C39—Al1—C37116.75 (10)C28—C27—C26120.27 (18)
C1—O1—Al1168.32 (11)C28—C27—H27119.9
O1—C1—C6119.98 (13)C26—C27—H27119.9
O1—C1—C2120.85 (13)C29—C28—C27119.34 (17)
C6—C1—C2119.14 (13)C29—C28—H28120.3
C3—C2—C1119.08 (13)C27—C28—H28120.3
C3—C2—C7121.62 (13)C28—C29—C30120.40 (16)
C1—C2—C7119.19 (13)C28—C29—H29119.8
C2—C3—C4123.02 (13)C30—C29—H29119.8
C2—C3—H3118.5C29—C30—C25121.01 (17)
C4—C3—H3118.5C29—C30—H30119.5
C5—C4—C3116.94 (13)C25—C30—H30119.5
C5—C4—C20123.63 (13)C36—C31—C32118.02 (15)
C3—C4—C20119.43 (13)C36—C31—C24122.95 (15)
C4—C5—C6122.36 (13)C32—C31—C24118.95 (15)
C4—C5—H5118.8C33—C32—C31121.19 (17)
C6—C5—H5118.8C33—C32—H32119.4
C5—C6—C1119.46 (13)C31—C32—H32119.4
C5—C6—C24122.71 (13)C34—C33—C32120.13 (17)
C1—C6—C24117.76 (13)C34—C33—H33119.9
C14—C7—C2111.97 (12)C32—C33—H33119.9
C14—C7—C8112.11 (12)C35—C34—C33119.40 (17)
C2—C7—C8112.23 (12)C35—C34—H34120.3
C14—C7—H7106.7C33—C34—H34120.3
C2—C7—H7106.7C34—C35—C36120.52 (18)
C8—C7—H7106.7C34—C35—H35119.7
C13—C8—C9118.09 (15)C36—C35—H35119.7
C13—C8—C7122.91 (13)C31—C36—C35120.71 (18)
C9—C8—C7119.00 (15)C31—C36—H36119.6
C10—C9—C8120.74 (18)C35—C36—H36119.6
C10—C9—H9119.6C38—C37—Al1112.97 (15)
C8—C9—H9119.6C38—C37—H37A109.0
C11—C10—C9120.51 (18)Al1—C37—H37A109.0
C11—C10—H10119.7C38—C37—H37B109.0
C9—C10—H10119.7Al1—C37—H37B109.0
C12—C11—C10119.27 (17)H37A—C37—H37B107.8
C12—C11—H11120.4C37—C38—H38A109.5
C10—C11—H11120.4C37—C38—H38B109.5
C11—C12—C13120.41 (17)H38A—C38—H38B109.5
C11—C12—H12119.8C37—C38—H38C109.5
C13—C12—H12119.8H38A—C38—H38C109.5
C8—C13—C12120.98 (15)H38B—C38—H38C109.5
C8—C13—H13119.5C40A—C39—Al1116.4 (4)
C12—C13—H13119.5C40B—C39—Al1114.9 (4)
C15—C14—C19118.52 (15)C40A—C39—H39A108.2
C15—C14—C7119.72 (14)Al1—C39—H39A108.2
C19—C14—C7121.72 (14)C40A—C39—H39B108.2
C14—C15—C16120.87 (17)Al1—C39—H39B108.2
C14—C15—H15119.6H39A—C39—H39B107.3
C16—C15—H15119.6C40B—C39—H39C108.5
C17—C16—C15120.11 (18)Al1—C39—H39C108.5
C17—C16—H16119.9C40B—C39—H39D108.5
C15—C16—H16119.9Al1—C39—H39D108.5
C16—C17—C18119.73 (16)H39C—C39—H39D107.5
C16—C17—H17120.1C39—C40A—H40A109.5
C18—C17—H17120.1C39—C40A—H40B109.5
C17—C18—C19120.27 (18)H40A—C40A—H40B109.5
C17—C18—H18119.9C39—C40A—H40C109.5
C19—C18—H18119.9H40A—C40A—H40C109.5
C14—C19—C18120.49 (17)H40B—C40A—H40C109.5
C14—C19—H19119.8C39—C40B—H40D109.5
C18—C19—H19119.8C39—C40B—H40E109.5
C21—C20—C23108.97 (16)H40D—C40B—H40E109.5
C21—C20—C4109.82 (14)C39—C40B—H40F109.5
C23—C20—C4112.60 (14)H40D—C40B—H40F109.5
C21—C20—C22108.86 (17)H40E—C40B—H40F109.5
C23—C20—C22107.52 (14)C41—O2—C44110.42 (13)
C4—C20—C22108.98 (13)C41—O2—Al1123.22 (10)
C20—C21—H21A109.5C44—O2—Al1125.17 (11)
C20—C21—H21B109.5O2—C41—C42103.24 (15)
H21A—C21—H21B109.5O2—C41—H41A111.1
C20—C21—H21C109.5C42—C41—H41A111.1
H21A—C21—H21C109.5O2—C41—H41B111.1
H21B—C21—H21C109.5C42—C41—H41B111.1
C20—C22—H22A109.5H41A—C41—H41B109.1
C20—C22—H22B109.5C43—C42—C41103.26 (17)
H22A—C22—H22B109.5C43—C42—H42A111.1
C20—C22—H22C109.5C41—C42—H42A111.1
H22A—C22—H22C109.5C43—C42—H42B111.1
H22B—C22—H22C109.5C41—C42—H42B111.1
C20—C23—H23A109.5H42A—C42—H42B109.1
C20—C23—H23B109.5C42—C43—C44104.10 (17)
H23A—C23—H23B109.5C42—C43—H43A110.9
C20—C23—H23C109.5C44—C43—H43A110.9
H23A—C23—H23C109.5C42—C43—H43B110.9
H23B—C23—H23C109.5C44—C43—H43B110.9
C25—C24—C6111.85 (13)H43A—C43—H43B109.0
C25—C24—C31112.55 (13)O2—C44—C43104.63 (15)
C6—C24—C31111.60 (12)O2—C44—H44A110.8
C25—C24—H24106.8C43—C44—H44A110.8
C6—C24—H24106.8O2—C44—H44B110.8
C31—C24—H24106.8C43—C44—H44B110.8
C26—C25—C30118.06 (15)H44A—C44—H44B108.9
O2—Al1—O1—C1172.5 (5)C17—C18—C19—C140.9 (3)
C39—Al1—O1—C161.9 (5)C5—C4—C20—C21120.32 (18)
C37—Al1—O1—C176.1 (5)C3—C4—C20—C2160.0 (2)
Al1—O1—C1—C6111.1 (5)C5—C4—C20—C231.3 (2)
Al1—O1—C1—C270.9 (6)C3—C4—C20—C23178.41 (15)
O1—C1—C2—C3177.62 (14)C5—C4—C20—C22120.51 (17)
C6—C1—C2—C30.4 (2)C3—C4—C20—C2259.20 (19)
O1—C1—C2—C71.5 (2)C5—C6—C24—C25105.73 (17)
C6—C1—C2—C7176.60 (13)C1—C6—C24—C2571.32 (18)
C1—C2—C3—C40.4 (2)C5—C6—C24—C3121.4 (2)
C7—C2—C3—C4175.68 (14)C1—C6—C24—C31161.58 (14)
C2—C3—C4—C50.8 (2)C6—C24—C25—C2638.0 (2)
C2—C3—C4—C20179.51 (14)C31—C24—C25—C2688.63 (18)
C3—C4—C5—C60.3 (2)C6—C24—C25—C30143.55 (15)
C20—C4—C5—C6179.97 (14)C31—C24—C25—C3089.87 (18)
C4—C5—C6—C10.5 (2)C30—C25—C26—C271.5 (3)
C4—C5—C6—C24177.48 (14)C24—C25—C26—C27177.03 (16)
O1—C1—C6—C5177.22 (14)C25—C26—C27—C280.6 (3)
C2—C1—C6—C50.9 (2)C26—C27—C28—C290.4 (3)
O1—C1—C6—C240.1 (2)C27—C28—C29—C300.5 (3)
C2—C1—C6—C24178.00 (14)C28—C29—C30—C250.4 (3)
C3—C2—C7—C1431.4 (2)C26—C25—C30—C291.4 (2)
C1—C2—C7—C14152.54 (14)C24—C25—C30—C29177.18 (15)
C3—C2—C7—C895.71 (16)C25—C24—C31—C3622.4 (2)
C1—C2—C7—C880.35 (17)C6—C24—C31—C36104.31 (18)
C14—C7—C8—C13119.55 (16)C25—C24—C31—C32160.81 (15)
C2—C7—C8—C137.5 (2)C6—C24—C31—C3272.47 (19)
C14—C7—C8—C961.04 (19)C36—C31—C32—C331.1 (3)
C2—C7—C8—C9171.93 (15)C24—C31—C32—C33175.83 (15)
C13—C8—C9—C100.8 (3)C31—C32—C33—C340.5 (3)
C7—C8—C9—C10178.60 (18)C32—C33—C34—C351.6 (3)
C8—C9—C10—C110.6 (3)C33—C34—C35—C361.0 (3)
C9—C10—C11—C120.1 (3)C32—C31—C36—C351.7 (3)
C10—C11—C12—C130.1 (3)C24—C31—C36—C35175.07 (16)
C9—C8—C13—C120.6 (2)C34—C35—C36—C310.7 (3)
C7—C8—C13—C12178.82 (14)O1—Al1—O2—C4148.96 (14)
C11—C12—C13—C80.1 (3)C39—Al1—O2—C4169.03 (15)
C2—C7—C14—C1589.07 (17)C37—Al1—O2—C41168.09 (14)
C8—C7—C14—C15143.75 (14)O1—Al1—O2—C44144.71 (13)
C2—C7—C14—C1988.66 (17)C39—Al1—O2—C4497.30 (14)
C8—C7—C14—C1938.52 (19)C37—Al1—O2—C4425.59 (15)
C19—C14—C15—C160.1 (2)C44—O2—C41—C4219.2 (2)
C7—C14—C15—C16177.75 (15)Al1—O2—C41—C42148.89 (14)
C14—C15—C16—C170.2 (3)O2—C41—C42—C4334.7 (2)
C15—C16—C17—C180.1 (3)C41—C42—C43—C4437.4 (2)
C16—C17—C18—C190.6 (3)C41—O2—C44—C433.8 (2)
C15—C14—C19—C180.6 (2)Al1—O2—C44—C43171.65 (13)
C7—C14—C19—C18177.17 (14)C42—C43—C44—O225.7 (2)
 

Funding information

This work was partially supported by the TIPS RAS State Plan.

References

First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252–5261.  Web of Science CrossRef CAS Google Scholar
First citationDubois, P., Coulembier, O. & Raquez, J.-M. (2009). Handbook of ring-opening polymerization, pp. 1–408. Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNifant'ev, I. E., Minyaev, M. E., Shlyakhtin, A. V., Ivchenko, P. V. & Churakov, A. V. (2017a). Mendeleev Commun. 27, 341–343.  CAS Google Scholar
First citationNifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017b). Dalton Trans. 46, 12132–12146.  CAS PubMed Google Scholar
First citationNifant'ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106–111.  CAS Google Scholar
First citationSarazin, Y. & Carpentier, J.-F. (2015). Chem. Rev. 115, 3564–3614.  CrossRef CAS PubMed Google Scholar
First citationSearles, K., Carroll, P. J., Chen, Ch.-H., Pink, M. & Mindiola, D. J. (2015b). Chem. Commun. 51, 3526–3528.  CSD CrossRef CAS Google Scholar
First citationSearles, K., Carroll, P. J. & Mindiola, D. J. (2015a). Organometallics, 34, 4641–4643.  CSD CrossRef CAS Google Scholar
First citationSearles, K., Keijzer, K., Chen, Ch.-H., Baik, M.-H. & Mindiola, D. J. (2014b). Chem. Commun. 50, 6267–6269.  CSD CrossRef CAS Google Scholar
First citationSearles, K., Pinter, B., Chen, Ch.-H. & Mindiola, D. J. (2014a). Organometallics, 33, 4192–4199.  CSD CrossRef CAS Google Scholar
First citationSearles, K., Smith, K. T., Kurogi, T., Chen, Ch.-H., Carroll, P. J. & Mindiola, D. J. (2016). Angew. Chem. Int. Ed. 55, 6642–6645.  CSD CrossRef CAS Google Scholar
First citationSearles, K., Tran, B. L., Pink, M., Chen, Ch.-H. & Mindiola, D. J. (2013). Inorg. Chem. 52, 11126–11135.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolowey, D. P., Kurogi, T., Manor, B. C., Carroll, P. J. & Mindiola, D. J. (2016). Dalton Trans. 45, 15894–15901.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds