research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[di­chlorido­copper(II)]-{μ-tert-butyl N-methyl-N-[4-(6-{[4-(pyridin-2-yl-κN)-1H-1,2,3-triazol-1-yl-κN3]meth­yl}-1,3-benzo­thia­zol-2-yl)phen­yl]carbamato}] aceto­nitrile monosolvate]

CROSSMARK_Color_square_no_text.svg

aCNRS LCC, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, France
*Correspondence e-mail: emmanuel.gras@lcc-toulouse.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 December 2017; accepted 8 January 2018; online 12 January 2018)

In the title coordination polymer, {[CuCl2(C27H26N6O2S)]·CH3CN}n, the copper(II) ion is fivefold coordinated, with an almost perfect square-pyramidal coordination sphere. In the equatorial plane, it is ligated to a pyridine N atom and an N atom of the triazole unit and to two Cl ions, while the apical position is occupied by the carbonyl O atom of the tert-butyl carbamate group. In the crystal, the polymer chains propagate in the [11-1] direction, with the aceto­nitrile solvent mol­ecules linked to the chain by C—H⋯N hydrogen bonds. The chains are linked by C—H⋯Cl hydrogen bonds forming sheets parallel to the plane (011). The crystal packing is further consolidated by C—H⋯π inter­actions and offset ππ stacking inter­actions [inter­centroid distance = 3.6805 (15) Å], forming a three-dimensional supra­molecular structure.

1. Chemical context

Alzheimer's Disease (AD) is a neurodegenerative disease characterized by aggregation of amyloid peptide and extensive inflammation related to a strong oxidative stress (Cheignon et al., 2018[Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. & Collin, F. (2018). Redox Biology. 14, 450-464.]). Metals are known to play a key role in this oxidative stress and also to be associated with peptide aggregation, at the core of the pathology (Faller et al., 2013[Faller, P., Hureau, C. & Berthoumieu, O. (2013). Inorg. Chem. 52, 12193-12206.]; Viles, 2012[Viles, J. H. (2012). Coord. Chem. Rev. 256, 2271-2284.]). More specifically, CuII has been found to form a complex with the amyloid peptide for which aggregation is one of the major hallmarks of AD (Eury et al., 2011[Eury, H., Bijani, C., Faller, P. & Hureau, C. (2011). Angew. Chem. Int. Ed. 50, 901-905.]; Faller et al., 2014[Faller, P., Hureau, C. & La Penna, G. (2014). Acc. Chem. Res. 47, 2252-2259.]). This has triggered significant ongoing inter­est in the development of chelators able to inter­act with metals in the context of AD (Santos et al., 2016[Santos, M. A., Chand, K. & Chaves, S. (2016). Coord. Chem. Rev. 327-328, 287-303.]; Conte-Daban et al., 2017[Conte-Daban, A., Boff, B., Candido Matias, A., Aparicio, C. N. M., Gateau, C., Lebrun, C., Cerchiaro, G., Kieffer, I., Sayen, S., Guillon, E., Delangle, P. & Hureau, C. (2017). Chem. Eur. J. 23, 17078-17088.]).

In the course of our studies on the development of bifunctional mol­ecules able to target amyloid fibrils, for example via a 2-aryl­benzo­thia­zole core (Noel et al., 2013[Noël, S., Cadet, S., Gras, E. & Hureau, C. (2013). Chem. Soc. Rev. 42, 7747-7762.]), and inter­act with copper ions found within the senile plaques, we have designed and synthesized a benzo­thia­zole moiety decorated with a triazole-pyridine subunit, viz. tert-butyl meth­yl[4-(6-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl} benzo[d]thia­zol-2-yl]phen­yl}carbamate (L). Indeed integrating the N-binding from the triazole moiety in the binding site of a chelator has been shown to be a successful approach (Jones et al., 2012[Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910-920.], 2017[Jones, M. R., Mathieu, E., Dyrager, C., Faissner, S., Vaillancourt, Z., Korshavn, K. J., Lim, M. H., Ramamoorthy, A., Wee Yong, V., Tsutsui, S., Stys, P. K. & Storr, T. (2017). Chem. Sci. 8, 5636-5643.]). Compared to these seminal works, the additional aryl-benzo­thia­zole moiety in compound L is expected to enhance the ability of the chelator to inter­act with amyloid aggregates and thus to retrieve deleterious CuII ions from Aβ fibrils. Investigation of the ability to chelate CuII ions, by studying the reaction of L with CuCl2, led to the formation of the title coordination polymer whose synthesis and mol­ecular and crystal structures are described herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the asymmetric unit of the title coordination polymer is shown in Fig. 1[link]. Selected bond lengths and bond angles are given in Table 1[link]. The ligand is L-shaped with the benzo­thia­zole ring system (S1/N3/C2/C4–C9; r.m.s. deviation = 0.01 Å) being inclined to the triazole ring (N17-N197C20/C21) by 79.54 (12)°. The benzene ring is inclined to the benzo­thia­zole ring system by 12.27 (11)°, while the pyridine ring is inclined to the triazole ring by 4.07 (14)°. The copper(II) ion is fivefold coordinate with an almost perfect square-pyramidal coordination sphere. In the equatorial plane, the copper(II) ion coordinates the pyridine N atom N27 and atom N19 of the triazole unit and two Cl anions, while the apical position is occupied by the carbonyl O atom, O31, of the tert-butyl­oxycarbamate group. The τ5 descriptor for the fivefold coordination sphere is 0.08 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The triazole ring (N17–N19/C20/C21) exhibits a slightly shorter Cu1—N19 bond length [2.004 (2) Å] than the pyridine Cu1—-N27 bond length [2.054 (2) Å], yet no trans effect is observed as the two Cu—-Cl bond lengths are very close [2.2344 (7) and 2.2380 (7) Å]. These bond lengths are similar to those observed for a related complex, viz. di­chloro-(4-{2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]eth­yl}morpholine)­copper(II) (Jones et al., 2012[Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910-920.]).

Table 1
Selected geometric parameters (Å, °)

Cu1—O31i 2.508 (2) Cu1—Cl1 2.2344 (7)
Cu1—N19 2.004 (2) Cu1—Cl2 2.2380 (7)
Cu1—N27 2.054 (2)    
       
Cl1—Cu1—N19 168.01 (7) Cl2—Cu1—N27 172.70 (6)
Symmetry code: (i) x-1, y-1, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit of the title coordination polymer, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The H atoms have been omitted for clarity. [Symmetry codes: (i) x − 1, y − 1, z + 1; (ii) x + 1, y + 1, z − 1.]

3. Supra­molecular features

In the crystal, the polymer chains propagate in the [11[\overline{1}]] direction (Fig. 2[link]). They are linked by C—H⋯Cl hydrogen bonds, forming sheets parallel to (011); see Fig. 3[link] and Table 2[link]. The aceto­nitrile solvent mol­ecules are linked to the polymer chains within the network by C—H⋯N hydrogen bonds (Figs. 2[link] and 3[link]; Table 2[link]). The crystal packing is further consolidated by C—H⋯π inter­actions (Table 2[link]) and offset ππ stacking inter­actions, forming a three-dimensional supra­molecular structure (Fig. 4[link]). The offset ππ inter­actions involve inversion-related triazole and pyridine rings with inter­planar distances of 3.3848 (11) and 3.300 (1) Å [Cg3⋯Cg4i = 3.6805 (15) Å, α = 4.07 (14)°, slippages are 1.63 and 1.45 Å; Cg3 and Cg4 are the centroids of rings N17–N19/C20/C21 and N27/C22–C26, respectively; symmetry code: (i) −x, −y − 1, −z + 2].

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H162⋯N39ii 0.97 2.52 3.451 (6) 161
C16—H161⋯Cl2iii 0.97 2.72 3.606 (3) 152
C21—H211⋯Cl1iii 0.94 2.81 3.633 (3) 147
C23—H231⋯Cl1iii 0.94 2.62 3.494 (3) 155
C26—H261⋯Cl1 0.94 2.55 3.154 (3) 122
C29—H291⋯Cl2iv 0.95 2.80 3.741 (3) 172
C25—H251⋯Cgv 0.94 2.85 3.583 (3) 135
Symmetry codes: (ii) -x, -y, -z+2; (iii) x+1, y, z; (iv) x+1, y+1, z-1; (v) -x, -y-1, -z+2.
[Figure 2]
Figure 2
A view along the a axis of the aceto­nitrile solvent mol­ecules (ball and stick) linked to the polymer chains, that propagate along direction [11[\overline{1}]], via a C—H⋯N hydrogen bond (see Table 2[link] for details). Other H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds (dashed lines; see Table 2[link] for details) forming sheets parallel to (011). H atoms not involved in these inter­actions have been omitted.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 2[link] for details). H atoms not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for pyridine-triazole copper(II) dichloride complexes gave seven hits. Two of these compounds have a similar geometry involving the copper(II) atom, viz. di­chloro-(4-{2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]eth­yl}morpholine)­copper(II) (CSD refcode MEHHEO; Jones et al., 2012[Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910-920.]) and bis­(μ-chloro)­dichloro-bis­(2-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl}benzo­nitrile)di-copper (UMIYEW; Bai et al., 2016[Bai, S.-Q., Jiang, L., Young, D. J. & Hor, T. S. A. (2016). Aust. J. Chem. 69, 372-378.]). As in the title compound (see Table 1[link]), the CuII ions have fivefold coordin­ation spheres with a square-pyramidal geometry. In addition, the Cu—Npyridine bond lengths [2.063 (3) and 2.075 (2) Å, respectively] are slightly longer than the Cu—Ntriazole bond lengths [2.024 (3) and 2.005 (3) Å, respectively], while the Cu—Cl bonds lengths are very similar in both complexes [2.265 (1) and 2.242 (1) Å in MEHHEO, and 2.246 (1) and 2.264 (1) Å in UMIYEW]. However, both of these compounds are binuclear complexes, possessing inversion symmetry, with bis­(μ-chloro) Cl anions bridging the metal ions.

5. Synthesis and crystallization

The synthesis of the ligand, tert-butyl meth­yl[4-(6-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl}benzo[d]thia­zol-2-yl)phen­yl]carbamate (L), was performed according to literature precedents (Noel et al., 2013[Noël, S., Cadet, S., Gras, E. & Hureau, C. (2013). Chem. Soc. Rev. 42, 7747-7762.]; Jones et al., 2012[Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910-920.]). A mixture of 15 mg of L dissolved in 1 ml of aceto­nitrile, and 1.1 equiv. of CuCl2 dissolved in 10 ml of a mixture aceto­nitrile/H2O (6/3) was heated to 353 K. The mixture was cooled at room temperature, allowing a precipitate to form. The supernatant was removed and the precipitate was dissolved with a minimum volume of hot aceto­nitrile, filtered and left at room temperature in a closed vessel producing overnight pale-green plate-like crystals.

[Scheme 2]

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were all located in difference-Fourier maps, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms], after which the positions were refined with riding constraints (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

Table 3
Experimental details

Crystal data
Chemical formula [CuCl2(C27H26N6O2S)]·CH3CN
Mr 674.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.6374 (7), 13.1553 (10), 14.2243 (11)
α, β, γ (°) 73.755 (3), 73.863 (3), 84.226 (3)
V3) 1490.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.12 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.91, 0.98
No. of measured, independent and observed [I > 2.0σ(I)] reflections 26982, 5475, 4358
Rint 0.053
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.036, 1.05
No. of reflections 4062
No. of parameters 379
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Weighting scheme: Chebychev polynomial (Watkin, 1994[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96-106. New York: Springer-Verlag.]; Prince, 1982[Watkin, D. (1994). Acta Cryst. A50, 411-437.])

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

catena-Poly[[[dichloridocopper(II)]-{µ-tert-butyl N-methyl-N-[4-(6-{[4-(pyridin-2-yl-κN)-1H-1,2,3-triazol-1-yl-κN3]methyl}-1,3-benzothiazol-2-yl)phenyl]carbamato}] acetonitrile monosolvate] top
Crystal data top
[CuCl2(C27H26N6O2S)]·CH3CNZ = 2
Mr = 674.11F(000) = 694
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6374 (7) ÅCell parameters from 7700 reflections
b = 13.1553 (10) Åθ = 2–25°
c = 14.2243 (11) ŵ = 1.02 mm1
α = 73.755 (3)°T = 100 K
β = 73.863 (3)°Plate, pale green
γ = 84.226 (3)°0.12 × 0.09 × 0.02 mm
V = 1490.1 (2) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
4358 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.053
φ & ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 108
Tmin = 0.91, Tmax = 0.98k = 1515
26982 measured reflectionsl = 1717
5475 independent reflections
Refinement top
Refinement on FPrimary atom site location: other
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.036H-atom parameters constrained
S = 1.05 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.270 0.160 0.128
4062 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49721 (8)0.10533 (5)0.91493 (5)0.0178
Cu10.26343 (4)0.55390 (3)1.17008 (3)0.0153
Cl10.43826 (8)0.62080 (6)1.11470 (6)0.0283
C20.4057 (3)0.0195 (2)0.8788 (2)0.0166
Cl20.45219 (8)0.45258 (6)1.24664 (5)0.0241
N30.2719 (3)0.03835 (18)0.94172 (17)0.0182
C40.0978 (3)0.0538 (2)1.1089 (2)0.0198
C50.0743 (3)0.1456 (2)1.1862 (2)0.0184
C60.1821 (3)0.2326 (2)1.18434 (19)0.0154
C70.3190 (3)0.2270 (2)1.1035 (2)0.0168
C80.3417 (3)0.1348 (2)1.0253 (2)0.0157
C90.2337 (3)0.0477 (2)1.0261 (2)0.0164
C100.4785 (3)0.0928 (2)0.7807 (2)0.0167
C110.6322 (3)0.0724 (2)0.7241 (2)0.0196
C120.6982 (3)0.1394 (2)0.6295 (2)0.0218
C130.6083 (3)0.2264 (2)0.5891 (2)0.0205
C140.4567 (4)0.2492 (2)0.6463 (2)0.0226
C150.3921 (3)0.1834 (2)0.7420 (2)0.0197
C160.1480 (3)0.3355 (2)1.2670 (2)0.0176
N170.0898 (3)0.41369 (17)1.22896 (16)0.0142
N180.0676 (3)0.41805 (17)1.23796 (16)0.0156
N190.0798 (2)0.48723 (16)1.18938 (17)0.0149
C200.0688 (3)0.5257 (2)1.14907 (19)0.0143
C210.1801 (3)0.4783 (2)1.17465 (19)0.0165
C220.0753 (3)0.6034 (2)1.09231 (19)0.0153
C230.2169 (3)0.6451 (2)1.0407 (2)0.0177
C240.2065 (3)0.7194 (2)0.9903 (2)0.0206
C250.0551 (3)0.7488 (2)0.9927 (2)0.0191
C260.0798 (3)0.7017 (2)1.0431 (2)0.0171
N270.0723 (3)0.63013 (17)1.09261 (16)0.0145
N280.6716 (3)0.29292 (18)0.48943 (17)0.0230
C290.6889 (4)0.4067 (2)0.4767 (2)0.0320
C300.7287 (4)0.2548 (2)0.4066 (2)0.0228
O310.7877 (3)0.30981 (16)0.32214 (15)0.0289
O320.7071 (3)0.15044 (16)0.43036 (15)0.0304
C330.7874 (4)0.0873 (2)0.3586 (2)0.0286
C340.7093 (4)0.1108 (3)0.2724 (2)0.0303
C350.9671 (4)0.1073 (3)0.3221 (3)0.0478
C360.7533 (6)0.0256 (3)0.4247 (3)0.0546
C370.3253 (6)0.2890 (4)0.3651 (4)0.0763
C380.1812 (5)0.2908 (3)0.4432 (3)0.0502
N390.0648 (6)0.2875 (4)0.5048 (4)0.0862
H410.02460.00451.11190.0245*
H510.01720.15041.24370.0226*
H710.39460.28571.10260.0214*
H1110.69400.01220.75110.0246*
H1210.80460.12700.59250.0270*
H1410.39700.30950.61930.0274*
H1510.28920.20010.78070.0247*
H1610.24620.36401.28650.0221*
H1620.06550.32341.32530.0219*
H2110.29250.48691.16010.0196*
H2310.31740.62241.04000.0224*
H2410.29970.75030.95460.0264*
H2510.04390.79980.95990.0235*
H2610.18290.71911.04270.0217*
H2910.64930.44830.42170.0499*
H2920.63000.42750.53700.0497*
H2930.80100.42300.46550.0508*
H3410.76190.06740.22660.0456*
H3420.59700.09360.29890.0468*
H3430.71960.18440.23620.0455*
H3511.01950.05710.28600.0706*
H3521.01200.09780.37940.0711*
H3530.99030.17840.27840.0709*
H3610.79250.03720.48380.0841*
H3620.80640.07390.38550.0839*
H3630.63760.03560.44450.0840*
H3710.39410.23120.39080.1152*
H3720.37740.35540.34570.1152*
H3730.29560.27690.30770.1154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (3)0.0172 (3)0.0189 (3)0.0004 (2)0.0021 (3)0.0046 (3)
Cu10.01124 (16)0.01627 (17)0.02098 (18)0.00100 (12)0.00448 (12)0.00854 (13)
Cl10.0169 (3)0.0348 (4)0.0440 (4)0.0014 (3)0.0124 (3)0.0236 (3)
C20.0181 (13)0.0180 (13)0.0193 (13)0.0008 (10)0.0095 (11)0.0091 (11)
Cl20.0161 (3)0.0283 (4)0.0327 (4)0.0033 (3)0.0062 (3)0.0174 (3)
N30.0194 (11)0.0178 (11)0.0196 (12)0.0015 (9)0.0055 (9)0.0086 (10)
C40.0200 (13)0.0200 (14)0.0228 (14)0.0015 (11)0.0054 (11)0.0121 (12)
C50.0191 (13)0.0198 (14)0.0191 (13)0.0021 (10)0.0042 (11)0.0098 (11)
C60.0170 (12)0.0169 (13)0.0166 (13)0.0047 (10)0.0069 (10)0.0073 (11)
C70.0160 (12)0.0177 (13)0.0206 (14)0.0011 (10)0.0064 (11)0.0094 (11)
C80.0130 (12)0.0187 (13)0.0191 (13)0.0032 (10)0.0049 (10)0.0090 (11)
C90.0169 (12)0.0175 (13)0.0187 (13)0.0023 (10)0.0063 (10)0.0087 (11)
C100.0201 (13)0.0158 (13)0.0184 (13)0.0029 (10)0.0073 (11)0.0077 (11)
C110.0207 (13)0.0217 (14)0.0188 (14)0.0003 (11)0.0075 (11)0.0071 (11)
C120.0218 (14)0.0259 (15)0.0192 (14)0.0016 (11)0.0054 (11)0.0082 (12)
C130.0286 (15)0.0157 (13)0.0188 (14)0.0040 (11)0.0058 (11)0.0064 (11)
C140.0311 (15)0.0185 (14)0.0210 (14)0.0044 (12)0.0105 (12)0.0081 (12)
C150.0224 (14)0.0198 (14)0.0192 (14)0.0009 (11)0.0042 (11)0.0106 (11)
C160.0187 (13)0.0189 (13)0.0182 (13)0.0012 (10)0.0053 (11)0.0088 (11)
N170.0147 (10)0.0149 (11)0.0140 (11)0.0031 (8)0.0031 (8)0.0050 (9)
N180.0148 (10)0.0149 (11)0.0172 (11)0.0030 (8)0.0029 (9)0.0046 (9)
N190.0137 (10)0.0113 (10)0.0194 (11)0.0010 (8)0.0043 (9)0.0031 (9)
C200.0131 (12)0.0139 (12)0.0147 (12)0.0010 (10)0.0024 (10)0.0029 (10)
C210.0166 (12)0.0180 (13)0.0161 (13)0.0004 (10)0.0037 (10)0.0072 (11)
C220.0163 (12)0.0146 (13)0.0159 (13)0.0012 (10)0.0074 (10)0.0019 (10)
C230.0154 (12)0.0202 (13)0.0205 (14)0.0019 (10)0.0069 (11)0.0087 (11)
C240.0219 (14)0.0192 (14)0.0215 (14)0.0025 (11)0.0064 (11)0.0068 (11)
C250.0266 (14)0.0140 (13)0.0187 (14)0.0005 (11)0.0074 (11)0.0062 (11)
C260.0202 (13)0.0152 (12)0.0176 (13)0.0030 (10)0.0069 (11)0.0044 (11)
N270.0169 (11)0.0148 (11)0.0125 (11)0.0016 (9)0.0057 (9)0.0025 (9)
N280.0349 (14)0.0170 (12)0.0162 (12)0.0019 (10)0.0036 (10)0.0052 (10)
C290.053 (2)0.0167 (14)0.0221 (15)0.0005 (14)0.0055 (14)0.0035 (12)
C300.0293 (15)0.0183 (14)0.0213 (15)0.0010 (12)0.0069 (12)0.0057 (12)
O310.0433 (13)0.0218 (11)0.0165 (10)0.0017 (9)0.0011 (9)0.0033 (9)
O320.0522 (14)0.0183 (10)0.0181 (10)0.0036 (9)0.0013 (9)0.0078 (8)
C330.0434 (18)0.0222 (15)0.0241 (16)0.0037 (13)0.0105 (14)0.0125 (13)
C340.0380 (17)0.0315 (17)0.0265 (16)0.0045 (14)0.0108 (14)0.0125 (13)
C350.040 (2)0.054 (2)0.068 (3)0.0172 (17)0.0253 (19)0.042 (2)
C360.110 (4)0.0202 (17)0.037 (2)0.0028 (19)0.023 (2)0.0102 (15)
C370.051 (3)0.056 (3)0.084 (4)0.005 (2)0.021 (2)0.004 (3)
C380.038 (2)0.058 (3)0.049 (2)0.0078 (18)0.0059 (19)0.015 (2)
N390.073 (3)0.099 (4)0.072 (3)0.013 (3)0.005 (2)0.029 (3)
Geometric parameters (Å, º) top
S1—C21.754 (3)C20—C211.373 (4)
S1—C81.736 (3)C20—C221.458 (4)
Cu1—O31i2.508 (2)C21—H2110.937
Cu1—N192.004 (2)C22—C231.388 (4)
Cu1—N272.054 (2)C22—N271.355 (3)
Cu1—Cl12.2344 (7)C23—C241.386 (4)
Cu1—Cl22.2380 (7)C23—H2310.943
C2—N31.300 (3)C24—C251.390 (4)
C2—C101.468 (4)C24—H2410.946
N3—C91.387 (4)C25—C261.377 (4)
C4—C51.375 (4)C25—H2510.943
C4—C91.403 (4)C26—N271.339 (3)
C4—H410.947C26—H2610.944
C5—C61.402 (4)N28—C291.474 (4)
C5—H510.959N28—C301.356 (4)
C6—C71.393 (4)C29—H2910.949
C6—C161.516 (4)C29—H2920.964
C7—C81.385 (4)C29—H2930.973
C7—H710.961C30—O311.214 (3)
C8—C91.403 (4)C30—O321.338 (3)
C10—C111.392 (4)O32—C331.476 (3)
C10—C151.401 (4)C33—C341.503 (4)
C11—C121.386 (4)C33—C351.518 (5)
C11—H1110.959C33—C361.526 (5)
C12—C131.395 (4)C34—H3410.974
C12—H1210.948C34—H3420.963
C13—C141.390 (4)C34—H3430.962
C13—N281.431 (4)C35—H3510.952
C14—C151.389 (4)C35—H3520.969
C14—H1410.948C35—H3530.972
C15—H1510.948C36—H3610.960
C16—N171.473 (3)C36—H3620.961
C16—H1610.973C36—H3630.972
C16—H1620.971C37—C381.422 (6)
N17—N181.336 (3)C37—H3710.970
N17—C211.352 (3)C37—H3720.957
N18—N191.315 (3)C37—H3730.977
N19—C201.362 (3)C38—N391.131 (6)
C2—S1—C889.01 (13)C20—C21—N17103.8 (2)
O31i—Cu1—Cl1107.68 (6)C20—C21—H211130.3
O31i—Cu1—Cl2100.13 (5)N17—C21—H211125.8
Cl1—Cu1—Cl293.31 (3)C20—C22—C23124.4 (2)
O31i—Cu1—N1980.21 (8)C20—C22—N27113.2 (2)
Cl1—Cu1—N19168.01 (7)C23—C22—N27122.4 (2)
Cl2—Cu1—N1994.14 (6)C22—C23—C24118.6 (2)
O31i—Cu1—N2783.26 (8)C22—C23—H231119.9
Cl1—Cu1—N2791.79 (6)C24—C23—H231121.5
Cl2—Cu1—N27172.70 (6)C23—C24—C25119.0 (2)
N19—Cu1—N2780.00 (8)C23—C24—H241121.6
S1—C2—N3115.9 (2)C25—C24—H241119.5
S1—C2—C10119.49 (19)C24—C25—C26118.9 (2)
N3—C2—C10124.6 (2)C24—C25—H251121.0
C2—N3—C9110.5 (2)C26—C25—H251120.0
C5—C4—C9118.8 (3)C25—C26—N27123.0 (2)
C5—C4—H41120.6C25—C26—H261119.4
C9—C4—H41120.6N27—C26—H261117.6
C4—C5—C6121.8 (3)C22—N27—C26118.0 (2)
C4—C5—H51119.6C22—N27—Cu1115.25 (17)
C6—C5—H51118.6C26—N27—Cu1126.77 (18)
C5—C6—C7120.1 (2)C13—N28—C29118.9 (2)
C5—C6—C16120.9 (2)C13—N28—C30122.9 (2)
C7—C6—C16119.0 (2)C29—N28—C30118.0 (2)
C6—C7—C8118.0 (2)N28—C29—H291110.7
C6—C7—H71120.5N28—C29—H292111.1
C8—C7—H71121.5H291—C29—H292108.1
S1—C8—C7128.5 (2)N28—C29—H293110.9
S1—C8—C9109.2 (2)H291—C29—H293109.6
C7—C8—C9122.3 (2)H292—C29—H293106.3
C8—C9—C4119.0 (2)N28—C30—O31123.7 (3)
C8—C9—N3115.5 (2)N28—C30—O32111.1 (2)
C4—C9—N3125.5 (2)O31—C30—O32125.3 (3)
C2—C10—C11120.7 (2)Cu1ii—O31—C30146.2 (2)
C2—C10—C15120.1 (2)C30—O32—C33121.0 (2)
C11—C10—C15119.2 (2)O32—C33—C34109.9 (3)
C10—C11—C12120.6 (3)O32—C33—C35110.4 (2)
C10—C11—H111119.8C34—C33—C35112.3 (3)
C12—C11—H111119.5O32—C33—C36101.8 (2)
C11—C12—C13119.9 (3)C34—C33—C36110.6 (3)
C11—C12—H121120.5C35—C33—C36111.4 (3)
C13—C12—H121119.7C33—C34—H341109.0
C12—C13—C14119.8 (3)C33—C34—H342109.2
C12—C13—N28120.4 (2)H341—C34—H342109.1
C14—C13—N28119.7 (3)C33—C34—H343110.2
C13—C14—C15120.2 (3)H341—C34—H343109.5
C13—C14—H141119.7H342—C34—H343109.8
C15—C14—H141120.1C33—C35—H351109.2
C10—C15—C14120.1 (3)C33—C35—H352110.3
C10—C15—H151120.3H351—C35—H352107.5
C14—C15—H151119.6C33—C35—H353112.0
C6—C16—N17109.6 (2)H351—C35—H353109.2
C6—C16—H161110.1H352—C35—H353108.5
N17—C16—H161108.3C33—C36—H361110.0
C6—C16—H162109.9C33—C36—H362108.5
N17—C16—H162108.7H361—C36—H362110.0
H161—C16—H162110.3C33—C36—H363108.6
C16—N17—N18119.7 (2)H361—C36—H363110.1
C16—N17—C21127.2 (2)H362—C36—H363109.6
N18—N17—C21112.7 (2)C38—C37—H371108.2
N17—N18—N19105.46 (19)C38—C37—H372109.3
N18—N19—Cu1134.95 (17)H371—C37—H372110.9
N18—N19—C20110.4 (2)C38—C37—H373107.7
Cu1—N19—C20114.51 (16)H371—C37—H373109.9
N19—C20—C21107.6 (2)H372—C37—H373110.6
N19—C20—C22116.9 (2)C37—C38—N39176.6 (5)
C21—C20—C22135.4 (2)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C16—H162···N39iii0.972.523.451 (6)161
C16—H161···Cl2iv0.972.723.606 (3)152
C21—H211···Cl1iv0.942.813.633 (3)147
C23—H231···Cl1iv0.942.623.494 (3)155
C26—H261···Cl10.942.553.154 (3)122
C29—H291···Cl2ii0.952.803.741 (3)172
C25—H251···Cgv0.942.853.583 (3)135
Symmetry codes: (ii) x+1, y+1, z1; (iii) x, y, z+2; (iv) x+1, y, z; (v) x, y1, z+2.
 

Funding information

The French Alzheimer Association is gratefully acknowledged for its financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBai, S.-Q., Jiang, L., Young, D. J. & Hor, T. S. A. (2016). Aust. J. Chem. 69, 372–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. & Collin, F. (2018). Redox Biology. 14, 450–464.  Web of Science CrossRef CAS PubMed Google Scholar
First citationConte-Daban, A., Boff, B., Candido Matias, A., Aparicio, C. N. M., Gateau, C., Lebrun, C., Cerchiaro, G., Kieffer, I., Sayen, S., Guillon, E., Delangle, P. & Hureau, C. (2017). Chem. Eur. J. 23, 17078–17088.  Web of Science CAS PubMed Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEury, H., Bijani, C., Faller, P. & Hureau, C. (2011). Angew. Chem. Int. Ed. 50, 901–905.  Web of Science CrossRef CAS Google Scholar
First citationFaller, P., Hureau, C. & Berthoumieu, O. (2013). Inorg. Chem. 52, 12193–12206.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaller, P., Hureau, C. & La Penna, G. (2014). Acc. Chem. Res. 47, 2252–2259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, M. R., Mathieu, E., Dyrager, C., Faissner, S., Vaillancourt, Z., Korshavn, K. J., Lim, M. H., Ramamoorthy, A., Wee Yong, V., Tsutsui, S., Stys, P. K. & Storr, T. (2017). Chem. Sci. 8, 5636–5643.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910–920.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoël, S., Cadet, S., Gras, E. & Hureau, C. (2013). Chem. Soc. Rev. 42, 7747–7762.  Web of Science PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96–106. New York: Springer-Verlag.  Google Scholar
First citationSantos, M. A., Chand, K. & Chaves, S. (2016). Coord. Chem. Rev. 327–328, 287–303.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViles, J. H. (2012). Coord. Chem. Rev. 256, 2271–2284.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds