research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, X-ray diffraction and Hirshfeld surface analysis of two new hybrid dihydrate compounds: (C6H22N4)[SnCl6]Cl2·2H2O and (C8H24N4)[SnCl6]Cl2·2H2O

CROSSMARK_Color_square_no_text.svg

aDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université des Frères Mentouri Constantine, 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 December 2017; accepted 17 January 2018; online 26 January 2018)

Two new organic–inorganic hybrid compounds, tri­ethyl­ene­tetra­ammonium hexa­chlorido­stannate (IV) dichloride dihydrate, (C6H22N4)[SnCl6]Cl2·2H2O, (I), and 1,4-bis­(2-ammonio­eth­yl)piperazin-1,4-diium hexa­chlorido­stannate (IV) dichloride dihydrate, (C8H24N4)[SnCl6]Cl2·2H2O, (II), have been synthesized from the same starting materials. In each case both the cations and anions are located about inversion centers. Their crystal structures exhibits alternating inorganic and organic stacking sheets in (I) and layers in (II), with Cl ions and water mol­ecules occupying the space in between. The cohesion of the three-dimensional frameworks are governed by N—H⋯Cl, N—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds. Hirshfeld surface analysis of both crystal structures indicates that the H⋯Cl/Cl⋯H contacts exert an important influence on the stabilization of the packing.

1. Chemical context

The introduction of organic components into inorganic systems, to form organic–inorganic hybrid materials, has attracted considerable attention since one would expect new properties that are absent in either of their building blocks (Boopathi et al., 2017[Boopathi, K., Babu, S. M., Jagan, R. & Ramasamy, P. (2017). J. Phys. Chem. Solids, 111, 419-430.]; Newman et al., 1989[Newman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. & Lowe-Ma, C. K. (1989). MRS Proc. 173, 557-561.]; Chun & Jung, 2009[Chun, H. & Jung, H. (2009). Inorg. Chem. 48, 417-419.]). Moreover, halogenostannate hybrid compounds containing protonated amine cations have received considerable attention thanks to their inter­esting physical and chemical properties, such as magnetic, electroluminescence, photoluminescence and conductivity, which could lead to technological innovations (Aruta et al., 2005[Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963-968.]; Chouaib et al., 2015[Chouaib, H. & Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218-225.]; Papavassiliou et al., 1999[Papavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265-271.]; Yin & Yo, 1998[Yin, R. Z. & Yo, C. H. (1998). Bull. Korean Chem. Soc. 19, 947-951.]). Their structures are generally characterized by isolated or connected chains or clusters of MX6 octa­hedra separated by the cations.

In this category of materials, the organic moieties, balancing the negative charge on the inorganic parts, usually act as structure-directing agents and greatly affect the structure and the dimensionality of the supra­molecular framework (Díaz et al., 2006[Díaz, P., Benet-Buchholz, J., Vilar, R. & White, A. J. P. (2006). Inorg. Chem. 45, 1617-1626.]; Hannon et al., 2002[Hannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. & Alcock, N. W. (2002). Chem. Eur. J. 8, 2225-2238.]). Furthermore, the experimental conditions employed, such as the solvent, temperature and crystallization method, can also have an important impact on the structure of the final assembly.

As an extension of our previous studies on hybrid N-containing organic halogenometalate materials (Bouacida et al., 2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]; Bouchene et al., 2014[Bouchene, R., Bouacida, S., Berrah, F. & Roisnel, T. (2014). Acta Cryst. C70, 672-676.]), a flexible aliphatic amino template, tri­ethyl­ene­tetra­amine (TETA), was reacted with SnCl2 in HCl-acidified aqueous solution. By controlling the temperature, two new organic–inorganic hybrid compounds, tri­ethyl­ene­tetra­ammonium hexa­chlorido­stannate(IV) dichloride dihydrate, (C6H22N4)[SnCl6]Cl2·2H2O (I)[link], and 1,4-bis­(2-ammonio­eth­yl)piperazin-1,4-ium, hexa­chlorido­stannate (IV) dichloride dihydrate, (C8H24N4)[SnCl6]Cl2·2H2O (II)[link], were obtained.

[Scheme 1]

Commercial tri­ethyl­ene­tetra­mine is a mixture of linear TETA (typically 60%) and other branched or cyclic TETA, with close boiling points, such as tris-(2-amino­eth­yl)amine), 1,4-bis­(2-amino­eth­yl)piperazine, (Bis AEP), and N-[(2-amino­eth­yl)2-amino­eth­yl]piperazine). Piperazine derivatives are relatively more volatile than the corresponding linear polyethyl­ene amines (Hutchinson et al., 1945[Hutchinson, W. M., Collett, A. R. & Lazzell, C. L. (1945). J. Am. Chem. Soc. 67, 1966-1968.]).

The syntheses of (I)[link] and (II)[link] were carried out with the same starting materials but under different reaction temperatures [343 K for (I)[link] and room temperature for (II)]. Surprinsingly, compound (II)[link] was obtained from the reaction of cyclic 1,4-bis­(2-amino­eth­yl)piperazine mol­ecules with SnCl2 salt. Under very mild reaction conditions, we believe that (Bis AEP) is present as an impurity in commercial TETA based on the fact that rearrangement reactions of aliphatic chelating polyamines require high pressure and temperature (Liu et al., 2015[Liu, G., Shi, J., Han, X. J., Zhang, X., Li, K., Li, J., Zhang, T., Liu, Q. S., Zhang, Z. W. & Li, C. C. (2015). Dalton Trans. 44, 12561-12575.]). Similar undesired reactions have occurred with the same organic cation (Cukrowski et al., 2012[Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2388.]; Junk & Smith, 2005[Junk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189-198.]; Jiang et al., 2009[Jiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue, 28, 723-729.]; Ye et al., 2002[Ye, M.-D., Hu, M.-L., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1008-o1009.]).

2. Structural commentary

The asymmetric unit of (I)[link] consists of one half of a [TETA]4+ cation, one half of an inorganic [SnCl6]2- dianion, one Cl ion and one mol­ecule of water (Fig. 1[link]). The [TETA]4+ cation is located about a center of symmetry situated at the middle of the central –CH2—CH2– bond. The hexa­chlorido­stannate(IV) dianion [SnCl6]2−, lying on a centre of inversion, exhibits a nearly perfect octa­hedral coordination sphere with Sn—Cl bond lengths ranging from 2.4114 (6) to 2.4469 (6) Å and Cl—Sn—Cl bond angles between 88.94 (2) and 91.06 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom-numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. Only one Cl anion and one water mol­ecule are shown. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 1, −y + 1, −z + 1.]

The asymmetric unit of compound (II)[link] contains one half of a [Bis AEP]4+ cation, one independent mol­ecule of water, one Cl ion and half of an [SnCl6]2−dianion lying on a centre of inversion (Fig. 2[link]). The [Bis AEP]4+ cation is also located about a center of symmetry situated at the center of the piperazin-1,4-diium ring. The nearly perfect octa­hedral coordination around the SnIV atom is characterized by Sn—Cl bond lengths varying from 2.4265 (6) to 2.4331 (6) Å and Cl—Sn—Cl bond angles ranging from 88.55 (2) to 91.45 (2)° for the cis angles [180° for trans angles]. The organic part is totally protonated and the piperazinium portion adopts a chair conformation, with both ammonio­ethyl groups being in equatorial positions.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom-numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. Only one Cl anion and one water mol­ecule are shown. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

The crystal structure of (I)[link] has an arrangement that can be described as alternating organic [TETA]4+ and inorganic [SnCl6]2− sheets extending along the a-axis direction. The organic cations in adjacent chains are oriented in opposite directions, forming anti­parallel sheets. The isolated chloride ions Cl and the water mol­ecules are located in the otherwise empty space between the sheets (Fig. 3[link]).

[Figure 3]
Figure 3
Projection of the crystal packing of (I)[link] wit dashed lines representing hydrogen bonds.

The crystal packing of (I)[link] is supported by N—H⋯Cl, N—H⋯OW and C—H⋯Cl hydrogen-bonding inter­actions (Table 1[link]). The NH3+ group as well as the NH2+ group of [TETA]4+ act as hydrogen-bond donors. The DA distances for the NH3+ group range from 2.980 (4) to 3.255 (3) Å, while DA distances of 3.026 (2) to 3.452 (2) Å are found for the NH2+ group. The water mol­ecules play an important role in stabilizing the crystal packing of (I)[link] because of their strong ability to form hydrogen bonds with both hydrogen-bond donors and acceptors. By acting as hydrogen-bond donors, they bridge isolated Cl anions and [SnCl6]2− dianions via O1W—H1W⋯Cl4 and O1W–-H2W⋯Cl2 hydrogen bonds with a H⋯Cl distances of 2.60 (5) and 2.82 (5) Å, respectively. Additionally, by playing the role of acceptors, the water mol­ecules link the inorganic moieties with the organic cations through N1+—H1B⋯O1W and N1+—H1C⋯O1W charge-assisted hydrogen bonds with H⋯O distances of 2.09 and 2.25 Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4 0.89 2.30 3.172 (2) 167
N1—H1B⋯O1W 0.89 2.09 2.980 (4) 179
N1—H1C⋯Cl1i 0.89 2.75 3.255 (3) 117
N1—H1C⋯O1Wii 0.89 2.25 3.037 (4) 147
O1W—H1W⋯Cl4iii 0.75 (4) 2.60 (5) 3.281 (3) 151 (4)
O1W—H2W⋯Cl2i 0.72 (5) 2.82 (5) 3.422 (3) 144 (4)
N4—H4A⋯Cl2ii 0.90 2.50 3.2225 (19) 138
N4—H4A⋯Cl1iv 0.90 2.75 3.452 (2) 136
N4—H4B⋯Cl4 0.90 2.13 3.026 (2) 173
C5—H5B⋯Cl1v 0.97 2.76 3.445 (3) 128
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

In (II)[link], the isolated chloride ions, located between the [Bis AEP]4+ cations, are joined to their adjacent water mol­ecules through strong OW—H⋯Cl hydrogen bonds, leading to a hydrogen-bonding pattern with a R24(8) ring motif. The resulting rings, comprising N1+—H1B⋯O1W and C6—H5B⋯Cl4 hydrogen bonds, promote the formation of sheets of cations aligned parallel to the ([\overline{1}] 1 0) plane (Table 2[link], Fig. 4[link]). These sheets are linked to each other by charge-assisted iminium-N4+—H4⋯Cl4 hydrogen bonds, leading to the formation of organic layers parallel to the ab plane. The inorganic layers are built up from isolated [SnCl6]2− octa­hedra and alternate with the organic planes along the c-axis direction. Each anion is hydrogen bonded to adjacent organic cations through atoms N1 and C2 acting as donors of N—H⋯Cl and C—H⋯Cl hydrogen bonds with N⋯Cl distances varying from 3.343 (2) to 3.431 (2) Å and the C⋯Cl distances of 3.715 (3) Å.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3i 0.89 2.71 3.397 (2) 134
N1—H1A⋯Cl2ii 0.89 2.81 3.431 (2) 128
N1—H1B⋯Cl1iii 0.89 2.47 3.343 (2) 167
N1—H1C⋯O1Wi 0.89 1.92 2.769 (4) 158
O1W—H1W⋯Cl4iv 0.83 (2) 2.30 (3) 3.079 (3) 158 (6)
O1W—H2W⋯Cl4 0.83 (4) 2.67 (5) 3.246 (3) 128 (5)
N4—H4⋯Cl4 0.85 (4) 2.24 (4) 3.073 (2) 164 (3)
C2—H2B⋯Cl1 0.97 2.79 3.715 (3) 160
C6—H6A⋯Cl4v 0.97 2.70 3.506 (3) 141
Symmetry codes: (i) x-1, y-1, z; (ii) -x, -y, -z; (iii) -x, -y+1, -z; (iv) -x+1, -y+2, -z+1; (v) x+1, y, z.
[Figure 4]
Figure 4
Detail of the hydrogen-bonding inter­actions in the crystal structure of (II)[link]. Hydrogen bonds are shown as green dashed lines.

4. Hirshfeld surface analysis

The inter­molecular inter­actions of the obtained structures have been qu­anti­fied using Hirshfeld surface analysis. CrystalExplorer software (Wolff et al., 2007[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Crystal Explorer. University of Western Australia.]) was used to generate the Hirshfeld surface and two-dimensional fingerprint (FP) plots. The analysis of the inter­molecular inter­actions through the mapping of dnorm is permitted by the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. The surface mapped over dnorm displays red spots that correspond to contacts shorter than the sum of the van der Waals radii, as shown in Fig. 5[link].

[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm and two-dimensional fingerprint plots for compounds (I)[link] and (II)[link].

In compounds (I)[link] and (II)[link], isolated Cl atoms act as potential acceptors for hydrogen bonds; this explains why the greatest contribution to the Hirshfeld surface [65.9% for (I)[link] and 59.8% for (II)] is from the H⋯Cl/Cl⋯H contacts. As expected in organic compounds, the H⋯H contacts are the second important contribution, i.e. 24.8% and 30.7% for (I)[link] and (II)[link], respectively. It is evident that van der Waals forces exert an important influence on the stabilization of the packing in the crystal structure. Since both compounds are hydrated, the fingerprint plots also show H⋯O/O⋯H contacts that contribute less to the Hirshfeld surfaces, making contributions of 9.3 and 9.5%, respectively.

5. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no obvious analogues of (I)[link] and (II)[link] in the crystallographic literature. The structures of related hydrated salts with the same cations, i.e. tri­ethyl­ene­tetra­minium bis­(sulfate) monohydrate, (C6H22N4)SO4·H2O (III), and bis­(2-ammonio­eth­yl)piperazin-1,4-ium tetra­perchlorate tetra­hydrate, (C8H24N4)4ClO4·4H2O (IV), have been reported (Fu et al., 2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, o774-o775.]; Ye et al., 2002[Ye, M.-D., Hu, M.-L., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1008-o1009.]). Compound (III) was obtained indirectly by a hydro­thermal synthesis using a mixture of ferric sulfate nona­hydrate and tri­ethyl­ene­tetra­amine. The ionic product (IV) was also an unexpected product from the reaction between tri­ethyl­ene­tetra­mine and perchloric acid. The cationic portion of the structure adopts a chair conformation and the experimental distances are close to those for the neutral ligand.

6. Synthesis and crystallization

All chemicals were used without further purification. A solution of an aqueous mixture of tin chloride (SnCl2) and tetra­ethyl­ene­tetra­amine in an HCl-acidified medium with a stoichiometric ratio of 1:1 was refluxed for one h at 343 K for (I)[link] and room temperature for (II)[link]. After two weeks of slow solvent evaporation, single crystals suitable for X-ray analysis were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Approximate positions for all H atoms were first obtained from difference-Fourier maps. H atoms were then placed idealized positions and refined using the riding-atom approximation: C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). H atoms of the water mol­ecule were located in a difference-Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula (C6H22N4)[SnCl6]Cl2·2H2O (C8H24N4)[SnCl6]Cl2·2H2O
Mr 588.62 614.65
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 295 295
a, b, c (Å) 8.7573 (2), 12.8372 (3), 9.7103 (2) 7.0856 (2), 7.3269 (2), 12.1624 (4)
α, β, γ (°) 90, 107.265 (1), 90 93.614 (2), 101.357 (1), 117.021 (2)
V3) 1042.44 (4) 543.01 (3)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.26 2.17
Crystal size (mm) 0.12 × 0.04 × 0.03 0.13 × 0.12 × 0.11
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.871 0.745, 0.893
No. of measured, independent and observed [I > 2σ(I)] reflections 4666, 2394, 2133 4329, 2494, 2319
Rint 0.016 0.014
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.17 0.025, 0.064, 1.13
No. of reflections 2394 2494
No. of parameters 104 117
No. of restraints 0 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.84, −0.75 0.61, −0.65
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 199); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Triethylenetetraammonium hexachloridostannate(IV) dichloride dihydrate (I) top
Crystal data top
(C6H22N4)[SnCl6]Cl2·2H2OF(000) = 584
Mr = 588.62Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2499 reflections
a = 8.7573 (2) Åθ = 2.9–27.5°
b = 12.8372 (3) ŵ = 2.26 mm1
c = 9.7103 (2) ÅT = 295 K
β = 107.265 (1)°Needle, colorless
V = 1042.44 (4) Å30.12 × 0.04 × 0.03 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2394 independent reflections
Radiation source: Enraf Nonius FR5902133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.665, Tmax = 0.871l = 1212
4666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.023P)2 + 0.5523P]
where P = (Fo2 + 2Fc2)/3
2394 reflections(Δ/σ)max = 0.003
104 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.510.50.02085 (8)
Cl30.24253 (8)0.95074 (5)0.52198 (7)0.03506 (15)
Cl10.63022 (8)0.88957 (5)0.70418 (7)0.03609 (16)
Cl20.49558 (7)0.85219 (5)0.33975 (6)0.03185 (15)
N40.3155 (2)0.56699 (15)0.5183 (2)0.0258 (4)
H4A0.33990.55720.61410.031*
H4B0.24340.51820.47510.031*
C50.4621 (3)0.5521 (2)0.4738 (3)0.0339 (6)
H5A0.53760.60750.51360.041*
H5B0.43520.55520.36950.041*
O1W0.1031 (3)0.69980 (19)0.0541 (3)0.0483 (6)
H1W0.107 (5)0.657 (3)0.108 (5)0.072*
H2W0.183 (6)0.713 (3)0.054 (5)0.072*
Cl40.07323 (11)0.41040 (6)0.34986 (8)0.0520 (2)
N10.0113 (3)0.64761 (18)0.2588 (3)0.0431 (6)
H1A0.01670.57880.27010.065*
H1B0.02390.66290.16530.065*
H1C0.05570.67370.30320.065*
C20.1726 (3)0.69341 (19)0.3220 (3)0.0287 (5)
H2A0.16650.76810.30580.034*
H2B0.24460.66490.27260.034*
C30.2409 (3)0.67290 (18)0.4817 (3)0.0286 (5)
H3A0.3210.72540.5230.034*
H3B0.15610.68040.52650.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02192 (13)0.02125 (13)0.01970 (13)0.00032 (7)0.00668 (9)0.00003 (7)
Cl30.0287 (3)0.0335 (3)0.0469 (4)0.0049 (2)0.0173 (3)0.0010 (3)
Cl10.0401 (4)0.0393 (3)0.0293 (3)0.0120 (3)0.0110 (3)0.0106 (3)
Cl20.0358 (3)0.0287 (3)0.0298 (3)0.0001 (2)0.0079 (3)0.0077 (2)
N40.0284 (10)0.0262 (10)0.0225 (9)0.0025 (8)0.0069 (8)0.0012 (8)
C50.0337 (13)0.0328 (14)0.0399 (14)0.0088 (11)0.0181 (11)0.0088 (11)
O1W0.0394 (12)0.0462 (13)0.0578 (14)0.0046 (10)0.0122 (11)0.0039 (10)
Cl40.0690 (5)0.0346 (4)0.0455 (4)0.0195 (4)0.0064 (4)0.0031 (3)
N10.0338 (13)0.0401 (13)0.0473 (14)0.0031 (10)0.0002 (11)0.0069 (11)
C20.0270 (12)0.0276 (12)0.0308 (12)0.0023 (9)0.0073 (10)0.0040 (10)
C30.0335 (13)0.0245 (11)0.0281 (12)0.0051 (10)0.0094 (10)0.0020 (9)
Geometric parameters (Å, º) top
Sn1—Cl32.4114 (6)C5—H5B0.97
Sn1—Cl3i2.4114 (6)O1W—H1W0.75 (4)
Sn1—Cl12.4288 (6)O1W—H2W0.72 (4)
Sn1—Cl1i2.4288 (6)N1—C21.484 (3)
Sn1—Cl22.4469 (6)N1—H1A0.89
Sn1—Cl2i2.4469 (6)N1—H1B0.89
N4—C51.484 (3)N1—H1C0.89
N4—C31.505 (3)C2—C31.510 (3)
N4—H4A0.9C2—H2A0.97
N4—H4B0.9C2—H2B0.97
C5—C5ii1.512 (5)C3—H3A0.97
C5—H5A0.97C3—H3B0.97
Cl3—Sn1—Cl3i180C5ii—C5—H5A109.6
Cl3—Sn1—Cl189.97 (2)N4—C5—H5B109.6
Cl3i—Sn1—Cl190.03 (2)C5ii—C5—H5B109.6
Cl3—Sn1—Cl1i90.03 (2)H5A—C5—H5B108.1
Cl3i—Sn1—Cl1i89.97 (2)H1W—O1W—H2W109 (5)
Cl1—Sn1—Cl1i180C2—N1—H1A109.5
Cl3—Sn1—Cl290.81 (2)C2—N1—H1B109.5
Cl3i—Sn1—Cl289.19 (2)H1A—N1—H1B109.5
Cl1—Sn1—Cl288.94 (2)C2—N1—H1C109.5
Cl1i—Sn1—Cl291.06 (2)H1A—N1—H1C109.5
Cl3—Sn1—Cl2i89.19 (2)H1B—N1—H1C109.5
Cl3i—Sn1—Cl2i90.81 (2)N1—C2—C3113.2 (2)
Cl1—Sn1—Cl2i91.06 (2)N1—C2—H2A108.9
Cl1i—Sn1—Cl2i88.94 (2)C3—C2—H2A108.9
Cl2—Sn1—Cl2i180N1—C2—H2B108.9
C5—N4—C3113.62 (19)C3—C2—H2B108.9
C5—N4—H4A108.8H2A—C2—H2B107.8
C3—N4—H4A108.8N4—C3—C2114.31 (19)
C5—N4—H4B108.8N4—C3—H3A108.7
C3—N4—H4B108.8C2—C3—H3A108.7
H4A—N4—H4B107.7N4—C3—H3B108.7
N4—C5—C5ii110.3 (3)C2—C3—H3B108.7
N4—C5—H5A109.6H3A—C3—H3B107.6
C3—N4—C5—C5ii174.8 (3)N1—C2—C3—N481.1 (3)
C5—N4—C3—C266.8 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.892.303.172 (2)167
N1—H1B···O1W0.892.092.980 (4)179
N1—H1C···Cl1iii0.892.753.255 (3)117
N1—H1C···O1Wiv0.892.253.037 (4)147
O1W—H1W···Cl4v0.75 (4)2.60 (5)3.281 (3)151 (4)
O1W—H2W···Cl2iii0.72 (5)2.82 (5)3.422 (3)144 (4)
N4—H4A···Cl2iv0.902.503.2225 (19)138
N4—H4A···Cl1vi0.902.753.452 (2)136
N4—H4B···Cl40.902.133.026 (2)173
C5—H5B···Cl1vii0.972.763.445 (3)128
Symmetry codes: (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z; (vi) x+1, y1/2, z+3/2; (vii) x, y+3/2, z1/2.
1,4-Bis(2-ammonioethyl)piperazin-1,4-diium hexachloridostannate(IV) dichloride dihydrate (II) top
Crystal data top
(C8H24N4)[SnCl6]Cl2·2H2OZ = 1
Mr = 614.65F(000) = 306
Triclinic, P1Dx = 1.88 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0856 (2) ÅCell parameters from 5436 reflections
b = 7.3269 (2) Åθ = 2.9–27.5°
c = 12.1624 (4) ŵ = 2.17 mm1
α = 93.614 (2)°T = 295 K
β = 101.357 (1)°Cube, colorless
γ = 117.021 (2)°0.13 × 0.12 × 0.11 mm
V = 543.01 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2494 independent reflections
Radiation source: Enraf Nonius FR5902319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.745, Tmax = 0.893l = 1515
4329 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.025P)2 + 0.3256P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2494 reflectionsΔρmax = 0.61 e Å3
117 parametersΔρmin = 0.65 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50.500.02689 (10)
Cl30.78922 (11)0.66433 (10)0.17479 (5)0.04033 (16)
Cl40.17862 (10)0.75981 (9)0.44661 (6)0.03755 (16)
Cl10.30602 (10)0.66732 (10)0.06748 (5)0.03706 (15)
Cl20.31206 (12)0.19729 (9)0.08532 (6)0.04023 (16)
N40.2782 (3)0.3944 (3)0.42328 (16)0.0239 (4)
H40.238 (5)0.484 (5)0.440 (2)0.036*
C30.0936 (4)0.2192 (3)0.33497 (19)0.0269 (5)
H3A0.01760.13020.37090.032*
H3B0.14810.13610.30050.032*
O1W0.5368 (4)1.0237 (5)0.3102 (2)0.0736 (8)
H1W0.579 (9)1.068 (8)0.3794 (19)0.11*
H2W0.404 (4)0.939 (7)0.297 (5)0.11*
N10.1969 (4)0.1317 (3)0.16070 (19)0.0392 (5)
H1A0.15680.04260.13380.059*
H1B0.24510.18220.10350.059*
H1C0.30320.06620.1950.059*
C60.6631 (4)0.6818 (3)0.4703 (2)0.0275 (5)
H6A0.79090.74820.44040.033*
H6B0.61870.78490.48840.033*
C20.0067 (4)0.3044 (4)0.2435 (2)0.0314 (5)
H2A0.05310.39430.27860.038*
H2B0.10210.38640.20440.038*
C50.4795 (4)0.5058 (4)0.3805 (2)0.0284 (5)
H5A0.44390.5610.31360.034*
H5B0.52770.40780.35820.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03243 (14)0.02481 (13)0.02285 (14)0.01475 (10)0.00329 (9)0.00328 (8)
Cl30.0426 (3)0.0413 (3)0.0303 (3)0.0212 (3)0.0060 (3)0.0003 (3)
Cl40.0368 (3)0.0320 (3)0.0449 (4)0.0191 (3)0.0078 (3)0.0000 (3)
Cl10.0443 (3)0.0386 (3)0.0376 (3)0.0264 (3)0.0129 (3)0.0076 (3)
Cl20.0553 (4)0.0302 (3)0.0372 (3)0.0189 (3)0.0180 (3)0.0115 (2)
N40.0235 (9)0.0253 (9)0.0233 (9)0.0133 (7)0.0031 (7)0.0029 (7)
C30.0272 (10)0.0248 (10)0.0255 (11)0.0120 (9)0.0016 (9)0.0030 (8)
O1W0.0596 (15)0.087 (2)0.0444 (14)0.0113 (14)0.0113 (12)0.0132 (14)
N10.0456 (12)0.0386 (12)0.0278 (11)0.0211 (10)0.0039 (9)0.0011 (9)
C60.0258 (10)0.0277 (11)0.0275 (11)0.0114 (9)0.0058 (9)0.0100 (9)
C20.0314 (11)0.0276 (11)0.0281 (12)0.0116 (9)0.0007 (9)0.0035 (9)
C50.0271 (11)0.0342 (12)0.0242 (11)0.0146 (9)0.0070 (9)0.0072 (9)
Geometric parameters (Å, º) top
Sn1—Cl32.4265 (6)O1W—H2W0.836 (19)
Sn1—Cl3i2.4265 (6)N1—C21.479 (3)
Sn1—Cl1i2.4319 (6)N1—H1A0.89
Sn1—Cl12.4319 (6)N1—H1B0.89
Sn1—Cl22.4331 (6)N1—H1C0.89
Sn1—Cl2i2.4331 (6)C6—N4ii1.500 (3)
N4—C6ii1.500 (3)C6—C51.512 (3)
N4—C51.503 (3)C6—H6A0.97
N4—C31.503 (3)C6—H6B0.97
N4—H40.85 (3)C2—H2A0.97
C3—C21.520 (3)C2—H2B0.97
C3—H3A0.97C5—H5A0.97
C3—H3B0.97C5—H5B0.97
O1W—H1W0.826 (19)
Cl3—Sn1—Cl3i180H3A—C3—H3B108.1
Cl3—Sn1—Cl1i90.31 (2)H1W—O1W—H2W106 (5)
Cl3i—Sn1—Cl1i89.69 (2)C2—N1—H1A109.5
Cl3—Sn1—Cl189.69 (2)C2—N1—H1B109.5
Cl3i—Sn1—Cl190.31 (2)H1A—N1—H1B109.5
Cl1i—Sn1—Cl1180.00 (3)C2—N1—H1C109.5
Cl3—Sn1—Cl290.42 (2)H1A—N1—H1C109.5
Cl3i—Sn1—Cl289.58 (2)H1B—N1—H1C109.5
Cl1i—Sn1—Cl288.55 (2)N4ii—C6—C5111.57 (18)
Cl1—Sn1—Cl291.45 (2)N4ii—C6—H6A109.3
Cl3—Sn1—Cl2i89.58 (2)C5—C6—H6A109.3
Cl3i—Sn1—Cl2i90.42 (2)N4ii—C6—H6B109.3
Cl1i—Sn1—Cl2i91.45 (2)C5—C6—H6B109.3
Cl1—Sn1—Cl2i88.55 (2)H6A—C6—H6B108
Cl2—Sn1—Cl2i180N1—C2—C3110.21 (19)
C6ii—N4—C5109.02 (17)N1—C2—H2A109.6
C6ii—N4—C3111.27 (17)C3—C2—H2A109.6
C5—N4—C3112.28 (18)N1—C2—H2B109.6
C6ii—N4—H4109 (2)C3—C2—H2B109.6
C5—N4—H4107 (2)H2A—C2—H2B108.1
C3—N4—H4109 (2)N4—C5—C6111.52 (19)
N4—C3—C2110.33 (18)N4—C5—H5A109.3
N4—C3—H3A109.6C6—C5—H5A109.3
C2—C3—H3A109.6N4—C5—H5B109.3
N4—C3—H3B109.6C6—C5—H5B109.3
C2—C3—H3B109.6H5A—C5—H5B108
C6ii—N4—C3—C2163.67 (19)C6ii—N4—C5—C656.4 (3)
C5—N4—C3—C273.8 (2)C3—N4—C5—C6179.86 (18)
N4—C3—C2—N1176.51 (19)N4ii—C6—C5—N457.8 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3iii0.892.713.397 (2)134
N1—H1A···Cl2iv0.892.813.431 (2)128
N1—H1B···Cl1v0.892.473.343 (2)167
N1—H1C···O1Wiii0.891.922.769 (4)158
O1W—H1W···Cl4vi0.83 (2)2.30 (3)3.079 (3)158 (6)
O1W—H2W···Cl40.83 (4)2.67 (5)3.246 (3)128 (5)
N4—H4···Cl40.85 (4)2.24 (4)3.073 (2)164 (3)
C2—H2B···Cl10.972.793.715 (3)160
C6—H6A···Cl4vii0.972.703.506 (3)141
Symmetry codes: (iii) x1, y1, z; (iv) x, y, z; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x+1, y, z.
 

Funding information

This work is supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support.

References

First citationAruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963–968.  Web of Science CrossRef CAS Google Scholar
First citationBoopathi, K., Babu, S. M., Jagan, R. & Ramasamy, P. (2017). J. Phys. Chem. Solids, 111, 419–430.  CSD CrossRef CAS Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouchene, R., Bouacida, S., Berrah, F. & Roisnel, T. (2014). Acta Cryst. C70, 672–676.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationChouaib, H. & Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218–225.  CrossRef CAS Google Scholar
First citationChun, H. & Jung, H. (2009). Inorg. Chem. 48, 417–419.  CSD CrossRef PubMed CAS Google Scholar
First citationCukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2388.  CSD CrossRef IUCr Journals Google Scholar
First citationDíaz, P., Benet-Buchholz, J., Vilar, R. & White, A. J. P. (2006). Inorg. Chem. 45, 1617–1626.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, o774–o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. & Alcock, N. W. (2002). Chem. Eur. J. 8, 2225–2238.  CrossRef PubMed CAS Google Scholar
First citationHutchinson, W. M., Collett, A. R. & Lazzell, C. L. (1945). J. Am. Chem. Soc. 67, 1966–1968.  CrossRef CAS Google Scholar
First citationJiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue, 28, 723–729.  CAS Google Scholar
First citationJunk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, G., Shi, J., Han, X. J., Zhang, X., Li, K., Li, J., Zhang, T., Liu, Q. S., Zhang, Z. W. & Li, C. C. (2015). Dalton Trans. 44, 12561–12575.  CSD CrossRef CAS PubMed Google Scholar
First citationNewman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. & Lowe-Ma, C. K. (1989). MRS Proc. 173, 557–561.  CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPapavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265–271.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Crystal Explorer. University of Western Australia.  Google Scholar
First citationYe, M.-D., Hu, M.-L., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1008–o1009.  CSD CrossRef IUCr Journals Google Scholar
First citationYin, R. Z. & Yo, C. H. (1998). Bull. Korean Chem. Soc. 19, 947–951.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds