research communications
Structure of triaquatris(1,1,1-trifluoro-4-oxopentan-2-olato)cerium(III) as a possible fluorescent compound
aGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan, bDepartment of Marine Resource Science, Faculity of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan, cCenter for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Japan, dDepartment of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan, eNenjiang Senior High School, Nenjiang Heihe City, Heilongjiang Province, 161400, People's Republic of China, and fDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata City, 950-2181, Japan
*Correspondence e-mail: msato@eng.niigata-u.ac.jp
Luminescence due to the d–f transition of Ce3+ is quite rare in metal–organic complexes where concentrate quenching frequently occurs. One of the possible ways to avoid this is to design an architecture with elongated metal–metal distances. In the structure of the title complex, triaquatris(1,1,1-trifluoro-4-oxopentan-2-olato-κ2O,O′)cerium(III), [Ce(C5H4F3O2)3(H2O)3], the CeIII complex is linked to neighbouring ones by hydrogen bonding. Within the complex, the CeIII atom is coordinated by nine O atoms from three 1,1,1-trifluoro-4-oxopentan-2-olate (tfa) anions as bidentate ligands and three water molecules as monodentate ligands. Thus, the of CeIII atom is nine in a monocapped square–antiprismatic polyhedron. The F atoms of all three independent CF3 groups in tfa are disordered over two positions with occupancy ratios of about 0.8:0.2. The intermolecular hydrogen bonds between the ligands involve tfa–water interactions along the [110] and [1-10] directions, generating an overall two-dimensional layered network structure. The presence of the F atoms in the tfa anion is responsible for an increased intermolecular metal–metal distance compared to that in the analogous acetylacetonate (acac) derivatives. Fluorescence from Ce3+ is, however, not observed.
CCDC reference: 1817747
1. Chemical context
β-diketonate ligands have been used widely in metal–organic complexes involving rare earth elements because of their simple usage as organic bidentate ligands (Binnemans, 2005). The nature of the ligand used is important for a possible enhancement of the luminescence efficiency and intensity; for example, acac is known to have a possible effect on the 4f–4f transition emission of Eu3+ (Kuz'mina et al., 2006). Tb(acac)3 was first used as an active light-emitting layer material in LEDs based on the emission from the lanthanide complex (Kido et al., 1990). Recently, a lanthanide complex containing Tb3+ and Eu3+, hexafluoroacetylacetonate (hfa) and 4,4′-bis(diphenylphosphoryl)biphenyl (dpdp), [Tb0.99Eu0.01(hfa)3(dpdp)]n, was reported to exhibit an expression thermo-sensing emission, called chameleon luminophore (Miyata et al., 2013; Hasegawa & Nakanishi, 2015). The hfa anion can absorb efficiently a visible light excitation and transfer the excited energy from hfa to Tb3+, because the energy of the of hfa (22 000 cm−1) is very close to an energy level of Tb3+ (20 500 cm−1; Katagiri et al., 2004). However, the proximity of the levels causes a back-energy transfer from Tb3+ to hfa. The probability of three types of from hfa to Tb3+, from Tb3+ to Eu3+ and from Tb3+ to hfa is temperature dependent. As a result, the complex can show green, yellow, orange and red emissions despite the 4f–4f transition.
The nature of the ligand is important in the design of fluorescent metal–organic complexes. The F atoms in hfa are larger than the H atoms in acac, which means that the hfa ligand can reduce the energy loss due to thermal vibrations and could increase the intermolecular distance between the central lanthanide atoms. This may control the concentration quenching.
A considerable number of metal–organic complexes containing Ce3+ have been reported so far, but the examples of emission based on the 5d–4f transition of Ce3+ in metal–organic complexes are scarce. [Ce(triRNTB)2](CF3SO3)3 [NTB = N-substituted tris(N-alkylbenzimidazol-2-ylmethyl)amine] and ∞3[Ce(Im)3(ImH)]·ImH (Zheng et al., 2007; Meyer et al., 2015) are some of the rare cases. One of the reasons for the small number of fluorescent metal–organic complexes containing Ce3+ is the too short distance between the Ce3+ ions, causing by the between Ce3+ ions. [Ce(triRNTB)2](CF3SO3)3 can show a blue emission thanks to a long Ce—Ce distance of about 17–18 Å. The use of more bulky ligands such as NTB is favourable for a longer Ce—Ce distance. ∞3[Ce(Im)3(ImH)]·ImH also shows a blue fluorescence emission despite a relatively short separation between the Ce3+ cations of 7 Å. Emission occurs more frequently in 3D structures with isolated complexes than in framework structures.
This study reports structural data on a newly synthesized Ce3+ complex with functional ligands of tfa.
2. Structural commentary
The title complex crystallizes in the orthorhombic Pcab with eight formula units of [Ce(C5F3H4O2)3(H2O)3]. Each molecule is isolated individually, i.e. the is not a framework structure. The central Ce atom is coordinated by nine O atoms of three hfa and three water molecules (Fig. 1). Thus, the Ce atom has a monocapped square–antiprismatic coordination. The Ce—O bond lengths can be classified into two categories; the first is involved in interactions with a bidentate hfa, and the second in interactions with monodentate water molecules. All distances are comparable with those reported for tfa complexes (Nakamura et al., 1986). The trifluoromethyl groups of tfa coordinating the Ce3+ ion are all disordered on the F atoms, as is frequently observed in trifluoroacetate and tetrafluoroborate complexes (Hamaguchi et al., 2011; Strehler et al., 2015).
3. Supramolecular features
The individual complexes are linked to neighbouring ones by four types of hydrogen bonds (Table 1), nearly within the ab plane. There are two types of hydrogen-bond directions; the first are parallel to [110] and the second are parallel to [10]. The chains consisting of the complex molecules and the hydrogen bonds, two types of which are cross-linked to each other, building up two-dimensional networks (Fig. 2). The functional hydrophobic groups of –CF3 and –CH3 are located on the outside of the layer, resulting in the stabilization of the stacking layers by intermolecular forces. Such a layer structure is also observed in the acetylacetonate complex, [Y(C5H7O2)3(H2O)3] (Cunningham et al., 1967) (Fig. 3). This yttrium complex also contains an isolated water in the structure, different from the title compound, but the water molecule can act as a hydrogen-bond linker because it exists within a molecular layer. As a result, the hydrogen bonds make a two-dimensional layered network, as in the title compound. The Ln—Ln distance of nearest neighbours in this complex is longer than that of [Y(C5H7O2)3(H2O)3], the shortest distance in the former being 6.141 Å and in the latter 6.035 Å. This difference is mainly caused by atomic size difference between F and H atoms, even taking into account the atomic size difference between La and Y. The shortest Ln—Ln distance of [La(C5H7O2)2(C3H4N2)(NO3)(H2O)2] (6.247 Å; Koizumi et al., 2017) is slightly longer than that of the title compound. The fact that the present complex does not show any luminescence from Ce3+ can certainly be attributed to an insufficient metal–metal separation. Based on previous studies and the present work, the minimum metal–metal separation is expected to be more than 7 Å.
4. Database survey
Crystal structures of related complexes involving lanthanide ions have been reported with acac ligands (Berg & Acosta, 1968; Binnemans, 2005; Filotti et al., 1996; Fujinaga et al., 1981; Lim et al., 1996; Phillips et al., 1968; Richardson et al., 1968; Stites et al., 1948), with tfa complexes (Ilmi et al., 2015; Katagiri et al., 2007; Li et al., 2017; Lim et al., 1996; Nakamura et al., 1986; Yan et al., 2009) and with hfa complexes (Subhan et al., 2014; Fratini et al., 2008; Hasegawa et al., 2013, 2015; Kataoka et al., 2016; Rybkin et al., 2011; Tsaryuk et al., 2017; Wang et al., 2017; Yuasa et al., 2011).
5. Synthesis and crystallization
Yellow plate-like crystals were obtained by slow evaporation from an acetone solution of Ce(NO3)3·6H2O and trifluoroacetylacetone (1:3 molar ratio). The products were filtered off and dried at room temperature.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to a C atom were positioned geometrically after each cycle in idealized locations and refined as riding on their parent C atoms with C—H = 0.93 Å and Uiso(H) = 1.2Uiso(C atom). All hydrogen atoms bonded to a water O atom were located in a difference-Fourier map and refined isotropically with a distance restraint of 0.85 (2) Å and with thermal restraints Uiso(H) = 1.5Uiso(O atom). The occupancies of the disordered F atoms in the –CF3 group were refined for the pairs F11A/F11D, F11B/F11E and F11C/F11F to be 0.829 (14)/0.171 (14), for the pairs of F21A/F21F, F21B/F21E and F21C/F21F to be 0.838 (17)/0.162 (17), and for the pairs of F31A/F31D, F31B/F31E and F31C/F31F to be 0.836 (11)/0.164 (11).
details are summarized in Table 2Supporting information
CCDC reference: 1817747
https://doi.org/10.1107/S2056989018001135/vn2133sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001135/vn2133Isup2.hkl
Data collection: CrystalClear (Rigaku, 2006); cell
CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006) and SORTAV (Blessing, 1995); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ce(C5H4F3O2)3(H2O)3] | F(000) = 2552 |
Mr = 653.41 | Dx = 1.84 Mg m−3 |
Orthorhombic, Pcab | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2bc 2ac | Cell parameters from 36866 reflections |
a = 11.6347 (7) Å | θ = 3.0–27.5° |
b = 16.5121 (9) Å | µ = 2.04 mm−1 |
c = 24.5577 (17) Å | T = 293 K |
V = 4717.9 (5) Å3 | Prism, yellow |
Z = 8 | 0.3 × 0.19 × 0.11 mm |
Rigaku XtaLAB mini diffractometer | 5404 independent reflections |
Radiation source: sealed x-ray tube | 4309 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
phi or ω oscillation scans | h = −14→15 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −21→21 |
Tmin = 0.603, Tmax = 0.805 | l = −31→31 |
45156 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: mixed |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0377P)2 + 9.6633P] where P = (Fo2 + 2Fc2)/3 |
5404 reflections | (Δ/σ)max = 0.001 |
367 parameters | Δρmax = 0.78 e Å−3 |
60 restraints | Δρmin = −0.44 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ce1 | 0.44439 (2) | 0.34074 (2) | 0.44106 (2) | 0.02854 (8) | |
C11 | 0.4237 (6) | 0.3197 (4) | 0.2473 (2) | 0.0778 (19) | |
C12 | 0.3779 (5) | 0.3321 (3) | 0.30394 (19) | 0.0538 (13) | |
O12 | 0.4339 (3) | 0.3049 (2) | 0.34228 (12) | 0.0486 (8) | |
C13 | 0.2728 (5) | 0.3716 (4) | 0.3061 (2) | 0.0646 (15) | |
H13 | 0.2427 | 0.3924 | 0.2739 | 0.078* | |
C14 | 0.2092 (4) | 0.3819 (4) | 0.3546 (2) | 0.0600 (14) | |
O14 | 0.2451 (3) | 0.3617 (2) | 0.40111 (12) | 0.0448 (7) | |
C15 | 0.0892 (6) | 0.4173 (6) | 0.3520 (3) | 0.113 (3) | |
H15A | 0.0766 | 0.4406 | 0.3167 | 0.169* | |
H15B | 0.0812 | 0.4584 | 0.3794 | 0.169* | |
H15C | 0.0338 | 0.3752 | 0.3583 | 0.169* | |
C21 | 0.4510 (5) | 0.5793 (3) | 0.33461 (19) | 0.0586 (14) | |
C22 | 0.5053 (4) | 0.5033 (3) | 0.35843 (18) | 0.0439 (10) | |
O22 | 0.4552 (3) | 0.47868 (18) | 0.40133 (11) | 0.0408 (7) | |
C23 | 0.5971 (5) | 0.4712 (3) | 0.3316 (2) | 0.0536 (12) | |
H23 | 0.6201 | 0.496 | 0.2994 | 0.064* | |
C24 | 0.6600 (4) | 0.4024 (3) | 0.34943 (19) | 0.0468 (11) | |
O24 | 0.6358 (2) | 0.36304 (19) | 0.39146 (12) | 0.0429 (7) | |
C25 | 0.7622 (5) | 0.3774 (4) | 0.3167 (2) | 0.0700 (16) | |
H25A | 0.7489 | 0.3897 | 0.279 | 0.105* | |
H25B | 0.7745 | 0.3203 | 0.3208 | 0.105* | |
H25C | 0.8288 | 0.4063 | 0.3292 | 0.105* | |
C31 | 0.1589 (4) | 0.4538 (3) | 0.5562 (2) | 0.0607 (14) | |
C32 | 0.2598 (4) | 0.3977 (3) | 0.54542 (19) | 0.0430 (10) | |
O32 | 0.3247 (3) | 0.42071 (18) | 0.50708 (12) | 0.0454 (7) | |
C33 | 0.2669 (4) | 0.3297 (3) | 0.5767 (2) | 0.0529 (12) | |
H33 | 0.2102 | 0.3207 | 0.6027 | 0.063* | |
C34 | 0.3567 (4) | 0.2718 (3) | 0.57165 (18) | 0.0467 (11) | |
O34 | 0.4301 (3) | 0.27381 (19) | 0.53500 (12) | 0.0448 (7) | |
C35 | 0.3625 (6) | 0.2034 (4) | 0.6122 (3) | 0.0802 (19) | |
H35A | 0.316 | 0.2164 | 0.6433 | 0.12* | |
H35B | 0.4407 | 0.1958 | 0.6236 | 0.12* | |
H35C | 0.3346 | 0.1546 | 0.5957 | 0.12* | |
F11B | 0.4262 (11) | 0.3878 (4) | 0.2185 (3) | 0.166 (5) | 0.829 (14) |
F11A | 0.3683 (6) | 0.2702 (5) | 0.2173 (2) | 0.132 (3) | 0.829 (14) |
F11C | 0.5308 (6) | 0.2914 (7) | 0.2481 (2) | 0.156 (5) | 0.829 (14) |
F11D | 0.455 (3) | 0.2450 (11) | 0.2438 (15) | 0.131 (14)* | 0.171 (14) |
F11E | 0.503 (2) | 0.3703 (15) | 0.2358 (11) | 0.080 (9)* | 0.171 (14) |
F11F | 0.336 (2) | 0.330 (3) | 0.2134 (15) | 0.149 (17)* | 0.171 (14) |
F21A | 0.3517 (8) | 0.5668 (4) | 0.3129 (5) | 0.148 (4) | 0.838 (17) |
F21B | 0.5143 (11) | 0.6165 (5) | 0.2974 (4) | 0.160 (5) | 0.838 (17) |
F21C | 0.4371 (7) | 0.6369 (2) | 0.3718 (2) | 0.0713 (18) | 0.838 (17) |
F21D | 0.4696 (19) | 0.5826 (17) | 0.2820 (6) | 0.060 (8)* | 0.162 (17) |
F21E | 0.483 (3) | 0.6448 (16) | 0.3572 (13) | 0.108 (15)* | 0.162 (17) |
F21F | 0.3356 (14) | 0.5734 (15) | 0.3364 (10) | 0.054 (7)* | 0.162 (17) |
F31A | 0.1248 (6) | 0.4523 (5) | 0.6089 (2) | 0.137 (3) | 0.836 (11) |
F31B | 0.0676 (4) | 0.4319 (3) | 0.5295 (3) | 0.110 (3) | 0.836 (11) |
F31C | 0.1797 (4) | 0.5278 (2) | 0.5457 (4) | 0.115 (3) | 0.836 (11) |
F31E | 0.129 (3) | 0.487 (2) | 0.5071 (8) | 0.125 (13)* | 0.164 (11) |
F31F | 0.175 (4) | 0.5175 (18) | 0.5874 (14) | 0.16 (2)* | 0.164 (11) |
F31D | 0.065 (2) | 0.419 (2) | 0.5740 (17) | 0.140 (16)* | 0.164 (11) |
O1W | 0.5906 (3) | 0.4133 (2) | 0.50449 (13) | 0.0432 (7) | |
H1WA | 0.627 (4) | 0.455 (2) | 0.495 (2) | 0.065* | |
H1WB | 0.574 (5) | 0.426 (4) | 0.5364 (11) | 0.065* | |
O2W | 0.5781 (3) | 0.2200 (2) | 0.45895 (15) | 0.0536 (9) | |
H2WA | 0.629 (4) | 0.193 (4) | 0.442 (2) | 0.08* | |
H2WB | 0.578 (5) | 0.201 (4) | 0.4904 (13) | 0.08* | |
O3W | 0.3258 (3) | 0.2079 (2) | 0.44205 (16) | 0.0578 (9) | |
H3WA | 0.270 (4) | 0.186 (4) | 0.425 (2) | 0.087* | |
H3WB | 0.346 (6) | 0.161 (2) | 0.451 (3) | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.02544 (11) | 0.03113 (12) | 0.02903 (12) | 0.00204 (9) | 0.00172 (9) | 0.00215 (9) |
C11 | 0.104 (6) | 0.089 (5) | 0.040 (3) | −0.012 (4) | −0.001 (3) | −0.008 (3) |
C12 | 0.066 (3) | 0.060 (3) | 0.035 (2) | −0.015 (3) | −0.001 (2) | −0.002 (2) |
O12 | 0.0509 (19) | 0.059 (2) | 0.0355 (16) | 0.0012 (16) | 0.0016 (14) | −0.0088 (15) |
C13 | 0.068 (4) | 0.080 (4) | 0.046 (3) | 0.005 (3) | −0.012 (3) | 0.011 (3) |
C14 | 0.043 (3) | 0.076 (4) | 0.061 (3) | 0.004 (3) | −0.011 (2) | 0.013 (3) |
O14 | 0.0316 (15) | 0.059 (2) | 0.0437 (17) | −0.0006 (14) | −0.0022 (13) | 0.0072 (14) |
C15 | 0.066 (4) | 0.174 (9) | 0.097 (5) | 0.054 (5) | −0.018 (4) | 0.035 (6) |
C21 | 0.089 (4) | 0.046 (3) | 0.041 (3) | 0.010 (3) | 0.004 (3) | 0.011 (2) |
C22 | 0.054 (3) | 0.038 (2) | 0.039 (2) | 0.003 (2) | −0.003 (2) | 0.0074 (18) |
O22 | 0.0475 (17) | 0.0375 (15) | 0.0373 (15) | 0.0058 (14) | 0.0065 (13) | 0.0087 (13) |
C23 | 0.061 (3) | 0.054 (3) | 0.046 (3) | 0.006 (2) | 0.015 (2) | 0.019 (2) |
C24 | 0.036 (2) | 0.060 (3) | 0.044 (2) | 0.004 (2) | 0.008 (2) | 0.011 (2) |
O24 | 0.0314 (15) | 0.0551 (18) | 0.0423 (17) | 0.0061 (13) | 0.0063 (13) | 0.0154 (14) |
C25 | 0.055 (3) | 0.093 (4) | 0.062 (3) | 0.014 (3) | 0.027 (3) | 0.014 (3) |
C31 | 0.040 (3) | 0.057 (3) | 0.085 (4) | 0.000 (2) | 0.014 (3) | −0.019 (3) |
C32 | 0.030 (2) | 0.049 (3) | 0.049 (3) | −0.0027 (19) | 0.0042 (19) | −0.016 (2) |
O32 | 0.0467 (17) | 0.0472 (17) | 0.0424 (16) | 0.0084 (15) | 0.0108 (14) | −0.0012 (14) |
C33 | 0.046 (3) | 0.061 (3) | 0.051 (3) | −0.004 (2) | 0.021 (2) | −0.001 (2) |
C34 | 0.047 (3) | 0.054 (3) | 0.039 (2) | −0.008 (2) | 0.007 (2) | 0.002 (2) |
O34 | 0.0467 (18) | 0.0533 (19) | 0.0343 (15) | 0.0073 (15) | 0.0087 (14) | 0.0063 (14) |
C35 | 0.095 (5) | 0.078 (4) | 0.068 (4) | 0.007 (4) | 0.030 (3) | 0.032 (3) |
F11B | 0.274 (13) | 0.152 (7) | 0.073 (4) | 0.019 (7) | 0.064 (6) | 0.042 (4) |
F11A | 0.142 (6) | 0.173 (7) | 0.082 (4) | −0.010 (5) | −0.013 (4) | −0.076 (4) |
F11C | 0.099 (5) | 0.305 (13) | 0.065 (3) | 0.041 (7) | 0.018 (3) | −0.036 (5) |
F21A | 0.196 (8) | 0.097 (4) | 0.151 (7) | 0.052 (5) | −0.128 (6) | −0.018 (5) |
F21B | 0.238 (10) | 0.096 (5) | 0.146 (7) | 0.068 (6) | 0.108 (7) | 0.087 (5) |
F21C | 0.105 (5) | 0.040 (2) | 0.069 (3) | 0.012 (2) | −0.006 (3) | 0.0032 (19) |
F31A | 0.129 (6) | 0.175 (7) | 0.106 (5) | 0.071 (5) | 0.053 (4) | −0.015 (4) |
F31B | 0.049 (3) | 0.090 (4) | 0.191 (7) | 0.017 (2) | −0.034 (3) | −0.047 (4) |
F31C | 0.075 (3) | 0.042 (2) | 0.228 (9) | 0.005 (2) | 0.055 (4) | −0.021 (3) |
O1W | 0.0436 (17) | 0.0465 (18) | 0.0396 (17) | −0.0101 (14) | −0.0018 (14) | −0.0037 (15) |
O2W | 0.048 (2) | 0.059 (2) | 0.054 (2) | 0.0261 (16) | 0.0161 (16) | 0.0169 (17) |
O3W | 0.059 (2) | 0.0420 (18) | 0.072 (2) | −0.0178 (17) | −0.0242 (19) | 0.0094 (17) |
Ce1—O22 | 2.481 (3) | C22—O22 | 1.271 (5) |
Ce1—O12 | 2.500 (3) | C22—C23 | 1.362 (7) |
Ce1—O32 | 2.512 (3) | C23—C24 | 1.420 (7) |
Ce1—O14 | 2.542 (3) | C23—H23 | 0.93 |
Ce1—O34 | 2.563 (3) | C24—O24 | 1.252 (5) |
Ce1—O24 | 2.565 (3) | C24—C25 | 1.493 (6) |
Ce1—O2W | 2.566 (3) | C25—H25A | 0.96 |
Ce1—O3W | 2.592 (3) | C25—H25B | 0.96 |
Ce1—O1W | 2.599 (3) | C25—H25C | 0.96 |
C11—F11A | 1.276 (7) | C31—F31C | 1.273 (7) |
C11—F11E | 1.280 (15) | C31—F31B | 1.299 (6) |
C11—F11D | 1.289 (16) | C31—F31D | 1.308 (17) |
C11—F11B | 1.328 (8) | C31—F31F | 1.315 (17) |
C11—F11F | 1.330 (16) | C31—F31A | 1.354 (7) |
C11—F11C | 1.331 (8) | C31—F31E | 1.372 (16) |
C11—C12 | 1.504 (8) | C31—C32 | 1.518 (6) |
C12—O12 | 1.230 (6) | C32—O32 | 1.266 (5) |
C12—C13 | 1.387 (8) | C32—C33 | 1.365 (7) |
C13—C14 | 1.413 (8) | C33—C34 | 1.422 (7) |
C13—H13 | 0.93 | C33—H33 | 0.93 |
C14—O14 | 1.262 (6) | C34—O34 | 1.241 (5) |
C14—C15 | 1.514 (8) | C34—C35 | 1.507 (7) |
C15—H15A | 0.96 | C35—H35A | 0.96 |
C15—H15B | 0.96 | C35—H35B | 0.96 |
C15—H15C | 0.96 | C35—H35C | 0.96 |
C21—F21E | 1.273 (15) | O1W—H1WA | 0.84 (2) |
C21—F21A | 1.289 (8) | O1W—H1WB | 0.83 (2) |
C21—F21D | 1.312 (14) | O2W—H2WA | 0.85 (2) |
C21—F21B | 1.324 (7) | O2W—H2WB | 0.84 (2) |
C21—F21C | 1.329 (6) | O3W—H3WA | 0.85 (2) |
C21—F21F | 1.347 (15) | O3W—H3WB | 0.84 (2) |
C21—C22 | 1.522 (6) | ||
O22—Ce1—O12 | 80.70 (11) | F21A—C21—F21B | 106.6 (7) |
O22—Ce1—O32 | 78.42 (10) | F21A—C21—F21C | 106.8 (6) |
O12—Ce1—O32 | 136.35 (11) | F21B—C21—F21C | 102.1 (6) |
O22—Ce1—O14 | 76.68 (10) | F21E—C21—F21F | 109.9 (15) |
O12—Ce1—O14 | 67.23 (10) | F21D—C21—F21F | 101.5 (12) |
O32—Ce1—O14 | 70.85 (10) | F21E—C21—C22 | 114.3 (17) |
O22—Ce1—O34 | 138.85 (10) | F21A—C21—C22 | 113.6 (5) |
O12—Ce1—O34 | 140.17 (11) | F21D—C21—C22 | 110.2 (13) |
O32—Ce1—O34 | 67.04 (10) | F21B—C21—C22 | 114.7 (5) |
O14—Ce1—O34 | 110.31 (10) | F21C—C21—C22 | 112.1 (4) |
O22—Ce1—O24 | 68.74 (10) | F21F—C21—C22 | 110.0 (12) |
O12—Ce1—O24 | 67.40 (10) | O22—C22—C23 | 129.5 (4) |
O32—Ce1—O24 | 135.42 (10) | O22—C22—C21 | 113.1 (4) |
O14—Ce1—O24 | 126.11 (10) | C23—C22—C21 | 117.4 (4) |
O34—Ce1—O24 | 123.05 (9) | C22—O22—Ce1 | 130.0 (3) |
O22—Ce1—O2W | 138.56 (11) | C22—C23—C24 | 124.5 (4) |
O12—Ce1—O2W | 90.68 (12) | C22—C23—H23 | 117.7 |
O32—Ce1—O2W | 129.33 (11) | C24—C23—H23 | 117.7 |
O14—Ce1—O2W | 136.45 (12) | O24—C24—C23 | 123.6 (4) |
O34—Ce1—O2W | 63.28 (10) | O24—C24—C25 | 118.7 (4) |
O24—Ce1—O2W | 70.52 (10) | C23—C24—C25 | 117.7 (4) |
O22—Ce1—O3W | 143.87 (11) | C24—O24—Ce1 | 131.4 (3) |
O12—Ce1—O3W | 77.44 (12) | C24—C25—H25A | 109.5 |
O32—Ce1—O3W | 98.26 (12) | C24—C25—H25B | 109.5 |
O14—Ce1—O3W | 68.46 (11) | H25A—C25—H25B | 109.5 |
O34—Ce1—O3W | 65.93 (11) | C24—C25—H25C | 109.5 |
O24—Ce1—O3W | 126.04 (12) | H25A—C25—H25C | 109.5 |
O2W—Ce1—O3W | 70.35 (13) | H25B—C25—H25C | 109.5 |
O22—Ce1—O1W | 77.26 (10) | F31C—C31—F31B | 108.7 (6) |
O12—Ce1—O1W | 136.27 (11) | F31D—C31—F31F | 105.9 (17) |
O32—Ce1—O1W | 74.57 (11) | F31C—C31—F31A | 105.5 (5) |
O14—Ce1—O1W | 139.99 (11) | F31B—C31—F31A | 103.7 (6) |
O34—Ce1—O1W | 72.65 (10) | F31D—C31—F31E | 105.0 (16) |
O24—Ce1—O1W | 69.51 (10) | F31F—C31—F31E | 103.0 (16) |
O2W—Ce1—O1W | 81.87 (12) | F31C—C31—C32 | 113.8 (4) |
O3W—Ce1—O1W | 137.14 (11) | F31B—C31—C32 | 112.0 (4) |
F11E—C11—F11D | 113.8 (16) | F31D—C31—C32 | 115.9 (17) |
F11A—C11—F11B | 104.2 (7) | F31F—C31—C32 | 118.7 (19) |
F11E—C11—F11F | 109.5 (15) | F31A—C31—C32 | 112.5 (5) |
F11D—C11—F11F | 107.7 (16) | F31E—C31—C32 | 106.8 (14) |
F11A—C11—F11C | 104.9 (7) | O32—C32—C33 | 129.0 (4) |
F11B—C11—F11C | 106.6 (8) | O32—C32—C31 | 114.2 (4) |
F11A—C11—C12 | 116.3 (6) | C33—C32—C31 | 116.8 (4) |
F11E—C11—C12 | 111.8 (13) | C32—O32—Ce1 | 130.8 (3) |
F11D—C11—C12 | 106.9 (17) | C32—C33—C34 | 123.3 (4) |
F11B—C11—C12 | 112.7 (6) | C32—C33—H33 | 118.4 |
F11F—C11—C12 | 106.7 (19) | C34—C33—H33 | 118.4 |
F11C—C11—C12 | 111.4 (5) | O34—C34—C33 | 123.5 (4) |
O12—C12—C13 | 127.6 (5) | O34—C34—C35 | 117.9 (5) |
O12—C12—C11 | 118.1 (5) | C33—C34—C35 | 118.6 (4) |
C13—C12—C11 | 114.3 (5) | C34—O34—Ce1 | 135.1 (3) |
C12—O12—Ce1 | 133.0 (3) | C34—C35—H35A | 109.5 |
C12—C13—C14 | 123.4 (5) | C34—C35—H35B | 109.5 |
C12—C13—H13 | 118.3 | H35A—C35—H35B | 109.5 |
C14—C13—H13 | 118.3 | C34—C35—H35C | 109.5 |
O14—C14—C13 | 123.9 (5) | H35A—C35—H35C | 109.5 |
O14—C14—C15 | 116.4 (5) | H35B—C35—H35C | 109.5 |
C13—C14—C15 | 119.6 (5) | Ce1—O1W—H1WA | 123 (4) |
C14—O14—Ce1 | 133.5 (3) | Ce1—O1W—H1WB | 122 (4) |
C14—C15—H15A | 109.5 | H1WA—O1W—H1WB | 100 (5) |
C14—C15—H15B | 109.5 | Ce1—O2W—H2WA | 138 (4) |
H15A—C15—H15B | 109.5 | Ce1—O2W—H2WB | 117 (4) |
C14—C15—H15C | 109.5 | H2WA—O2W—H2WB | 105 (6) |
H15A—C15—H15C | 109.5 | Ce1—O3W—H3WA | 140 (5) |
H15B—C15—H15C | 109.5 | Ce1—O3W—H3WB | 129 (5) |
F21E—C21—F21D | 110.2 (15) | H3WA—O3W—H3WB | 87 (6) |
F11A_a—C11—C12—O12 | 109.7 (8) | F21C—C21—C22—C23 | −130.5 (6) |
F11E—C11—C12—O12 | −79.3 (17) | F21F—C21—C22—C23 | 137.2 (12) |
F11D—C11—C12—O12 | 45.9 (19) | C23—C22—O22—Ce1 | −24.8 (8) |
F11B—C11—C12—O12 | −130.0 (8) | C21—C22—O22—Ce1 | 154.3 (3) |
F11F—C11—C12—O12 | 161.0 (19) | O22—C22—C23—C24 | −3.3 (9) |
F11C—C11—C12—O12 | −10.3 (9) | C21—C22—C23—C24 | 177.6 (5) |
F11A—C11—C12—C13 | −68.2 (9) | C22—C23—C24—O24 | 1.5 (9) |
F11E—C11—C12—C13 | 102.7 (16) | C22—C23—C24—C25 | −177.0 (5) |
F11D—C11—C12—C13 | −132.0 (19) | C23—C24—O24—Ce1 | 27.8 (7) |
F11B—C11—C12—C13 | 52.0 (10) | C25—C24—O24—Ce1 | −153.7 (4) |
F11F—C11—C12—C13 | −17.0 (19) | F31C—C31—C32—O32 | −30.8 (8) |
F11C—C11—C12—C13 | 171.7 (8) | F31B—C31—C32—O32 | 92.9 (7) |
C13—C12—O12—Ce1 | −25.9 (8) | F31D—C31—C32—O32 | 148 (2) |
C11—C12—O12—Ce1 | 156.4 (4) | F31F—C31—C32—O32 | −84 (2) |
O12—C12—C13—C14 | −4.5 (10) | F31A—C31—C32—O32 | −150.7 (6) |
C11—C12—C13—C14 | 173.2 (6) | F31E—C31—C32—O32 | 31.9 (18) |
C12—C13—C14—O14 | 5.5 (10) | F31C—C31—C32—C33 | 150.7 (6) |
C12—C13—C14—C15 | −173.0 (7) | F31B—C31—C32—C33 | −85.6 (7) |
C13—C14—O14—Ce1 | 23.3 (9) | F31D—C31—C32—C33 | −30 (2) |
C15—C14—O14—Ce1 | −158.2 (5) | F31F—C31—C32—C33 | 98 (2) |
F21E—C21—C22—O22 | 82.1 (19) | F31A—C31—C32—C33 | 30.8 (7) |
F21A—C21—C22—O22 | −70.9 (8) | F31E—C31—C32—C33 | −146.6 (17) |
F21D—C21—C22—O22 | −153.2 (11) | C33—C32—O32—Ce1 | 28.9 (7) |
F21B—C21—C22—O22 | 166.1 (9) | C31—C32—O32—Ce1 | −149.4 (3) |
F21C—C21—C22—O22 | 50.2 (7) | O32—C32—C33—C34 | 2.2 (8) |
F21F—C21—C22—O22 | −42.1 (12) | C31—C32—C33—C34 | −179.6 (5) |
F21E—C21—C22—C23 | −98.6 (19) | C32—C33—C34—O34 | −7.2 (8) |
F21A—C21—C22—C23 | 108.4 (9) | C32—C33—C34—C35 | 173.8 (5) |
F21D—C21—C22—C23 | 26.1 (13) | C33—C34—O34—Ce1 | −19.7 (7) |
F21B—C21—C22—C23 | −14.6 (11) | C35—C34—O34—Ce1 | 159.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O32i | 0.84 (2) | 2.13 (3) | 2.927 (4) | 158 (5) |
O1W—H1WB···O22i | 0.83 (2) | 2.23 (4) | 2.969 (4) | 149 (6) |
O2W—H2WA···O14ii | 0.85 (2) | 1.91 (2) | 2.759 (4) | 177 (6) |
O3W—H3WA···O24iii | 0.85 (2) | 1.94 (2) | 2.792 (4) | 176 (7) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z; (iii) x−1/2, −y+1/2, z. |
Funding information
This work was partly supported by a Grant-in-Aid for Scientific Research (No. 17H03124 and No. 17H03386) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
References
Berg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101–113. CrossRef CAS Web of Science Google Scholar
Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107–272. Amsterdam: Elsevier. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cunningham, J. A., Sands, D. E. & Wagner, W. F. (1967). Inorg. Chem. 6, 499–503. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117–1126. CAS Google Scholar
Fratini, A., Richards, G., Larder, E. & Swavey, S. (2008). Inorg. Chem. 47, 1030–1036. CSD CrossRef PubMed CAS Google Scholar
Fujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295–300. CrossRef PubMed CAS Web of Science Google Scholar
Hamaguchi, T., Nagata, T., Kawata, S. & Ando, I. (2011). Acta Cryst. E67, m1632. CSD CrossRef IUCr Journals Google Scholar
Hasegawa, Y. & Nakanishi, T. (2015). RSC Adv. 5, 338–353. Web of Science CrossRef CAS Google Scholar
Hasegawa, Y., Ohkubo, T., Nakanishi, T., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2013). Eur. J. Inorg. Chem. pp. 5911–5918. CSD CrossRef Google Scholar
Hasegawa, Y., Sato, N., Hirai, Y., Nakanishi, T., Kitagawa, Y., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2015). J. Phys. Chem. A, 119, 4825–4833. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ilmi, R. & Iftikhar, K. (2015). Polyhedron, 102, 16–26. CSD CrossRef CAS Google Scholar
Katagiri, S., Hasegawa, Y., Wada, Y. & Yanagida, S. (2004). Chem. Lett. 33, 1438–1439. CrossRef CAS Google Scholar
Katagiri, S., Tsukahara, Y., Hasegawa, Y. & Wada, Y. (2007). Bull. Chem. Soc. Jpn, 80, 1492–1503. CrossRef CAS Google Scholar
Kataoka, H., Nakanishi, T., Omagari, S., Takabatake, Y., Kitagawa, Y. & Hasegawa, Y. (2016). Bull. Chem. Soc. Jpn, 89, 103–109. CrossRef CAS Google Scholar
Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660. CrossRef Web of Science Google Scholar
Koizumi, A., Hasegawa, T., Itadani, A., Toda, K., Zhu, T. & Sato, M. (2017). Acta Cryst. E73, 1739–1742. CSD CrossRef IUCr Journals Google Scholar
Kuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88. Google Scholar
Li, H., Sun, J., Yang, M., Sun, Z., Xie, J., Ma, Y. & Li, L. (2017). New J. Chem. 41, 10181–10188. CSD CrossRef CAS Google Scholar
Lim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023–1031. CAS Google Scholar
Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070–4079. Web of Science CSD CrossRef CAS PubMed Google Scholar
Miyata, K., Konno, Y., Nakanishi, T., Kobayashi, A., Kato, M., Fushimi, K. & Hasegawa, Y. (2013). Angew. Chem. Int. Ed. 52, 6413–6416. CSD CrossRef CAS Google Scholar
Nakamura, M., Nakamura, R., Nagai, K., Shimoi, M., Tomoda, S., Takeuchi, Y. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 332–334. CSD CrossRef CAS Google Scholar
Phillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299. CSD CrossRef CAS Google Scholar
Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495–2500. CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rybkin, V. V., Tverdova, N. V., Girichev, G. V., Shlykov, S. A., Kuzmina, N. P. & Zaitseva, I. G. (2011). J. Mol. Struct. 1006, 173–179. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142–3143. CrossRef CAS Web of Science Google Scholar
Strehler, F., Korb, M. & Lang, H. (2015). Acta Cryst. E71, 244–247. CSD CrossRef IUCr Journals Google Scholar
Subhan, M. A., Rahman, M. S., Alam, K. & Hasan, M. M. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 944-950. PubMed Google Scholar
Tsaryuk, V. I., Vologzhanina, A. V., Zhuravlev, K. P. & Kudryashova, V. A. (2017). J. Fluor. Chem. 197, 87–93. CSD CrossRef CAS Google Scholar
Wang, Z., Liu, N. N., Li, H., Chen, P. & Yan, P. (2017). Eur. J. Inorg. Chem. pp. 2211–2219. CSD CrossRef Google Scholar
Yan, B., Kong, L. L. & Zhou, B. (2009). J. Non-Cryst. Solids, 355, 1281–1284. CrossRef CAS Google Scholar
Yuasa, J., Ohno, T., Miyata, K., Tsumatori, H., Hasegawa, Y. & Kawai, T. (2011). J. Am. Chem. Soc. 133, 9892–9902. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.