research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of tri­aqua­tris­­(1,1,1-tri­fluoro-4-oxo­pentan-2-olato)cerium(III) as a possible fluorescent compound

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan, bDepartment of Marine Resource Science, Faculity of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan, cCenter for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Japan, dDepartment of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan, eNenjiang Senior High School, Nenjiang Heihe City, Heilongjiang Province, 161400, People's Republic of China, and fDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata City, 950-2181, Japan
*Correspondence e-mail: msato@eng.niigata-u.ac.jp

Edited by A. Van der Lee, Université de Montpellier II, France (Received 1 December 2017; accepted 17 January 2018; online 26 January 2018)

Luminescence due to the d–f transition of Ce3+ is quite rare in metal–organic complexes where concentrate quenching frequently occurs. One of the possible ways to avoid this is to design an architecture with elongated metal–metal distances. In the structure of the title complex, tri­aqua­tris­(1,1,1-tri­fluoro-4-oxo­pentan-2-olato-κ2O,O′)cerium(III), [Ce(C5H4F3O2)3(H2O)3], the CeIII complex is linked to neighbouring ones by hydrogen bonding. Within the complex, the CeIII atom is coordinated by nine O atoms from three 1,1,1-tri­fluoro-4-oxo­pentan-2-olate (tfa) anions as bidentate ligands and three water mol­ecules as monodentate ligands. Thus, the coordination number of CeIII atom is nine in a monocapped square–anti­prismatic polyhedron. The F atoms of all three independent CF3 groups in tfa are disordered over two positions with occupancy ratios of about 0.8:0.2. The inter­molecular hydrogen bonds between the ligands involve tfa–water inter­actions along the [110] and [1-10] directions, generating an overall two-dimensional layered network structure. The presence of the F atoms in the tfa anion is responsible for an increased inter­molecular metal–metal distance compared to that in the analogous acetyl­acetonate (acac) derivatives. Fluorescence from Ce3+ is, however, not observed.

1. Chemical context

β-diketonate ligands have been used widely in metal–organic complexes involving rare earth elements because of their simple usage as organic bidentate ligands (Binnemans, 2005[Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107-272. Amsterdam: Elsevier.]). The nature of the ligand used is important for a possible enhancement of the luminescence efficiency and intensity; for example, acac is known to have a possible effect on the 4f–4f transition emission of Eu3+ (Kuz'mina et al., 2006[Kuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73-88.]). Tb(acac)3 was first used as an active light-emitting layer material in LEDs based on the emission from the lanthanide complex (Kido et al., 1990[Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657-660.]). Recently, a lanthanide complex containing Tb3+ and Eu3+, hexa­fluoro­acetyl­acetonate (hfa) and 4,4′-bis­(di­phenyl­phosphor­yl)biphenyl (dpdp), [Tb0.99Eu0.01(hfa)3(dpdp)]n, was reported to exhibit an expression thermo-sensing emission, called chameleon luminophore (Miyata et al., 2013[Miyata, K., Konno, Y., Nakanishi, T., Kobayashi, A., Kato, M., Fushimi, K. & Hasegawa, Y. (2013). Angew. Chem. Int. Ed. 52, 6413-6416.]; Hasegawa & Nakanishi, 2015[Hasegawa, Y. & Nakanishi, T. (2015). RSC Adv. 5, 338-353.]). The hfa anion can absorb efficiently a visible light excitation and transfer the excited energy from hfa to Tb3+, because the energy of the triplet state of hfa (22 000 cm−1) is very close to an energy level of Tb3+ (20 500 cm−1; Katagiri et al., 2004[Katagiri, S., Hasegawa, Y., Wada, Y. & Yanagida, S. (2004). Chem. Lett. 33, 1438-1439.]). However, the proximity of the levels causes a back-energy transfer from Tb3+ to hfa. The probability of three types of energy transfer from hfa to Tb3+, from Tb3+ to Eu3+ and from Tb3+ to hfa is temperature dependent. As a result, the complex can show green, yellow, orange and red emissions despite the 4f–4f transition.

[Scheme 1]

The nature of the ligand is important in the design of fluorescent metal–organic complexes. The F atoms in hfa are larger than the H atoms in acac, which means that the hfa ligand can reduce the energy loss due to thermal vibrations and could increase the inter­molecular distance between the central lanthanide atoms. This may control the concentration quenching.

A considerable number of metal–organic complexes containing Ce3+ have been reported so far, but the examples of emission based on the 5d–4f transition of Ce3+ in metal–organic complexes are scarce. [Ce(triRNTB)2](CF3SO3)3 [NTB = N-substituted tris­(N-alkyl­benzimidazol-2-ylmeth­yl)amine] and 3[Ce(Im)3(ImH)]·ImH (Zheng et al., 2007[Zheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399-7403.]; Meyer et al., 2015[Meyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070-4079.]) are some of the rare cases. One of the reasons for the small number of fluorescent metal–organic complexes containing Ce3+ is the too short distance between the Ce3+ ions, causing luminescence quenching by the energy transfer between Ce3+ ions. [Ce(triRNTB)2](CF3SO3)3 can show a blue emission thanks to a long Ce—Ce distance of about 17–18 Å. The use of more bulky ligands such as NTB is favourable for a longer Ce—Ce distance. 3[Ce(Im)3(ImH)]·ImH also shows a blue fluorescence emission despite a relatively short separation between the Ce3+ cations of 7 Å. Emission occurs more frequently in 3D structures with isolated complexes than in framework structures.

This study reports structural data on a newly synthesized Ce3+ complex with functional ligands of tfa.

2. Structural commentary

The title complex crystallizes in the ortho­rhom­bic space group Pcab with eight formula units of [Ce(C5F3H4O2)3(H2O)3]. Each mol­ecule is isolated individually, i.e. the crystal structure is not a framework structure. The central Ce atom is coord­in­ated by nine O atoms of three hfa and three water mol­ecules (Fig. 1[link]). Thus, the Ce atom has a monocapped square–anti­prismatic coordination. The Ce—O bond lengths can be classified into two categories; the first is involved in inter­actions with a bidentate hfa, and the second in inter­actions with monodentate water mol­ecules. All distances are comparable with those reported for tfa complexes (Nakamura et al., 1986[Nakamura, M., Nakamura, R., Nagai, K., Shimoi, M., Tomoda, S., Takeuchi, Y. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 332-334.]). The tri­fluoro­methyl groups of tfa coordinating the Ce3+ ion are all disordered on the F atoms, as is frequently observed in tri­fluoro­acetate and tetra­fluoro­borate complexes (Hamaguchi et al., 2011[Hamaguchi, T., Nagata, T., Kawata, S. & Ando, I. (2011). Acta Cryst. E67, m1632.]; Strehler et al., 2015[Strehler, F., Korb, M. & Lang, H. (2015). Acta Cryst. E71, 244-247.]).

[Figure 1]
Figure 1
View of the mol­ecular structure of the title complex, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

3. Supra­molecular features

The individual complexes are linked to neighbouring ones by four types of hydrogen bonds (Table 1[link]), nearly within the ab plane. There are two types of hydrogen-bond directions; the first are parallel to [110] and the second are parallel to [1[\overline{1}]0]. The chains consisting of the complex mol­ecules and the hydrogen bonds, two types of which are cross-linked to each other, building up two-dimensional networks (Fig. 2[link]). The functional hydro­phobic groups of –CF3 and –CH3 are located on the outside of the layer, resulting in the stabilization of the stacking layers by inter­molecular forces. Such a layer structure is also observed in the acetyl­acetonate complex, [Y(C5H7O2)3(H2O)3] (Cunningham et al., 1967[Cunningham, J. A., Sands, D. E. & Wagner, W. F. (1967). Inorg. Chem. 6, 499-503.]) (Fig. 3[link]). This yttrium complex also contains an isolated water in the structure, different from the title compound, but the water mol­ecule can act as a hydrogen-bond linker because it exists within a mol­ecular layer. As a result, the hydrogen bonds make a two-dimensional layered network, as in the title compound. The LnLn distance of nearest neighbours in this complex is longer than that of [Y(C5H7O2)3(H2O)3], the shortest distance in the former being 6.141 Å and in the latter 6.035 Å. This difference is mainly caused by atomic size difference between F and H atoms, even taking into account the atomic size difference between La and Y. The shortest LnLn distance of [La(C5H7O2)2(C3H4N2)(NO3)(H2O)2] (6.247 Å; Koizumi et al., 2017[Koizumi, A., Hasegawa, T., Itadani, A., Toda, K., Zhu, T. & Sato, M. (2017). Acta Cryst. E73, 1739-1742.]) is slightly longer than that of the title compound. The fact that the present complex does not show any luminescence from Ce3+ can certainly be attributed to an insufficient metal–metal separation. Based on previous studies and the present work, the minimum metal–metal separation is expected to be more than 7 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O32i 0.84 (2) 2.13 (3) 2.927 (4) 158 (5)
O1W—H1WB⋯O22i 0.83 (2) 2.23 (4) 2.969 (4) 149 (6)
O2W—H2WA⋯O14ii 0.85 (2) 1.91 (2) 2.759 (4) 177 (6)
O3W—H3WA⋯O24iii 0.85 (2) 1.94 (2) 2.792 (4) 176 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Connection of discrete complexes by inter­molecular hydrogen-bonded (blue lines) chains in the ab plane, viewed in projection along the c axis. Colour code: Ce yellow, C grey, F green and O red. H atoms have been omitted. Only the major components of the disordered CF3 groups are shown for clarity.
[Figure 3]
Figure 3
Comparison of the layered structures of the title compound and that of the [Y(C5H7O2)3(H2O)3] complex (Cunningham et al., 1967[Cunningham, J. A., Sands, D. E. & Wagner, W. F. (1967). Inorg. Chem. 6, 499-503.]). Colour code: Ce yellow, Y light blue, C grey, F green and O red. H atoms have been omitted. Only the main components of the disordered CF3 groups are shown for clarity.

4. Database survey

Crystal structures of related complexes involving lanthanide ions have been reported with acac ligands (Berg & Acosta, 1968[Berg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101-113.]; Binnemans, 2005[Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107-272. Amsterdam: Elsevier.]; Filotti et al., 1996[Filotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117-1126.]; Fujinaga et al., 1981[Fujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295-300.]; Lim et al., 1996[Lim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023-1031.]; Phillips et al., 1968[Phillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.]; Richardson et al., 1968[Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495-2500.]; Stites et al., 1948[Stites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142-3143.]), with tfa complexes (Ilmi et al., 2015[Ilmi, R. & Iftikhar, K. (2015). Polyhedron, 102, 16-26.]; Katagiri et al., 2007[Katagiri, S., Tsukahara, Y., Hasegawa, Y. & Wada, Y. (2007). Bull. Chem. Soc. Jpn, 80, 1492-1503.]; Li et al., 2017[Li, H., Sun, J., Yang, M., Sun, Z., Xie, J., Ma, Y. & Li, L. (2017). New J. Chem. 41, 10181-10188.]; Lim et al., 1996[Lim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023-1031.]; Nakamura et al., 1986[Nakamura, M., Nakamura, R., Nagai, K., Shimoi, M., Tomoda, S., Takeuchi, Y. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 332-334.]; Yan et al., 2009[Yan, B., Kong, L. L. & Zhou, B. (2009). J. Non-Cryst. Solids, 355, 1281-1284.]) and with hfa complexes (Subhan et al., 2014[Subhan, M. A., Rahman, M. S., Alam, K. & Hasan, M. M. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 944-950.]; Fratini et al., 2008[Fratini, A., Richards, G., Larder, E. & Swavey, S. (2008). Inorg. Chem. 47, 1030-1036.]; Hasegawa et al., 2013[Hasegawa, Y., Ohkubo, T., Nakanishi, T., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2013). Eur. J. Inorg. Chem. pp. 5911-5918.], 2015[Hasegawa, Y., Sato, N., Hirai, Y., Nakanishi, T., Kitagawa, Y., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2015). J. Phys. Chem. A, 119, 4825-4833.]; Kataoka et al., 2016[Kataoka, H., Nakanishi, T., Omagari, S., Takabatake, Y., Kitagawa, Y. & Hasegawa, Y. (2016). Bull. Chem. Soc. Jpn, 89, 103-109.]; Rybkin et al., 2011[Rybkin, V. V., Tverdova, N. V., Girichev, G. V., Shlykov, S. A., Kuzmina, N. P. & Zaitseva, I. G. (2011). J. Mol. Struct. 1006, 173-179.]; Tsaryuk et al., 2017[Tsaryuk, V. I., Vologzhanina, A. V., Zhuravlev, K. P. & Kudryashova, V. A. (2017). J. Fluor. Chem. 197, 87-93.]; Wang et al., 2017[Wang, Z., Liu, N. N., Li, H., Chen, P. & Yan, P. (2017). Eur. J. Inorg. Chem. pp. 2211-2219.]; Yuasa et al., 2011[Yuasa, J., Ohno, T., Miyata, K., Tsumatori, H., Hasegawa, Y. & Kawai, T. (2011). J. Am. Chem. Soc. 133, 9892-9902.]).

5. Synthesis and crystallization

Yellow plate-like crystals were obtained by slow evaporation from an acetone solution of Ce(NO3)3·6H2O and tri­fluoro­acetyl­acetone (1:3 molar ratio). The products were filtered off and dried at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to a C atom were positioned geometrically after each cycle in idealized locations and refined as riding on their parent C atoms with C—H = 0.93 Å and Uiso(H) = 1.2Uiso(C atom). All hydrogen atoms bonded to a water O atom were located in a difference-Fourier map and refined isotropically with a distance restraint of 0.85 (2) Å and with thermal restraints Uiso(H) = 1.5Uiso(O atom). The occupancies of the disordered F atoms in the –CF3 group were refined for the pairs F11A/F11D, F11B/F11E and F11C/F11F to be 0.829 (14)/0.171 (14), for the pairs of F21A/F21F, F21B/F21E and F21C/F21F to be 0.838 (17)/0.162 (17), and for the pairs of F31A/F31D, F31B/F31E and F31C/F31F to be 0.836 (11)/0.164 (11).

Table 2
Experimental details

Crystal data
Chemical formula [Ce(C5H4F3O2)3(H2O)3]
Mr 653.41
Crystal system, space group Orthorhombic, Pcab
Temperature (K) 293
a, b, c (Å) 11.6347 (7), 16.5121 (9), 24.5577 (17)
V3) 4717.9 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.04
Crystal size (mm) 0.3 × 0.19 × 0.11
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.603, 0.805
No. of measured, independent and observed [I > 2σ(I)] reflections 45156, 5404, 4309
Rint 0.039
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.11
No. of reflections 5404
No. of parameters 367
No. of restraints 60
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.78, −0.44
Computer programs: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006) and SORTAV (Blessing, 1995); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Triaquatris(1,1,1-trifluoro-4-oxopentan-2-olato-κ2O,O')cerium(III) top
Crystal data top
[Ce(C5H4F3O2)3(H2O)3]F(000) = 2552
Mr = 653.41Dx = 1.84 Mg m3
Orthorhombic, PcabMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2acCell parameters from 36866 reflections
a = 11.6347 (7) Åθ = 3.0–27.5°
b = 16.5121 (9) ŵ = 2.04 mm1
c = 24.5577 (17) ÅT = 293 K
V = 4717.9 (5) Å3Prism, yellow
Z = 80.3 × 0.19 × 0.11 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
5404 independent reflections
Radiation source: sealed x-ray tube4309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
phi or ω oscillation scansh = 1415
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 2121
Tmin = 0.603, Tmax = 0.805l = 3131
45156 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0377P)2 + 9.6633P]
where P = (Fo2 + 2Fc2)/3
5404 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.78 e Å3
60 restraintsΔρmin = 0.44 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.44439 (2)0.34074 (2)0.44106 (2)0.02854 (8)
C110.4237 (6)0.3197 (4)0.2473 (2)0.0778 (19)
C120.3779 (5)0.3321 (3)0.30394 (19)0.0538 (13)
O120.4339 (3)0.3049 (2)0.34228 (12)0.0486 (8)
C130.2728 (5)0.3716 (4)0.3061 (2)0.0646 (15)
H130.24270.39240.27390.078*
C140.2092 (4)0.3819 (4)0.3546 (2)0.0600 (14)
O140.2451 (3)0.3617 (2)0.40111 (12)0.0448 (7)
C150.0892 (6)0.4173 (6)0.3520 (3)0.113 (3)
H15A0.07660.44060.31670.169*
H15B0.08120.45840.37940.169*
H15C0.03380.37520.35830.169*
C210.4510 (5)0.5793 (3)0.33461 (19)0.0586 (14)
C220.5053 (4)0.5033 (3)0.35843 (18)0.0439 (10)
O220.4552 (3)0.47868 (18)0.40133 (11)0.0408 (7)
C230.5971 (5)0.4712 (3)0.3316 (2)0.0536 (12)
H230.62010.4960.29940.064*
C240.6600 (4)0.4024 (3)0.34943 (19)0.0468 (11)
O240.6358 (2)0.36304 (19)0.39146 (12)0.0429 (7)
C250.7622 (5)0.3774 (4)0.3167 (2)0.0700 (16)
H25A0.74890.38970.2790.105*
H25B0.77450.32030.32080.105*
H25C0.82880.40630.32920.105*
C310.1589 (4)0.4538 (3)0.5562 (2)0.0607 (14)
C320.2598 (4)0.3977 (3)0.54542 (19)0.0430 (10)
O320.3247 (3)0.42071 (18)0.50708 (12)0.0454 (7)
C330.2669 (4)0.3297 (3)0.5767 (2)0.0529 (12)
H330.21020.32070.60270.063*
C340.3567 (4)0.2718 (3)0.57165 (18)0.0467 (11)
O340.4301 (3)0.27381 (19)0.53500 (12)0.0448 (7)
C350.3625 (6)0.2034 (4)0.6122 (3)0.0802 (19)
H35A0.3160.21640.64330.12*
H35B0.44070.19580.62360.12*
H35C0.33460.15460.59570.12*
F11B0.4262 (11)0.3878 (4)0.2185 (3)0.166 (5)0.829 (14)
F11A0.3683 (6)0.2702 (5)0.2173 (2)0.132 (3)0.829 (14)
F11C0.5308 (6)0.2914 (7)0.2481 (2)0.156 (5)0.829 (14)
F11D0.455 (3)0.2450 (11)0.2438 (15)0.131 (14)*0.171 (14)
F11E0.503 (2)0.3703 (15)0.2358 (11)0.080 (9)*0.171 (14)
F11F0.336 (2)0.330 (3)0.2134 (15)0.149 (17)*0.171 (14)
F21A0.3517 (8)0.5668 (4)0.3129 (5)0.148 (4)0.838 (17)
F21B0.5143 (11)0.6165 (5)0.2974 (4)0.160 (5)0.838 (17)
F21C0.4371 (7)0.6369 (2)0.3718 (2)0.0713 (18)0.838 (17)
F21D0.4696 (19)0.5826 (17)0.2820 (6)0.060 (8)*0.162 (17)
F21E0.483 (3)0.6448 (16)0.3572 (13)0.108 (15)*0.162 (17)
F21F0.3356 (14)0.5734 (15)0.3364 (10)0.054 (7)*0.162 (17)
F31A0.1248 (6)0.4523 (5)0.6089 (2)0.137 (3)0.836 (11)
F31B0.0676 (4)0.4319 (3)0.5295 (3)0.110 (3)0.836 (11)
F31C0.1797 (4)0.5278 (2)0.5457 (4)0.115 (3)0.836 (11)
F31E0.129 (3)0.487 (2)0.5071 (8)0.125 (13)*0.164 (11)
F31F0.175 (4)0.5175 (18)0.5874 (14)0.16 (2)*0.164 (11)
F31D0.065 (2)0.419 (2)0.5740 (17)0.140 (16)*0.164 (11)
O1W0.5906 (3)0.4133 (2)0.50449 (13)0.0432 (7)
H1WA0.627 (4)0.455 (2)0.495 (2)0.065*
H1WB0.574 (5)0.426 (4)0.5364 (11)0.065*
O2W0.5781 (3)0.2200 (2)0.45895 (15)0.0536 (9)
H2WA0.629 (4)0.193 (4)0.442 (2)0.08*
H2WB0.578 (5)0.201 (4)0.4904 (13)0.08*
O3W0.3258 (3)0.2079 (2)0.44205 (16)0.0578 (9)
H3WA0.270 (4)0.186 (4)0.425 (2)0.087*
H3WB0.346 (6)0.161 (2)0.451 (3)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02544 (11)0.03113 (12)0.02903 (12)0.00204 (9)0.00172 (9)0.00215 (9)
C110.104 (6)0.089 (5)0.040 (3)0.012 (4)0.001 (3)0.008 (3)
C120.066 (3)0.060 (3)0.035 (2)0.015 (3)0.001 (2)0.002 (2)
O120.0509 (19)0.059 (2)0.0355 (16)0.0012 (16)0.0016 (14)0.0088 (15)
C130.068 (4)0.080 (4)0.046 (3)0.005 (3)0.012 (3)0.011 (3)
C140.043 (3)0.076 (4)0.061 (3)0.004 (3)0.011 (2)0.013 (3)
O140.0316 (15)0.059 (2)0.0437 (17)0.0006 (14)0.0022 (13)0.0072 (14)
C150.066 (4)0.174 (9)0.097 (5)0.054 (5)0.018 (4)0.035 (6)
C210.089 (4)0.046 (3)0.041 (3)0.010 (3)0.004 (3)0.011 (2)
C220.054 (3)0.038 (2)0.039 (2)0.003 (2)0.003 (2)0.0074 (18)
O220.0475 (17)0.0375 (15)0.0373 (15)0.0058 (14)0.0065 (13)0.0087 (13)
C230.061 (3)0.054 (3)0.046 (3)0.006 (2)0.015 (2)0.019 (2)
C240.036 (2)0.060 (3)0.044 (2)0.004 (2)0.008 (2)0.011 (2)
O240.0314 (15)0.0551 (18)0.0423 (17)0.0061 (13)0.0063 (13)0.0154 (14)
C250.055 (3)0.093 (4)0.062 (3)0.014 (3)0.027 (3)0.014 (3)
C310.040 (3)0.057 (3)0.085 (4)0.000 (2)0.014 (3)0.019 (3)
C320.030 (2)0.049 (3)0.049 (3)0.0027 (19)0.0042 (19)0.016 (2)
O320.0467 (17)0.0472 (17)0.0424 (16)0.0084 (15)0.0108 (14)0.0012 (14)
C330.046 (3)0.061 (3)0.051 (3)0.004 (2)0.021 (2)0.001 (2)
C340.047 (3)0.054 (3)0.039 (2)0.008 (2)0.007 (2)0.002 (2)
O340.0467 (18)0.0533 (19)0.0343 (15)0.0073 (15)0.0087 (14)0.0063 (14)
C350.095 (5)0.078 (4)0.068 (4)0.007 (4)0.030 (3)0.032 (3)
F11B0.274 (13)0.152 (7)0.073 (4)0.019 (7)0.064 (6)0.042 (4)
F11A0.142 (6)0.173 (7)0.082 (4)0.010 (5)0.013 (4)0.076 (4)
F11C0.099 (5)0.305 (13)0.065 (3)0.041 (7)0.018 (3)0.036 (5)
F21A0.196 (8)0.097 (4)0.151 (7)0.052 (5)0.128 (6)0.018 (5)
F21B0.238 (10)0.096 (5)0.146 (7)0.068 (6)0.108 (7)0.087 (5)
F21C0.105 (5)0.040 (2)0.069 (3)0.012 (2)0.006 (3)0.0032 (19)
F31A0.129 (6)0.175 (7)0.106 (5)0.071 (5)0.053 (4)0.015 (4)
F31B0.049 (3)0.090 (4)0.191 (7)0.017 (2)0.034 (3)0.047 (4)
F31C0.075 (3)0.042 (2)0.228 (9)0.005 (2)0.055 (4)0.021 (3)
O1W0.0436 (17)0.0465 (18)0.0396 (17)0.0101 (14)0.0018 (14)0.0037 (15)
O2W0.048 (2)0.059 (2)0.054 (2)0.0261 (16)0.0161 (16)0.0169 (17)
O3W0.059 (2)0.0420 (18)0.072 (2)0.0178 (17)0.0242 (19)0.0094 (17)
Geometric parameters (Å, º) top
Ce1—O222.481 (3)C22—O221.271 (5)
Ce1—O122.500 (3)C22—C231.362 (7)
Ce1—O322.512 (3)C23—C241.420 (7)
Ce1—O142.542 (3)C23—H230.93
Ce1—O342.563 (3)C24—O241.252 (5)
Ce1—O242.565 (3)C24—C251.493 (6)
Ce1—O2W2.566 (3)C25—H25A0.96
Ce1—O3W2.592 (3)C25—H25B0.96
Ce1—O1W2.599 (3)C25—H25C0.96
C11—F11A1.276 (7)C31—F31C1.273 (7)
C11—F11E1.280 (15)C31—F31B1.299 (6)
C11—F11D1.289 (16)C31—F31D1.308 (17)
C11—F11B1.328 (8)C31—F31F1.315 (17)
C11—F11F1.330 (16)C31—F31A1.354 (7)
C11—F11C1.331 (8)C31—F31E1.372 (16)
C11—C121.504 (8)C31—C321.518 (6)
C12—O121.230 (6)C32—O321.266 (5)
C12—C131.387 (8)C32—C331.365 (7)
C13—C141.413 (8)C33—C341.422 (7)
C13—H130.93C33—H330.93
C14—O141.262 (6)C34—O341.241 (5)
C14—C151.514 (8)C34—C351.507 (7)
C15—H15A0.96C35—H35A0.96
C15—H15B0.96C35—H35B0.96
C15—H15C0.96C35—H35C0.96
C21—F21E1.273 (15)O1W—H1WA0.84 (2)
C21—F21A1.289 (8)O1W—H1WB0.83 (2)
C21—F21D1.312 (14)O2W—H2WA0.85 (2)
C21—F21B1.324 (7)O2W—H2WB0.84 (2)
C21—F21C1.329 (6)O3W—H3WA0.85 (2)
C21—F21F1.347 (15)O3W—H3WB0.84 (2)
C21—C221.522 (6)
O22—Ce1—O1280.70 (11)F21A—C21—F21B106.6 (7)
O22—Ce1—O3278.42 (10)F21A—C21—F21C106.8 (6)
O12—Ce1—O32136.35 (11)F21B—C21—F21C102.1 (6)
O22—Ce1—O1476.68 (10)F21E—C21—F21F109.9 (15)
O12—Ce1—O1467.23 (10)F21D—C21—F21F101.5 (12)
O32—Ce1—O1470.85 (10)F21E—C21—C22114.3 (17)
O22—Ce1—O34138.85 (10)F21A—C21—C22113.6 (5)
O12—Ce1—O34140.17 (11)F21D—C21—C22110.2 (13)
O32—Ce1—O3467.04 (10)F21B—C21—C22114.7 (5)
O14—Ce1—O34110.31 (10)F21C—C21—C22112.1 (4)
O22—Ce1—O2468.74 (10)F21F—C21—C22110.0 (12)
O12—Ce1—O2467.40 (10)O22—C22—C23129.5 (4)
O32—Ce1—O24135.42 (10)O22—C22—C21113.1 (4)
O14—Ce1—O24126.11 (10)C23—C22—C21117.4 (4)
O34—Ce1—O24123.05 (9)C22—O22—Ce1130.0 (3)
O22—Ce1—O2W138.56 (11)C22—C23—C24124.5 (4)
O12—Ce1—O2W90.68 (12)C22—C23—H23117.7
O32—Ce1—O2W129.33 (11)C24—C23—H23117.7
O14—Ce1—O2W136.45 (12)O24—C24—C23123.6 (4)
O34—Ce1—O2W63.28 (10)O24—C24—C25118.7 (4)
O24—Ce1—O2W70.52 (10)C23—C24—C25117.7 (4)
O22—Ce1—O3W143.87 (11)C24—O24—Ce1131.4 (3)
O12—Ce1—O3W77.44 (12)C24—C25—H25A109.5
O32—Ce1—O3W98.26 (12)C24—C25—H25B109.5
O14—Ce1—O3W68.46 (11)H25A—C25—H25B109.5
O34—Ce1—O3W65.93 (11)C24—C25—H25C109.5
O24—Ce1—O3W126.04 (12)H25A—C25—H25C109.5
O2W—Ce1—O3W70.35 (13)H25B—C25—H25C109.5
O22—Ce1—O1W77.26 (10)F31C—C31—F31B108.7 (6)
O12—Ce1—O1W136.27 (11)F31D—C31—F31F105.9 (17)
O32—Ce1—O1W74.57 (11)F31C—C31—F31A105.5 (5)
O14—Ce1—O1W139.99 (11)F31B—C31—F31A103.7 (6)
O34—Ce1—O1W72.65 (10)F31D—C31—F31E105.0 (16)
O24—Ce1—O1W69.51 (10)F31F—C31—F31E103.0 (16)
O2W—Ce1—O1W81.87 (12)F31C—C31—C32113.8 (4)
O3W—Ce1—O1W137.14 (11)F31B—C31—C32112.0 (4)
F11E—C11—F11D113.8 (16)F31D—C31—C32115.9 (17)
F11A—C11—F11B104.2 (7)F31F—C31—C32118.7 (19)
F11E—C11—F11F109.5 (15)F31A—C31—C32112.5 (5)
F11D—C11—F11F107.7 (16)F31E—C31—C32106.8 (14)
F11A—C11—F11C104.9 (7)O32—C32—C33129.0 (4)
F11B—C11—F11C106.6 (8)O32—C32—C31114.2 (4)
F11A—C11—C12116.3 (6)C33—C32—C31116.8 (4)
F11E—C11—C12111.8 (13)C32—O32—Ce1130.8 (3)
F11D—C11—C12106.9 (17)C32—C33—C34123.3 (4)
F11B—C11—C12112.7 (6)C32—C33—H33118.4
F11F—C11—C12106.7 (19)C34—C33—H33118.4
F11C—C11—C12111.4 (5)O34—C34—C33123.5 (4)
O12—C12—C13127.6 (5)O34—C34—C35117.9 (5)
O12—C12—C11118.1 (5)C33—C34—C35118.6 (4)
C13—C12—C11114.3 (5)C34—O34—Ce1135.1 (3)
C12—O12—Ce1133.0 (3)C34—C35—H35A109.5
C12—C13—C14123.4 (5)C34—C35—H35B109.5
C12—C13—H13118.3H35A—C35—H35B109.5
C14—C13—H13118.3C34—C35—H35C109.5
O14—C14—C13123.9 (5)H35A—C35—H35C109.5
O14—C14—C15116.4 (5)H35B—C35—H35C109.5
C13—C14—C15119.6 (5)Ce1—O1W—H1WA123 (4)
C14—O14—Ce1133.5 (3)Ce1—O1W—H1WB122 (4)
C14—C15—H15A109.5H1WA—O1W—H1WB100 (5)
C14—C15—H15B109.5Ce1—O2W—H2WA138 (4)
H15A—C15—H15B109.5Ce1—O2W—H2WB117 (4)
C14—C15—H15C109.5H2WA—O2W—H2WB105 (6)
H15A—C15—H15C109.5Ce1—O3W—H3WA140 (5)
H15B—C15—H15C109.5Ce1—O3W—H3WB129 (5)
F21E—C21—F21D110.2 (15)H3WA—O3W—H3WB87 (6)
F11A_a—C11—C12—O12109.7 (8)F21C—C21—C22—C23130.5 (6)
F11E—C11—C12—O1279.3 (17)F21F—C21—C22—C23137.2 (12)
F11D—C11—C12—O1245.9 (19)C23—C22—O22—Ce124.8 (8)
F11B—C11—C12—O12130.0 (8)C21—C22—O22—Ce1154.3 (3)
F11F—C11—C12—O12161.0 (19)O22—C22—C23—C243.3 (9)
F11C—C11—C12—O1210.3 (9)C21—C22—C23—C24177.6 (5)
F11A—C11—C12—C1368.2 (9)C22—C23—C24—O241.5 (9)
F11E—C11—C12—C13102.7 (16)C22—C23—C24—C25177.0 (5)
F11D—C11—C12—C13132.0 (19)C23—C24—O24—Ce127.8 (7)
F11B—C11—C12—C1352.0 (10)C25—C24—O24—Ce1153.7 (4)
F11F—C11—C12—C1317.0 (19)F31C—C31—C32—O3230.8 (8)
F11C—C11—C12—C13171.7 (8)F31B—C31—C32—O3292.9 (7)
C13—C12—O12—Ce125.9 (8)F31D—C31—C32—O32148 (2)
C11—C12—O12—Ce1156.4 (4)F31F—C31—C32—O3284 (2)
O12—C12—C13—C144.5 (10)F31A—C31—C32—O32150.7 (6)
C11—C12—C13—C14173.2 (6)F31E—C31—C32—O3231.9 (18)
C12—C13—C14—O145.5 (10)F31C—C31—C32—C33150.7 (6)
C12—C13—C14—C15173.0 (7)F31B—C31—C32—C3385.6 (7)
C13—C14—O14—Ce123.3 (9)F31D—C31—C32—C3330 (2)
C15—C14—O14—Ce1158.2 (5)F31F—C31—C32—C3398 (2)
F21E—C21—C22—O2282.1 (19)F31A—C31—C32—C3330.8 (7)
F21A—C21—C22—O2270.9 (8)F31E—C31—C32—C33146.6 (17)
F21D—C21—C22—O22153.2 (11)C33—C32—O32—Ce128.9 (7)
F21B—C21—C22—O22166.1 (9)C31—C32—O32—Ce1149.4 (3)
F21C—C21—C22—O2250.2 (7)O32—C32—C33—C342.2 (8)
F21F—C21—C22—O2242.1 (12)C31—C32—C33—C34179.6 (5)
F21E—C21—C22—C2398.6 (19)C32—C33—C34—O347.2 (8)
F21A—C21—C22—C23108.4 (9)C32—C33—C34—C35173.8 (5)
F21D—C21—C22—C2326.1 (13)C33—C34—O34—Ce119.7 (7)
F21B—C21—C22—C2314.6 (11)C35—C34—O34—Ce1159.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O32i0.84 (2)2.13 (3)2.927 (4)158 (5)
O1W—H1WB···O22i0.83 (2)2.23 (4)2.969 (4)149 (6)
O2W—H2WA···O14ii0.85 (2)1.91 (2)2.759 (4)177 (6)
O3W—H3WA···O24iii0.85 (2)1.94 (2)2.792 (4)176 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.
 

Funding information

This work was partly supported by a Grant-in-Aid for Scientific Research (No. 17H03124 and No. 17H03386) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBerg, E. W. & Acosta, J. J. C. (1968). Anal. Chim. Acta, 40, 101–113.  CrossRef CAS Web of Science Google Scholar
First citationBinnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths Vol. 35, edited by K. A. Gschneidner, J. C. G. Bunzli & V. K. Percharsky, ch. 225, pp. 107–272. Amsterdam: Elsevier.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCunningham, J. A., Sands, D. E. & Wagner, W. F. (1967). Inorg. Chem. 6, 499–503.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilotti, L., Bugli, G., Ensuque, A. & Bozon-Verduraz, F. (1996). Bull. Soc. Chim. Fr. 133, 1117–1126.  CAS Google Scholar
First citationFratini, A., Richards, G., Larder, E. & Swavey, S. (2008). Inorg. Chem. 47, 1030–1036.  CSD CrossRef PubMed CAS Google Scholar
First citationFujinaga, T., Kuwamoto, T., Sugiura, K. & Ichiki, S. (1981). Talanta, 28, 295–300.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHamaguchi, T., Nagata, T., Kawata, S. & Ando, I. (2011). Acta Cryst. E67, m1632.  CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, Y. & Nakanishi, T. (2015). RSC Adv. 5, 338–353.  Web of Science CrossRef CAS Google Scholar
First citationHasegawa, Y., Ohkubo, T., Nakanishi, T., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2013). Eur. J. Inorg. Chem. pp. 5911–5918.  CSD CrossRef Google Scholar
First citationHasegawa, Y., Sato, N., Hirai, Y., Nakanishi, T., Kitagawa, Y., Kobayashi, A., Kato, M., Seki, T., Ito, H. & Fushimi, K. (2015). J. Phys. Chem. A, 119, 4825–4833.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIlmi, R. & Iftikhar, K. (2015). Polyhedron, 102, 16–26.  CSD CrossRef CAS Google Scholar
First citationKatagiri, S., Hasegawa, Y., Wada, Y. & Yanagida, S. (2004). Chem. Lett. 33, 1438–1439.  CrossRef CAS Google Scholar
First citationKatagiri, S., Tsukahara, Y., Hasegawa, Y. & Wada, Y. (2007). Bull. Chem. Soc. Jpn, 80, 1492–1503.  CrossRef CAS Google Scholar
First citationKataoka, H., Nakanishi, T., Omagari, S., Takabatake, Y., Kitagawa, Y. & Hasegawa, Y. (2016). Bull. Chem. Soc. Jpn, 89, 103–109.  CrossRef CAS Google Scholar
First citationKido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660.  CrossRef Web of Science Google Scholar
First citationKoizumi, A., Hasegawa, T., Itadani, A., Toda, K., Zhu, T. & Sato, M. (2017). Acta Cryst. E73, 1739–1742.  CSD CrossRef IUCr Journals Google Scholar
First citationKuz'mina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88.  Google Scholar
First citationLi, H., Sun, J., Yang, M., Sun, Z., Xie, J., Ma, Y. & Li, L. (2017). New J. Chem. 41, 10181–10188.  CSD CrossRef CAS Google Scholar
First citationLim, J. T., Hong, S. T., Lee, J. C. & Lee, I. M. (1996). Bull. Korean Chem. Soc. 17, 1023–1031.  CAS Google Scholar
First citationMeyer, L. V., Schönfeld, F., Zurawski, A., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2015). Dalton Trans. 44, 4070–4079.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMiyata, K., Konno, Y., Nakanishi, T., Kobayashi, A., Kato, M., Fushimi, K. & Hasegawa, Y. (2013). Angew. Chem. Int. Ed. 52, 6413–6416.  CSD CrossRef CAS Google Scholar
First citationNakamura, M., Nakamura, R., Nagai, K., Shimoi, M., Tomoda, S., Takeuchi, Y. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 332–334.  CSD CrossRef CAS Google Scholar
First citationPhillips, T. II, Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299.  CSD CrossRef CAS Google Scholar
First citationRichardson, M. F., Wagner, W. F. & Sands, D. E. (1968). Inorg. Chem. 7, 2495–2500.  CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRybkin, V. V., Tverdova, N. V., Girichev, G. V., Shlykov, S. A., Kuzmina, N. P. & Zaitseva, I. G. (2011). J. Mol. Struct. 1006, 173–179.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStites, J. G., McCarty, C. N. & Quill, L. L. (1948). J. Am. Chem. Soc. 70, 3142–3143.  CrossRef CAS Web of Science Google Scholar
First citationStrehler, F., Korb, M. & Lang, H. (2015). Acta Cryst. E71, 244–247.  CSD CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Rahman, M. S., Alam, K. & Hasan, M. M. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 944-950.  PubMed Google Scholar
First citationTsaryuk, V. I., Vologzhanina, A. V., Zhuravlev, K. P. & Kudryashova, V. A. (2017). J. Fluor. Chem. 197, 87–93.  CSD CrossRef CAS Google Scholar
First citationWang, Z., Liu, N. N., Li, H., Chen, P. & Yan, P. (2017). Eur. J. Inorg. Chem. pp. 2211–2219.  CSD CrossRef Google Scholar
First citationYan, B., Kong, L. L. & Zhou, B. (2009). J. Non-Cryst. Solids, 355, 1281–1284.  CrossRef CAS Google Scholar
First citationYuasa, J., Ohno, T., Miyata, K., Tsumatori, H., Hasegawa, Y. & Kawai, T. (2011). J. Am. Chem. Soc. 133, 9892–9902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZheng, X. L., Liu, Y., Pan, M., Lü, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds