research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of KNaCuP2O7, a new member of the diphosphate family

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Materiaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 December 2017; accepted 3 January 2018; online 9 January 2018)

Potassium sodium copper(II) diphosphate(V), KNaCuP2O7, was synthesized by solid-state reactions. It crystallizes in the α-Na2CuP2O7 structure type in space group P21/n. In the crystal, CuO5 square-pyramids are linked to nearly eclipsed P2O7 groups by sharing corners to build up corrugated layers with composition [CuP2O7]2− that extend parallel to (010). The K+ and Na+ cations reside in the inter­layer space and are connected to nine and seven O atoms, respectively. The structural model was validated by bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis.

1. Chemical context

In order to improve the ionic conductivity in copper diphosphates with general formula MM'CuP2O7 (M, M' = monovalent cation), we attempted to partially replace the potassium cations in K2CuP2O7 by smaller sodium cations. In the K2CuP2O7 structure, the alkali cations are located in the inter­layer space between corrugated [CuP2O7]2− anionic layers. Reducing the size of the cation can increase its mobility, and therefore might improve the material's charge-transport behaviour.

Several attempts were made to prepare crystals of the hypothetical solid solution K2–xNaxCuP2O7, with x in the range 0 to 2. All of the attempts led to a compound with x = 1, i.e. KNaCuP2O7, the crystal structure of which is reported in this communication.

2. Structural commentary

The title compound KNaCuP2O7 crystallizes isotypically with α-Na2CuP2O7 (Erragh et al., 1995[Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23-31.]) and also shows resemblance with one form of K2CuP2O7 (ElMaadi et al., 1995[ElMaadi, A., Boukhari, A. & Holt, E. M. (1995). J. Alloys Compd. 223, 13-17.]). It is built up by corrugated [CuP2O7]2− layers with the alkali cations situated in the inter­layer space. The anionic layers consist of a nearly eclipsed diphosphate group [O2—P2—P1—O6 torsion angle = 15.90 (1)°] linked to CuO5 square-pyramids by sharing five of the terminal oxygen atoms (O2, O3, O5, O6, O7). The bridging atom O4 of the diphosphate unit is not involved in metal coordination, and atom O1 coordinates to the alkali cations in the inter­layer space (Fig. 1[link]).

[Figure 1]
Figure 1
The diphosphate group directly connected to three CuO5 polyhedra in the structure of KNaCuP2O7. Displacement ellipsoids are drawn at the 50% probability level.

The P2—O4—P1 bridging angle [119.01 (11)°] of the diphosphate anion is close to those observed in other similar diarsenate and diphosphate structures, such as KCr1/4Al3/4As2O7 [118.50 (14)°; Bouhassine & Boughzala, 2017[Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345-348.]], CsCrAs2O7 [118.7 (2)°; Bouhassine & Boughzala, 2015[Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636-639.]], KAlAs2O7 [118.3 (2)°; Boughzala & Jouini, 1995[Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179-181.]], α-Na2CuP2O7 [118.65 (1)°; Erragh et al., 1995[Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23-31.]] and K2CuP2O7 [120.41 (3)°; ElMaadi et al., 1995[ElMaadi, A., Boukhari, A. & Holt, E. M. (1995). J. Alloys Compd. 223, 13-17.]]. As expected, the Cu—O bond length to the apical oxygen atom O5 is significantly longer than the Cu—O distances to the basal oxygen atoms of the square-pyramid (Table 1[link]). The calculated bond-valence sum (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]; Adams, 2003[Adams, S. (2003). softBV. University of Göttingen, Germany.]) of 1.94 valence units for the Cu site is in good agreement with the expected value of 2 for divalent copper. The geometry index of the CuO5 polyhedron τ5, as defined by Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), has a value of 0.26, indicating a distorted square-pyramidal coordination environment (the value for an ideal square-pyramid is 0 while that of an ideal trigonal bipyramid is 1). Each CuO5 polyhedron shares its vertices with two P2O74− anions, one of which is chelating and the other belongs to two different P2O7 groups (Fig. 2[link]). This linkage leads to layers extending parallel to (010) (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Cu—O2 1.9328 (18) Na—O5 2.398 (2)
Cu—O3i 1.9427 (18) Na—O7i 2.4442 (19)
Cu—O6 1.9743 (17) Na—O3iv 2.772 (2)
Cu—O7i 1.9872 (17) Na—O5i 2.815 (2)
Cu—O5ii 2.3225 (19) Na—O7iv 2.878 (2)
P1—O1 1.482 (2) K—O2 2.721 (2)
P1—O2 1.5246 (19) K—O5iii 2.7245 (18)
P1—O3 1.5313 (19) K—O1i 2.764 (2)
P1—O4 1.6272 (17) K—O6v 2.7969 (19)
P2—O5 1.4958 (17) K—O7vi 2.8450 (19)
P2—O6 1.5252 (17) K—O3vii 2.8630 (18)
P2—O7 1.5277 (16) K—O1 3.036 (2)
P2—O4 1.6148 (18) K—O2vii 3.1973 (19)
Na—O1iii 2.249 (2) K—O3i 3.257 (2)
Na—O6iv 2.397 (2)    
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The CuO5 square-pyramid with neighbouring diphosphate groups in the structure of KNaCuP2O7. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Projection of the KNaCuP2O7 structure along [100], showing the corrugated inter­layer space housing the cations K+ in the `L' sites and Na+ in the `S' sites. Displacement ellipsoids are drawn at the 99% probability level.

As in the crystal structures of K2CuP2O7 and α-Na2CuP2O7, the crystal structure of KNaCuP2O7 exhibits two independent sites hosting the K+ and Na+ cations. The first site is larger (`L') and is occupied by K+ cations. It is limited by two neighbouring anionic layers (Fig. 3[link]). The resulting KO9 coord­ination polyhedron is considerably distorted (Fig. 4[link], Table 1[link]). Its bond-valence sum is 0.98 valence units (Table 2[link]). The second site is smaller (`S') and is occupied by Na+ cations. It is surrounded by three CuO5 and five PO4 polyhedra, delimiting an ellipsoidal cavity as shown in Figs. 3[link] and 5[link]. The irregular coordination sphere of Na+ is made up of seven oxygen atoms and shows an effective coordination number (ECoN; Nespolo et al., 2001[Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652-664.]) of 5.2 (for other ECoN values, see Table 2[link]). The Na—O bonds lengths can be divided in groups of four short [2.249 (2)–2.4442 (19) Å] and three long [2.772 (2)–2.878 (2) Å] bonds (Table 1[link]). Its bond-valence sum is 0.98 valence units (Table 2[link]).

Table 2
CHARDI and BVS analysis of cation polyhedra in KNaCuP2O7

Cation qi()·sof(i) Q(i) V(i)·sof(i) CN(i) ECoN(i) dar(i) dmed(i)
Cu 2.000 1.94 1.995 5 4.35 2.031 2.031
P1 5.000 5.07 4.921 4 3.84 1.540 1.541
P2 5.000 5.03 4.938 4 3.88 1.540 1.540
K 1.000 0.98 1.103 9 5.20 2.622 2.564
Na 1.000 0.98 1.106 7 7.80 2.912 2.912
Notes: qi = formal oxydation number; sof(i) = site occupation factor; dar(i) = average distance; dmed(i) = weighted average distance; CN(i) = coordination number; ECoN(i)= effective coordination number; σcat = dispersion factor on cationic charges measuring the deviation of the computed charges; σcat=[Σi(qi − Qi)2/N − 1]1/2 = 0.019.
[Figure 4]
Figure 4
The nine-coordinated K+ cation in the large `L' site within the inter­layer space in the structure of KNaCuP2O7. Displacement ellipsoids are drawn at 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, −z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) 1 − x, 1 − y, 1 − z.]
[Figure 5]
Figure 5
The surrounding of the seven-coordinated Na+ cation in the `S' site in the structure of KNaCuP2O7. Displacement ellipsoids are drawn at 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, −z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z].

3. Database survey

Table 3[link] summarizes lattice parameters and the symmetry of related MM'CuP2O7 (M, M' = monovalent cation) compounds compiled in the ICSD (ICSD, 2017[ICSD (2017). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. https://www.fiz-karlsruhe. de/fiz/products/icsd/welcome. html]). It is apparent that the size of the cation(s) defines the structure type.

Table 3
Structural data (Å, °) for the M,M2CuP2O7 family of compounds

Compound Space group a b c β Z Reference
Li2CuP2O7 I2/a 14.068 (2) 4.8600 (8) 8.604 (1) 98.97 (1) 4 Spirlet et al. (1993[Spirlet, M. R., Rebizant, J. & Liegeois-Duyckaerts, M. (1993). Acta Cryst. C49, 209-211.])
Li2CuP2O7 C2/c 15.3360 (14) 4.8733 (13) 8.6259 (16) 114.795 (10) 4 Gopalakrishna et al. (2008[Gopalakrishna, G. S., Mahesh, M. J., Ashamanjari, K. G. & Prasad, J. S. (2008). Mater. Res. Bull. 43, 1171-1178.])
α-Na2CuP2O7 P21/n 8.823 (3) 13.494 (3) 5.108 (2) 92.77 (3) 4 Erragh et al. (1995[Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23-31.])
β-Na2CuP2O7 C2/c 14.715 (1) 5.704 (2) 8.066 (1) 115.14 (1) 4 Etheredge et al. (1995[Etheredge, K. M. S. & Hwu, S. J. (1995). Inorg. Chem. 34, 1495-1499.])
K2CuP2O7 Pbnm 9.509 (4) 14.389 (6) 5.276 (2)   4 ElMaadi et al. (1995[ElMaadi, A., Boukhari, A. & Holt, E. M. (1995). J. Alloys Compd. 223, 13-17.])
K2CuP2O7 P[\overline{4}]21m 8.056 (2)   5.460 (11)   2 Keates et al. (2014[Keates, A. C., Wang, Q. & Weller, M. T. (2014). J. Solid State Chem. 210, 10-14.])
α-Rb2CuP2O7 Pmcn 5.183 (1) 10.096 (1) 15.146 (2)   4 Chernyatieva et al. (2008[Chernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2008). Book of Abstracts, VI International Conference on Inorganic Materials, pp. 3-143. Dresden: Elsevier.])
β-Rb2CuP2O7 Cc 7,002 (1) 12.751 (3) 9.773 (2) 110.93 (3) 4 Shvanskaya et al. (2012[Shvanskaya, L. V., Yakubovich, O. V. & Urusov, V. S. (2012). Dokl. Phys. Chem. 442, 19-26.])
Cs2CuP2O7 Cc 7.460 (6) 12.973 (10) 9.980 (8) 111.95 4 Mannasova et al. (2016[Mannasova, A. A., Chernyatieva, A. P. & Krivovichev, S. V. (2016). Z. Kristallogr. 231, 65-69.])
NaCsCuP2O7 Pmn21 5.147 (2) 15.126 (3) 9.717 (5)   4 Chernyatieva et al. (2009[Chernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2009). Proceedings of the XX Russian Conference of Young Scientists in Memory of the Corresponding Member of the Academy of Sciences of the USSR, K. O. Kratts.])
Na1.12Ag0.88CuP2O7 C2/c 15.088 (2) 5.641 (1) 8.171 (1) 116.11 (1) 4 Bennazha et al. (2002[Bennazha, J., Boukhari, A. & Holt, E. M. (2002). Acta Cryst. C58, i87-i89.])

4. Synthesis and crystallization

Crystals of KNaCuP2O7 were obtained from a mixture of KH2PO4, NaH2PO4 and CuO in the molar ratio K:Na:Cu:P = 1:1:2:2. The stoichiometric mixture was finely ground and heated in a porcelain crucible at 623 K for 12 h to eliminate volatile products. The temperature was then increased to 873 K and held for 15 d until fusion was reached. The sample was slowly cooled (5 K d−1) to 500 K and finally allowed to cool radiatively to room temperature. The product was washed with water and rinsed with an aqueous solution of HCl (low concentration). Only one type of regular light-blue prismatic crystals was observed. The obtained crystals were ground and checked by powder X-ray diffraction. Rietveld analysis with the program TOPAS 4.2 (Coelho, 2009[Coelho, A. A. (2009). TOPAS 4.2. www. topas-academic. net]) revealed a single-phase product of KNaCuP2O7.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The occupancy of the Na+ and K+ sites was checked by independent refinement of the site occupation factors. In each case, full occupancy was observed without the contribution of the other cation. The maximum and minimum electron densities remaining in the difference-Fourier map are located 0.67 Å from O7 and 0.48 Å from Cu, respectively.

Table 4
Experimental details

Crystal data
Chemical formula KNaCuP2O7
Mr 299.57
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 5.176 (3), 13.972 (5), 9.067 (3)
β (°) 91.34 (2)
V3) 655.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.51
Crystal size (mm) 0.18 × 0.13 × 0.09
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.868, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 3300, 1425, 1291
Rint 0.036
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.059, 1.01
No. of reflections 1425
No. of parameters 110
Δρmax, Δρmin (e Å−3) 0.48, −0.42
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium sodium copper(II) diphosphate(V) top
Crystal data top
KNaCuP2O7F(000) = 580
Mr = 299.57Dx = 3.035 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.176 (3) ÅCell parameters from 25 reflections
b = 13.972 (5) Åθ = 10–15°
c = 9.067 (3) ŵ = 4.51 mm1
β = 91.34 (2)°T = 298 K
V = 655.6 (5) Å3Prism, blue
Z = 40.18 × 0.13 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.7°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 217
Tmin = 0.868, Tmax = 0.997l = 1111
3300 measured reflections2 standard reflections every 120 min
1425 independent reflections intensity decay: 1.1%
1291 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.7316P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.48 e Å3
1425 reflectionsΔρmin = 0.42 e Å3
110 parametersExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0120 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.76039 (5)0.66590 (2)0.21888 (3)0.01093 (12)
P10.26527 (12)0.54589 (5)0.24314 (7)0.01115 (15)
P20.25245 (11)0.68972 (4)0.02910 (6)0.00898 (15)
Na0.7521 (2)0.70912 (8)0.16272 (11)0.0192 (2)
K0.75717 (11)0.40697 (4)0.38439 (6)0.01850 (15)
O10.2223 (4)0.44115 (15)0.2502 (2)0.0223 (4)
O20.5278 (3)0.57557 (14)0.3077 (2)0.0176 (4)
O30.0576 (3)0.60643 (15)0.31633 (19)0.0179 (4)
O40.2588 (3)0.57729 (12)0.07029 (18)0.0126 (4)
O50.2938 (3)0.69884 (14)0.13300 (18)0.0160 (4)
O60.4685 (3)0.73465 (13)0.12308 (19)0.0138 (4)
O70.0125 (3)0.72712 (13)0.07246 (19)0.0139 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.00808 (16)0.01226 (18)0.01244 (17)0.00043 (11)0.00010 (11)0.00296 (11)
P10.0103 (3)0.0102 (3)0.0130 (3)0.0000 (2)0.0007 (2)0.0029 (2)
P20.0088 (3)0.0099 (3)0.0082 (3)0.0002 (2)0.0008 (2)0.0009 (2)
Na0.0190 (5)0.0213 (6)0.0172 (5)0.0021 (4)0.0001 (4)0.0020 (5)
K0.0220 (3)0.0153 (3)0.0182 (3)0.0022 (2)0.0008 (2)0.0000 (2)
O10.0272 (10)0.0115 (10)0.0280 (10)0.0046 (8)0.0001 (8)0.0049 (8)
O20.0123 (8)0.0198 (10)0.0206 (9)0.0026 (8)0.0022 (7)0.0093 (8)
O30.0151 (9)0.0261 (10)0.0126 (8)0.0075 (8)0.0008 (7)0.0036 (8)
O40.0178 (8)0.0093 (8)0.0107 (8)0.0006 (7)0.0012 (6)0.0003 (7)
O50.0213 (9)0.0179 (9)0.0088 (8)0.0015 (8)0.0025 (7)0.0013 (7)
O60.0115 (8)0.0115 (8)0.0181 (8)0.0002 (7)0.0041 (6)0.0011 (7)
O70.0091 (8)0.0154 (9)0.0173 (8)0.0016 (7)0.0030 (6)0.0044 (8)
Geometric parameters (Å, º) top
Cu—O21.9328 (18)Na—P2i3.0977 (12)
Cu—O3i1.9427 (18)Na—P2viii3.1316 (12)
Cu—O61.9743 (17)Na—Cuix3.2481 (11)
Cu—O7i1.9872 (17)Na—Cuviii3.3550 (11)
Cu—O5ii2.3225 (19)K—O22.721 (2)
Cu—Naii3.2481 (11)K—O5vii2.7245 (18)
Cu—Naiii3.3550 (11)K—O1i2.764 (2)
Cu—Kiv3.4966 (7)K—O6x2.7969 (19)
Cu—Na3.5117 (10)K—O7xi2.8450 (19)
Cu—K3.9169 (7)K—O3v2.8630 (18)
P1—O11.482 (2)K—O13.036 (2)
P1—O21.5246 (19)K—O2v3.1973 (19)
P1—O31.5313 (19)K—O3i3.257 (2)
P1—O41.6272 (17)K—P1v3.4455 (9)
P1—K3.4260 (9)K—Cux3.4965 (7)
P1—Kv3.4455 (9)O1—Navii2.249 (2)
P1—Kvi3.5329 (9)O1—Kvi2.764 (2)
P2—O51.4958 (17)O2—Kv3.1973 (19)
P2—O61.5252 (17)O3—Cuvi1.9427 (18)
P2—O71.5277 (16)O3—Naiii2.772 (2)
P2—O41.6148 (18)O3—Kv2.8630 (18)
P2—Navi3.0977 (12)O3—Kvi3.257 (2)
P2—Naiii3.1316 (12)O5—Cuix2.3225 (19)
P2—Na3.1617 (12)O5—Kvii2.7245 (18)
Na—O1vii2.249 (2)O5—Navi2.815 (2)
Na—O6viii2.397 (2)O6—Naiii2.397 (2)
Na—O52.398 (2)O6—Kiv2.7968 (19)
Na—O7i2.4442 (19)O7—Cuvi1.9872 (17)
Na—O3viii2.772 (2)O7—Navi2.4441 (19)
Na—O5i2.815 (2)O7—Kxii2.8451 (19)
Na—O7viii2.878 (2)O7—Naiii2.878 (2)
O2—Cu—O3i91.46 (8)O5—Na—Cuix45.56 (5)
O2—Cu—O691.34 (7)O7i—Na—Cuix127.14 (6)
O3i—Cu—O6176.22 (8)O3viii—Na—Cuix36.58 (4)
O2—Cu—O7i160.62 (8)O5i—Na—Cuix146.13 (6)
O3i—Cu—O7i90.77 (7)O7viii—Na—Cuix37.24 (4)
O6—Cu—O7i87.43 (7)P2i—Na—Cuix150.57 (4)
O2—Cu—O5ii109.22 (7)P2viii—Na—Cuix58.62 (2)
O3i—Cu—O5ii92.15 (8)P2—Na—Cuix65.37 (2)
O6—Cu—O5ii84.52 (7)O1vii—Na—Cuviii108.65 (6)
O7i—Cu—O5ii89.93 (7)O6viii—Na—Cuviii35.44 (4)
O2—Cu—Naii134.76 (6)O5—Na—Cuviii148.47 (6)
O3i—Cu—Naii58.24 (7)O7i—Na—Cuviii81.19 (5)
O6—Cu—Naii118.00 (6)O3viii—Na—Cuviii77.32 (5)
O7i—Cu—Naii61.20 (5)O5i—Na—Cuviii43.13 (4)
O5ii—Cu—Naii47.48 (5)O7viii—Na—Cuviii86.18 (4)
O2—Cu—Naiii72.89 (6)P2i—Na—Cuviii64.76 (2)
O3i—Cu—Naiii134.08 (6)P2viii—Na—Cuviii57.50 (2)
O6—Cu—Naiii44.76 (5)P2—Na—Cuviii151.44 (4)
O7i—Cu—Naiii118.06 (6)Cuix—Na—Cuviii103.22 (3)
O5ii—Cu—Naiii55.94 (5)O2—K—O5vii102.87 (6)
Naii—Cu—Naiii103.22 (3)O2—K—O1i96.73 (6)
O2—Cu—Kiv136.72 (6)O5vii—K—O1i78.10 (6)
O3i—Cu—Kiv123.31 (6)O2—K—O6x163.30 (6)
O6—Cu—Kiv53.04 (5)O5vii—K—O6x63.38 (5)
O7i—Cu—Kiv54.45 (5)O1i—K—O6x71.95 (6)
O5ii—Cu—Kiv51.11 (5)O2—K—O7xi127.36 (6)
Naii—Cu—Kiv65.54 (2)O5vii—K—O7xi66.49 (5)
Naiii—Cu—Kiv64.45 (2)O1i—K—O7xi127.46 (6)
O2—Cu—Na121.97 (6)O6x—K—O7xi58.05 (5)
O3i—Cu—Na120.87 (5)O2—K—O3v115.68 (6)
O6—Cu—Na59.42 (5)O5vii—K—O3v141.38 (6)
O7i—Cu—Na42.40 (5)O1i—K—O3v98.78 (6)
O5ii—Cu—Na115.40 (5)O6x—K—O3v78.91 (6)
Naii—Cu—Na102.98 (2)O7xi—K—O3v87.26 (6)
Naiii—Cu—Na103.54 (2)O2—K—O151.17 (5)
Kiv—Cu—Na64.59 (2)O5vii—K—O171.36 (6)
O2—Cu—K39.55 (6)O1i—K—O1126.29 (7)
O3i—Cu—K56.02 (6)O6x—K—O1125.76 (6)
O6—Cu—K127.43 (5)O7xi—K—O177.84 (5)
O7i—Cu—K131.41 (5)O3v—K—O1132.24 (6)
O5ii—Cu—K122.07 (5)O2—K—O2v87.12 (5)
Naii—Cu—K112.35 (2)O5vii—K—O2v137.25 (6)
Naiii—Cu—K110.35 (2)O1i—K—O2v142.70 (6)
Kiv—Cu—K172.759 (11)O6x—K—O2v109.37 (5)
Na—Cu—K122.43 (2)O7xi—K—O2v74.42 (5)
O1—P1—O2112.67 (12)O3v—K—O2v47.81 (5)
O1—P1—O3114.78 (12)O1—K—O2v84.43 (5)
O2—P1—O3108.17 (11)O2—K—O3i54.42 (5)
O1—P1—O4107.95 (11)O5vii—K—O3i110.06 (5)
O2—P1—O4107.13 (10)O1i—K—O3i49.03 (5)
O3—P1—O4105.64 (10)O6x—K—O3i119.15 (5)
O1—P1—K62.31 (8)O7xi—K—O3i176.12 (5)
O2—P1—K50.40 (8)O3v—K—O3i94.86 (5)
O3—P1—K132.38 (7)O1—K—O3i102.97 (5)
O4—P1—K120.75 (7)O2v—K—O3i109.40 (5)
O1—P1—Kv97.92 (9)O2—K—P125.58 (4)
O2—P1—Kv67.78 (7)O5vii—K—P186.44 (4)
O3—P1—Kv55.22 (7)O1i—K—P1112.63 (5)
O4—P1—Kv153.15 (7)O6x—K—P1148.42 (4)
K—P1—Kv77.51 (2)O7xi—K—P1102.86 (4)
O1—P1—Kvi47.78 (8)O3v—K—P1128.38 (4)
O2—P1—Kvi132.43 (7)O1—K—P125.61 (4)
O3—P1—Kvi67.06 (8)O2v—K—P185.94 (4)
O4—P1—Kvi119.91 (7)O3i—K—P178.37 (3)
K—P1—Kvi96.10 (2)O2—K—P1v93.47 (4)
Kv—P1—Kvi72.974 (19)O5vii—K—P1v156.78 (4)
O5—P2—O6113.20 (10)O1i—K—P1v116.62 (5)
O5—P2—O7111.96 (10)O6x—K—P1v102.54 (4)
O6—P2—O7111.49 (10)O7xi—K—P1v90.50 (4)
O5—P2—O4107.91 (10)O3v—K—P1v26.06 (4)
O6—P2—O4105.10 (10)O1—K—P1v108.15 (4)
O7—P2—O4106.66 (10)O2v—K—P1v26.19 (3)
O5—P2—Navi65.03 (7)O3i—K—P1v92.83 (4)
O6—P2—Navi150.48 (8)P1—K—P1v102.49 (2)
O7—P2—Navi51.00 (7)O2—K—Cux139.21 (4)
O4—P2—Navi103.13 (7)O5vii—K—Cux41.57 (4)
O5—P2—Naiii147.30 (9)O1i—K—Cux93.78 (5)
O6—P2—Naiii48.05 (7)O6x—K—Cux34.34 (3)
O7—P2—Naiii66.21 (7)O7xi—K—Cux34.63 (3)
O4—P2—Naiii103.48 (7)O3v—K—Cux101.36 (5)
Navi—P2—Naiii116.33 (3)O1—K—Cux91.51 (4)
O5—P2—Na46.71 (7)O2v—K—Cux107.32 (4)
O6—P2—Na70.95 (7)O3i—K—Cux141.53 (4)
O7—P2—Na149.66 (7)P1—K—Cux115.54 (2)
O4—P2—Na101.43 (7)P1v—K—Cux116.45 (2)
Navi—P2—Na111.56 (3)P1—O1—Navii153.68 (14)
Naiii—P2—Na118.02 (3)P1—O1—Kvi108.83 (11)
O1vii—Na—O6viii89.29 (8)Navii—O1—Kvi93.05 (7)
O1vii—Na—O592.89 (8)P1—O1—K92.08 (9)
O6viii—Na—O5126.37 (7)Navii—O1—K86.20 (7)
O1vii—Na—O7i111.80 (8)Kvi—O1—K126.29 (7)
O6viii—Na—O7i116.12 (7)P1—O2—Cu125.16 (11)
O5—Na—O7i112.48 (7)P1—O2—K104.02 (10)
O1vii—Na—O3viii150.23 (8)Cu—O2—K113.55 (8)
O6viii—Na—O3viii79.37 (6)P1—O2—Kv86.03 (8)
O5—Na—O3viii72.83 (6)Cu—O2—Kv128.21 (9)
O7i—Na—O3viii97.87 (7)K—O2—Kv92.88 (5)
O1vii—Na—O5i85.37 (7)P1—O3—Cuvi126.56 (11)
O6viii—Na—O5i67.10 (6)P1—O3—Naiii106.61 (10)
O5—Na—O5i166.46 (9)Cuvi—O3—Naiii85.17 (8)
O7i—Na—O5i56.39 (5)P1—O3—Kv98.72 (8)
O3viii—Na—O5i114.42 (7)Cuvi—O3—Kv134.68 (8)
O1vii—Na—O7viii91.46 (7)Naiii—O3—Kv83.27 (6)
O6viii—Na—O7viii56.27 (5)P1—O3—Kvi87.28 (9)
O5—Na—O7viii70.10 (6)Cuvi—O3—Kvi94.34 (7)
O7i—Na—O7viii156.06 (5)Naiii—O3—Kvi163.09 (7)
O3viii—Na—O7viii59.34 (5)Kv—O3—Kvi85.14 (5)
O5i—Na—O7viii123.32 (6)P2—O4—P1119.01 (11)
O1vii—Na—P2i93.49 (6)P2—O5—Cuix128.83 (11)
O6viii—Na—P2i94.77 (5)P2—O5—Na106.28 (10)
O5—Na—P2i138.41 (6)Cuix—O5—Na86.95 (7)
O7i—Na—P2i29.06 (4)P2—O5—Kvii139.70 (11)
O3viii—Na—P2i114.67 (5)Cuix—O5—Kvii87.32 (5)
O5i—Na—P2i28.80 (4)Na—O5—Kvii90.88 (6)
O7viii—Na—P2i150.56 (5)P2—O5—Navi86.16 (8)
O1vii—Na—P2viii96.04 (6)Cuix—O5—Navi80.94 (6)
O6viii—Na—P2viii28.24 (4)Na—O5—Navi166.46 (9)
O5—Na—P2viii98.55 (5)Kvii—O5—Navi82.58 (6)
O7i—Na—P2viii136.17 (6)P2—O6—Cu126.10 (11)
O3viii—Na—P2viii61.77 (4)P2—O6—Naiii103.71 (9)
O5i—Na—P2viii94.99 (5)Cu—O6—Naiii99.80 (7)
O7viii—Na—P2viii29.06 (3)P2—O6—Kiv134.97 (10)
P2i—Na—P2viii121.50 (4)Cu—O6—Kiv92.63 (6)
O1vii—Na—P299.77 (6)Naiii—O6—Kiv89.12 (6)
O6viii—Na—P2151.35 (6)P2—O7—Cuvi124.98 (11)
O5—Na—P227.01 (4)P2—O7—Navi99.93 (9)
O7i—Na—P285.78 (5)Cuvi—O7—Navi104.36 (7)
O3viii—Na—P279.46 (5)P2—O7—Kxii137.96 (10)
O5i—Na—P2140.25 (5)Cuvi—O7—Kxii90.92 (6)
O7viii—Na—P296.10 (4)Navi—O7—Kxii89.80 (6)
P2i—Na—P2111.56 (3)P2—O7—Naiii84.73 (7)
P2viii—Na—P2123.17 (4)Cuvi—O7—Naiii81.55 (6)
O1vii—Na—Cuix115.94 (6)Navi—O7—Naiii167.87 (8)
O6viii—Na—Cuix86.18 (5)Kxii—O7—Naiii79.43 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1/2, y+3/2, z1/2; (ix) x1/2, y+3/2, z1/2; (x) x+3/2, y1/2, z+1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x+1/2, y+1/2, z+1/2.
CHARDI and BVS analysis of cation polyhedra in KNaCuP2O7 top
Cationqi()·sof(i)Q(i)V(i)·sof(i)CN(i)ECoN(i)dar(i)dmed(i)
Cu2.0001.941.99554.352.0312.031
P15.0005.074.92143.841.5401.541
P25.0005.034.93843.881.5401.540
K1.0000.981.10395.202.6222.564
Na1.0000.981.10677.802.9122.912
Notes: qi = formal oxydation number; sof(i) = site occupation factor; dar(i) = average distance; dmed(i) = weighted average distance; CN(i) = coordination number; ECoN(i)= effective coordination number; σcat = dispersion factor on cationic charges measuring the deviation of the computed charges; σcat=[Σi(qi-Qi)2/N-1]1/2 = 0.019.
Structural data (Å, °) for the M,M'2CuP2O7 family of compounds top
CompoundSpace groupabcβZReference
Li2CuP2O7I2/a14.068 (2)4.8600 (8)8.604 (1)98.97 (1)4Spirlet et al. (1993)
Li2CuP2O7C2/c15.3360 (14)4.8733 (13)8.6259 (16)114.795 (10)4Gopalakrishna et al. (2008)
α-Na2CuP2O7P21/n8.823 (3)13.494 (3)5.108 (2)92.77 (3)4Erragh et al. (1995)
β-Na2CuP2O7C2/c14.715 (1)5.704 (2)8.066 (1)115.14 (1)4Etheredge et al. (1995)
K2CuP2O7Pbnm9.509 (4)14.389 (6)5.276 (2)4ElMaadi et al. (1995)
K2CuP2O7P421m8.056 (2)5.460 (11)2Keates et al. (2014)
α-Rb2CuP2O7Pmcn5.183 (1)10.096 (1)15.146 (2)4Chernyatieva et al. (2008)
β-Rb2CuP2O7Cc7,002 (1)12.751 (3)9.773 (2)110.93 (3)4Shvanskaya et al. (2012)
Cs2CuP2O7Cc7.460 (6)12.973 (10)9.980 (8)111.954Mannasova et al. (2016)
NaCsCuP2O7Pmn215.147 (2)15.126 (3)9.717 (5)4Chernyatieva et al. (2009)
Na1.12Ag0.88CuP2O7C2/c15.088 (2)5.641 (1)8.171 (1)116.11 (1)4Bennazha et al. (2002)
 

Acknowledgements

We acknowledge the assistance of the staff of the Tunisian Laboratory of Materials and Crystallography during the data collection.

Funding information

Funding for this research was provided by: Ministère de l'enseignement supérieur et de la recherche scientifique (Tunisie).

References

First citationAdams, S. (2003). softBV. University of Göttingen, Germany.  Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBennazha, J., Boukhari, A. & Holt, E. M. (2002). Acta Cryst. C58, i87–i89.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationChernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2008). Book of Abstracts, VI International Conference on Inorganic Materials, pp. 3–143. Dresden: Elsevier.  Google Scholar
First citationChernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2009). Proceedings of the XX Russian Conference of Young Scientists in Memory of the Corresponding Member of the Academy of Sciences of the USSR, K. O. Kratts.  Google Scholar
First citationCoelho, A. A. (2009). TOPAS 4.2. www. topas-academic. net  Google Scholar
First citationElMaadi, A., Boukhari, A. & Holt, E. M. (1995). J. Alloys Compd. 223, 13–17.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD–4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationErragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23–31.  CrossRef CAS Web of Science Google Scholar
First citationEtheredge, K. M. S. & Hwu, S. J. (1995). Inorg. Chem. 34, 1495–1499.  CrossRef CAS Web of Science Google Scholar
First citationGopalakrishna, G. S., Mahesh, M. J., Ashamanjari, K. G. & Prasad, J. S. (2008). Mater. Res. Bull. 43, 1171–1178.  Web of Science CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationICSD (2017). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. https://www.fiz-karlsruhe. de/fiz/products/icsd/welcome. html  Google Scholar
First citationKeates, A. C., Wang, Q. & Weller, M. T. (2014). J. Solid State Chem. 210, 10–14.  Web of Science CrossRef CAS Google Scholar
First citationMannasova, A. A., Chernyatieva, A. P. & Krivovichev, S. V. (2016). Z. Kristallogr. 231, 65–69.  CAS Google Scholar
First citationNespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShvanskaya, L. V., Yakubovich, O. V. & Urusov, V. S. (2012). Dokl. Phys. Chem. 442, 19–26.  Web of Science CrossRef CAS Google Scholar
First citationSpirlet, M. R., Rebizant, J. & Liegeois-Duyckaerts, M. (1993). Acta Cryst. C49, 209–211.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds