research communications
2O7, a new member of the diphosphate family
of KNaCuPaLaboratoire de Materiaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
Potassium sodium copper(II) diphosphate(V), KNaCuP2O7, was synthesized by solid-state reactions. It crystallizes in the α-Na2CuP2O7 structure type in P21/n. In the crystal, CuO5 square-pyramids are linked to nearly eclipsed P2O7 groups by sharing corners to build up corrugated layers with composition [CuP2O7]2− that extend parallel to (010). The K+ and Na+ cations reside in the interlayer space and are connected to nine and seven O atoms, respectively. The structural model was validated by bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis.
Keywords: crystal structure; diphosphate; eclipsed conformation; isotypism.
CCDC reference: 1814470
1. Chemical context
In order to improve the MM'CuP2O7 (M, M' = monovalent cation), we attempted to partially replace the potassium cations in K2CuP2O7 by smaller sodium cations. In the K2CuP2O7 structure, the alkali cations are located in the interlayer space between corrugated [CuP2O7]2− anionic layers. Reducing the size of the cation can increase its mobility, and therefore might improve the material's charge-transport behaviour.
in copper diphosphates with general formulaSeveral attempts were made to prepare crystals of the hypothetical 2–xNaxCuP2O7, with x in the range 0 to 2. All of the attempts led to a compound with x = 1, i.e. KNaCuP2O7, the of which is reported in this communication.
K2. Structural commentary
The title compound KNaCuP2O7 crystallizes isotypically with α-Na2CuP2O7 (Erragh et al., 1995) and also shows resemblance with one form of K2CuP2O7 (ElMaadi et al., 1995). It is built up by corrugated [CuP2O7]2− layers with the alkali cations situated in the interlayer space. The anionic layers consist of a nearly eclipsed diphosphate group [O2—P2—P1—O6 torsion angle = 15.90 (1)°] linked to CuO5 square-pyramids by sharing five of the terminal oxygen atoms (O2, O3, O5, O6, O7). The bridging atom O4 of the diphosphate unit is not involved in metal coordination, and atom O1 coordinates to the alkali cations in the interlayer space (Fig. 1).
The P2—O4—P1 bridging angle [119.01 (11)°] of the diphosphate anion is close to those observed in other similar diarsenate and diphosphate structures, such as KCr1/4Al3/4As2O7 [118.50 (14)°; Bouhassine & Boughzala, 2017], CsCrAs2O7 [118.7 (2)°; Bouhassine & Boughzala, 2015], KAlAs2O7 [118.3 (2)°; Boughzala & Jouini, 1995], α-Na2CuP2O7 [118.65 (1)°; Erragh et al., 1995] and K2CuP2O7 [120.41 (3)°; ElMaadi et al., 1995]. As expected, the Cu—O bond length to the apical oxygen atom O5 is significantly longer than the Cu—O distances to the basal oxygen atoms of the square-pyramid (Table 1). The calculated bond-valence sum (Brown, 2002; Adams, 2003) of 1.94 valence units for the Cu site is in good agreement with the expected value of 2 for divalent copper. The geometry index of the CuO5 polyhedron τ5, as defined by Addison et al. (1984), has a value of 0.26, indicating a distorted square-pyramidal coordination environment (the value for an ideal square-pyramid is 0 while that of an ideal trigonal bipyramid is 1). Each CuO5 polyhedron shares its vertices with two P2O74− anions, one of which is chelating and the other belongs to two different P2O7 groups (Fig. 2). This linkage leads to layers extending parallel to (010) (Fig. 3).
As in the crystal structures of K2CuP2O7 and α-Na2CuP2O7, the of KNaCuP2O7 exhibits two independent sites hosting the K+ and Na+ cations. The first site is larger (`L') and is occupied by K+ cations. It is limited by two neighbouring anionic layers (Fig. 3). The resulting KO9 coordination polyhedron is considerably distorted (Fig. 4, Table 1). Its bond-valence sum is 0.98 valence units (Table 2). The second site is smaller (`S') and is occupied by Na+ cations. It is surrounded by three CuO5 and five PO4 polyhedra, delimiting an ellipsoidal cavity as shown in Figs. 3 and 5. The irregular coordination sphere of Na+ is made up of seven oxygen atoms and shows an effective (ECoN; Nespolo et al., 2001) of 5.2 (for other ECoN values, see Table 2). The Na—O bonds lengths can be divided in groups of four short [2.249 (2)–2.4442 (19) Å] and three long [2.772 (2)–2.878 (2) Å] bonds (Table 1). Its bond-valence sum is 0.98 valence units (Table 2).
|
3. Database survey
Table 3 summarizes lattice parameters and the symmetry of related MM'CuP2O7 (M, M' = monovalent cation) compounds compiled in the ICSD (ICSD, 2017). It is apparent that the size of the cation(s) defines the structure type.
|
4. Synthesis and crystallization
Crystals of KNaCuP2O7 were obtained from a mixture of KH2PO4, NaH2PO4 and CuO in the molar ratio K:Na:Cu:P = 1:1:2:2. The stoichiometric mixture was finely ground and heated in a porcelain crucible at 623 K for 12 h to eliminate volatile products. The temperature was then increased to 873 K and held for 15 d until fusion was reached. The sample was slowly cooled (5 K d−1) to 500 K and finally allowed to cool radiatively to room temperature. The product was washed with water and rinsed with an aqueous solution of HCl (low concentration). Only one type of regular light-blue prismatic crystals was observed. The obtained crystals were ground and checked by powder X-ray diffraction. Rietveld analysis with the program TOPAS 4.2 (Coelho, 2009) revealed a single-phase product of KNaCuP2O7.
5. Refinement
Crystal data, data collection and structure . The occupancy of the Na+ and K+ sites was checked by independent of the site occupation factors. In each case, full occupancy was observed without the contribution of the other cation. The maximum and minimum electron densities remaining in the difference-Fourier map are located 0.67 Å from O7 and 0.48 Å from Cu, respectively.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1814470
https://doi.org/10.1107/S2056989018000130/wm5429sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018000130/wm5429Isup2.hkl
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).KNaCuP2O7 | F(000) = 580 |
Mr = 299.57 | Dx = 3.035 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.176 (3) Å | Cell parameters from 25 reflections |
b = 13.972 (5) Å | θ = 10–15° |
c = 9.067 (3) Å | µ = 4.51 mm−1 |
β = 91.34 (2)° | T = 298 K |
V = 655.6 (5) Å3 | Prism, blue |
Z = 4 | 0.18 × 0.13 × 0.09 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.036 |
Radiation source: fine-focus sealed tube | θmax = 27.0°, θmin = 2.7° |
ω/2θ scans | h = −6→6 |
Absorption correction: ψ scan (North et al., 1968) | k = −2→17 |
Tmin = 0.868, Tmax = 0.997 | l = −11→11 |
3300 measured reflections | 2 standard reflections every 120 min |
1425 independent reflections | intensity decay: 1.1% |
1291 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0261P)2 + 0.7316P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.48 e Å−3 |
1425 reflections | Δρmin = −0.42 e Å−3 |
110 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0120 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.76039 (5) | 0.66590 (2) | 0.21888 (3) | 0.01093 (12) | |
P1 | 0.26527 (12) | 0.54589 (5) | 0.24314 (7) | 0.01115 (15) | |
P2 | 0.25245 (11) | 0.68972 (4) | 0.02910 (6) | 0.00898 (15) | |
Na | 0.7521 (2) | 0.70912 (8) | −0.16272 (11) | 0.0192 (2) | |
K | 0.75717 (11) | 0.40697 (4) | 0.38439 (6) | 0.01850 (15) | |
O1 | 0.2223 (4) | 0.44115 (15) | 0.2502 (2) | 0.0223 (4) | |
O2 | 0.5278 (3) | 0.57557 (14) | 0.3077 (2) | 0.0176 (4) | |
O3 | 0.0576 (3) | 0.60643 (15) | 0.31633 (19) | 0.0179 (4) | |
O4 | 0.2588 (3) | 0.57729 (12) | 0.07029 (18) | 0.0126 (4) | |
O5 | 0.2938 (3) | 0.69884 (14) | −0.13300 (18) | 0.0160 (4) | |
O6 | 0.4685 (3) | 0.73465 (13) | 0.12308 (19) | 0.0138 (4) | |
O7 | −0.0125 (3) | 0.72712 (13) | 0.07246 (19) | 0.0139 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.00808 (16) | 0.01226 (18) | 0.01244 (17) | 0.00043 (11) | 0.00010 (11) | 0.00296 (11) |
P1 | 0.0103 (3) | 0.0102 (3) | 0.0130 (3) | 0.0000 (2) | 0.0007 (2) | 0.0029 (2) |
P2 | 0.0088 (3) | 0.0099 (3) | 0.0082 (3) | 0.0002 (2) | 0.0008 (2) | 0.0009 (2) |
Na | 0.0190 (5) | 0.0213 (6) | 0.0172 (5) | −0.0021 (4) | −0.0001 (4) | 0.0020 (5) |
K | 0.0220 (3) | 0.0153 (3) | 0.0182 (3) | 0.0022 (2) | −0.0008 (2) | 0.0000 (2) |
O1 | 0.0272 (10) | 0.0115 (10) | 0.0280 (10) | −0.0046 (8) | 0.0001 (8) | 0.0049 (8) |
O2 | 0.0123 (8) | 0.0198 (10) | 0.0206 (9) | −0.0026 (8) | −0.0022 (7) | 0.0093 (8) |
O3 | 0.0151 (9) | 0.0261 (10) | 0.0126 (8) | 0.0075 (8) | 0.0008 (7) | 0.0036 (8) |
O4 | 0.0178 (8) | 0.0093 (8) | 0.0107 (8) | −0.0006 (7) | 0.0012 (6) | −0.0003 (7) |
O5 | 0.0213 (9) | 0.0179 (9) | 0.0088 (8) | 0.0015 (8) | 0.0025 (7) | 0.0013 (7) |
O6 | 0.0115 (8) | 0.0115 (8) | 0.0181 (8) | −0.0002 (7) | −0.0041 (6) | 0.0011 (7) |
O7 | 0.0091 (8) | 0.0154 (9) | 0.0173 (8) | 0.0016 (7) | 0.0030 (6) | 0.0044 (8) |
Cu—O2 | 1.9328 (18) | Na—P2i | 3.0977 (12) |
Cu—O3i | 1.9427 (18) | Na—P2viii | 3.1316 (12) |
Cu—O6 | 1.9743 (17) | Na—Cuix | 3.2481 (11) |
Cu—O7i | 1.9872 (17) | Na—Cuviii | 3.3550 (11) |
Cu—O5ii | 2.3225 (19) | K—O2 | 2.721 (2) |
Cu—Naii | 3.2481 (11) | K—O5vii | 2.7245 (18) |
Cu—Naiii | 3.3550 (11) | K—O1i | 2.764 (2) |
Cu—Kiv | 3.4966 (7) | K—O6x | 2.7969 (19) |
Cu—Na | 3.5117 (10) | K—O7xi | 2.8450 (19) |
Cu—K | 3.9169 (7) | K—O3v | 2.8630 (18) |
P1—O1 | 1.482 (2) | K—O1 | 3.036 (2) |
P1—O2 | 1.5246 (19) | K—O2v | 3.1973 (19) |
P1—O3 | 1.5313 (19) | K—O3i | 3.257 (2) |
P1—O4 | 1.6272 (17) | K—P1v | 3.4455 (9) |
P1—K | 3.4260 (9) | K—Cux | 3.4965 (7) |
P1—Kv | 3.4455 (9) | O1—Navii | 2.249 (2) |
P1—Kvi | 3.5329 (9) | O1—Kvi | 2.764 (2) |
P2—O5 | 1.4958 (17) | O2—Kv | 3.1973 (19) |
P2—O6 | 1.5252 (17) | O3—Cuvi | 1.9427 (18) |
P2—O7 | 1.5277 (16) | O3—Naiii | 2.772 (2) |
P2—O4 | 1.6148 (18) | O3—Kv | 2.8630 (18) |
P2—Navi | 3.0977 (12) | O3—Kvi | 3.257 (2) |
P2—Naiii | 3.1316 (12) | O5—Cuix | 2.3225 (19) |
P2—Na | 3.1617 (12) | O5—Kvii | 2.7245 (18) |
Na—O1vii | 2.249 (2) | O5—Navi | 2.815 (2) |
Na—O6viii | 2.397 (2) | O6—Naiii | 2.397 (2) |
Na—O5 | 2.398 (2) | O6—Kiv | 2.7968 (19) |
Na—O7i | 2.4442 (19) | O7—Cuvi | 1.9872 (17) |
Na—O3viii | 2.772 (2) | O7—Navi | 2.4441 (19) |
Na—O5i | 2.815 (2) | O7—Kxii | 2.8451 (19) |
Na—O7viii | 2.878 (2) | O7—Naiii | 2.878 (2) |
O2—Cu—O3i | 91.46 (8) | O5—Na—Cuix | 45.56 (5) |
O2—Cu—O6 | 91.34 (7) | O7i—Na—Cuix | 127.14 (6) |
O3i—Cu—O6 | 176.22 (8) | O3viii—Na—Cuix | 36.58 (4) |
O2—Cu—O7i | 160.62 (8) | O5i—Na—Cuix | 146.13 (6) |
O3i—Cu—O7i | 90.77 (7) | O7viii—Na—Cuix | 37.24 (4) |
O6—Cu—O7i | 87.43 (7) | P2i—Na—Cuix | 150.57 (4) |
O2—Cu—O5ii | 109.22 (7) | P2viii—Na—Cuix | 58.62 (2) |
O3i—Cu—O5ii | 92.15 (8) | P2—Na—Cuix | 65.37 (2) |
O6—Cu—O5ii | 84.52 (7) | O1vii—Na—Cuviii | 108.65 (6) |
O7i—Cu—O5ii | 89.93 (7) | O6viii—Na—Cuviii | 35.44 (4) |
O2—Cu—Naii | 134.76 (6) | O5—Na—Cuviii | 148.47 (6) |
O3i—Cu—Naii | 58.24 (7) | O7i—Na—Cuviii | 81.19 (5) |
O6—Cu—Naii | 118.00 (6) | O3viii—Na—Cuviii | 77.32 (5) |
O7i—Cu—Naii | 61.20 (5) | O5i—Na—Cuviii | 43.13 (4) |
O5ii—Cu—Naii | 47.48 (5) | O7viii—Na—Cuviii | 86.18 (4) |
O2—Cu—Naiii | 72.89 (6) | P2i—Na—Cuviii | 64.76 (2) |
O3i—Cu—Naiii | 134.08 (6) | P2viii—Na—Cuviii | 57.50 (2) |
O6—Cu—Naiii | 44.76 (5) | P2—Na—Cuviii | 151.44 (4) |
O7i—Cu—Naiii | 118.06 (6) | Cuix—Na—Cuviii | 103.22 (3) |
O5ii—Cu—Naiii | 55.94 (5) | O2—K—O5vii | 102.87 (6) |
Naii—Cu—Naiii | 103.22 (3) | O2—K—O1i | 96.73 (6) |
O2—Cu—Kiv | 136.72 (6) | O5vii—K—O1i | 78.10 (6) |
O3i—Cu—Kiv | 123.31 (6) | O2—K—O6x | 163.30 (6) |
O6—Cu—Kiv | 53.04 (5) | O5vii—K—O6x | 63.38 (5) |
O7i—Cu—Kiv | 54.45 (5) | O1i—K—O6x | 71.95 (6) |
O5ii—Cu—Kiv | 51.11 (5) | O2—K—O7xi | 127.36 (6) |
Naii—Cu—Kiv | 65.54 (2) | O5vii—K—O7xi | 66.49 (5) |
Naiii—Cu—Kiv | 64.45 (2) | O1i—K—O7xi | 127.46 (6) |
O2—Cu—Na | 121.97 (6) | O6x—K—O7xi | 58.05 (5) |
O3i—Cu—Na | 120.87 (5) | O2—K—O3v | 115.68 (6) |
O6—Cu—Na | 59.42 (5) | O5vii—K—O3v | 141.38 (6) |
O7i—Cu—Na | 42.40 (5) | O1i—K—O3v | 98.78 (6) |
O5ii—Cu—Na | 115.40 (5) | O6x—K—O3v | 78.91 (6) |
Naii—Cu—Na | 102.98 (2) | O7xi—K—O3v | 87.26 (6) |
Naiii—Cu—Na | 103.54 (2) | O2—K—O1 | 51.17 (5) |
Kiv—Cu—Na | 64.59 (2) | O5vii—K—O1 | 71.36 (6) |
O2—Cu—K | 39.55 (6) | O1i—K—O1 | 126.29 (7) |
O3i—Cu—K | 56.02 (6) | O6x—K—O1 | 125.76 (6) |
O6—Cu—K | 127.43 (5) | O7xi—K—O1 | 77.84 (5) |
O7i—Cu—K | 131.41 (5) | O3v—K—O1 | 132.24 (6) |
O5ii—Cu—K | 122.07 (5) | O2—K—O2v | 87.12 (5) |
Naii—Cu—K | 112.35 (2) | O5vii—K—O2v | 137.25 (6) |
Naiii—Cu—K | 110.35 (2) | O1i—K—O2v | 142.70 (6) |
Kiv—Cu—K | 172.759 (11) | O6x—K—O2v | 109.37 (5) |
Na—Cu—K | 122.43 (2) | O7xi—K—O2v | 74.42 (5) |
O1—P1—O2 | 112.67 (12) | O3v—K—O2v | 47.81 (5) |
O1—P1—O3 | 114.78 (12) | O1—K—O2v | 84.43 (5) |
O2—P1—O3 | 108.17 (11) | O2—K—O3i | 54.42 (5) |
O1—P1—O4 | 107.95 (11) | O5vii—K—O3i | 110.06 (5) |
O2—P1—O4 | 107.13 (10) | O1i—K—O3i | 49.03 (5) |
O3—P1—O4 | 105.64 (10) | O6x—K—O3i | 119.15 (5) |
O1—P1—K | 62.31 (8) | O7xi—K—O3i | 176.12 (5) |
O2—P1—K | 50.40 (8) | O3v—K—O3i | 94.86 (5) |
O3—P1—K | 132.38 (7) | O1—K—O3i | 102.97 (5) |
O4—P1—K | 120.75 (7) | O2v—K—O3i | 109.40 (5) |
O1—P1—Kv | 97.92 (9) | O2—K—P1 | 25.58 (4) |
O2—P1—Kv | 67.78 (7) | O5vii—K—P1 | 86.44 (4) |
O3—P1—Kv | 55.22 (7) | O1i—K—P1 | 112.63 (5) |
O4—P1—Kv | 153.15 (7) | O6x—K—P1 | 148.42 (4) |
K—P1—Kv | 77.51 (2) | O7xi—K—P1 | 102.86 (4) |
O1—P1—Kvi | 47.78 (8) | O3v—K—P1 | 128.38 (4) |
O2—P1—Kvi | 132.43 (7) | O1—K—P1 | 25.61 (4) |
O3—P1—Kvi | 67.06 (8) | O2v—K—P1 | 85.94 (4) |
O4—P1—Kvi | 119.91 (7) | O3i—K—P1 | 78.37 (3) |
K—P1—Kvi | 96.10 (2) | O2—K—P1v | 93.47 (4) |
Kv—P1—Kvi | 72.974 (19) | O5vii—K—P1v | 156.78 (4) |
O5—P2—O6 | 113.20 (10) | O1i—K—P1v | 116.62 (5) |
O5—P2—O7 | 111.96 (10) | O6x—K—P1v | 102.54 (4) |
O6—P2—O7 | 111.49 (10) | O7xi—K—P1v | 90.50 (4) |
O5—P2—O4 | 107.91 (10) | O3v—K—P1v | 26.06 (4) |
O6—P2—O4 | 105.10 (10) | O1—K—P1v | 108.15 (4) |
O7—P2—O4 | 106.66 (10) | O2v—K—P1v | 26.19 (3) |
O5—P2—Navi | 65.03 (7) | O3i—K—P1v | 92.83 (4) |
O6—P2—Navi | 150.48 (8) | P1—K—P1v | 102.49 (2) |
O7—P2—Navi | 51.00 (7) | O2—K—Cux | 139.21 (4) |
O4—P2—Navi | 103.13 (7) | O5vii—K—Cux | 41.57 (4) |
O5—P2—Naiii | 147.30 (9) | O1i—K—Cux | 93.78 (5) |
O6—P2—Naiii | 48.05 (7) | O6x—K—Cux | 34.34 (3) |
O7—P2—Naiii | 66.21 (7) | O7xi—K—Cux | 34.63 (3) |
O4—P2—Naiii | 103.48 (7) | O3v—K—Cux | 101.36 (5) |
Navi—P2—Naiii | 116.33 (3) | O1—K—Cux | 91.51 (4) |
O5—P2—Na | 46.71 (7) | O2v—K—Cux | 107.32 (4) |
O6—P2—Na | 70.95 (7) | O3i—K—Cux | 141.53 (4) |
O7—P2—Na | 149.66 (7) | P1—K—Cux | 115.54 (2) |
O4—P2—Na | 101.43 (7) | P1v—K—Cux | 116.45 (2) |
Navi—P2—Na | 111.56 (3) | P1—O1—Navii | 153.68 (14) |
Naiii—P2—Na | 118.02 (3) | P1—O1—Kvi | 108.83 (11) |
O1vii—Na—O6viii | 89.29 (8) | Navii—O1—Kvi | 93.05 (7) |
O1vii—Na—O5 | 92.89 (8) | P1—O1—K | 92.08 (9) |
O6viii—Na—O5 | 126.37 (7) | Navii—O1—K | 86.20 (7) |
O1vii—Na—O7i | 111.80 (8) | Kvi—O1—K | 126.29 (7) |
O6viii—Na—O7i | 116.12 (7) | P1—O2—Cu | 125.16 (11) |
O5—Na—O7i | 112.48 (7) | P1—O2—K | 104.02 (10) |
O1vii—Na—O3viii | 150.23 (8) | Cu—O2—K | 113.55 (8) |
O6viii—Na—O3viii | 79.37 (6) | P1—O2—Kv | 86.03 (8) |
O5—Na—O3viii | 72.83 (6) | Cu—O2—Kv | 128.21 (9) |
O7i—Na—O3viii | 97.87 (7) | K—O2—Kv | 92.88 (5) |
O1vii—Na—O5i | 85.37 (7) | P1—O3—Cuvi | 126.56 (11) |
O6viii—Na—O5i | 67.10 (6) | P1—O3—Naiii | 106.61 (10) |
O5—Na—O5i | 166.46 (9) | Cuvi—O3—Naiii | 85.17 (8) |
O7i—Na—O5i | 56.39 (5) | P1—O3—Kv | 98.72 (8) |
O3viii—Na—O5i | 114.42 (7) | Cuvi—O3—Kv | 134.68 (8) |
O1vii—Na—O7viii | 91.46 (7) | Naiii—O3—Kv | 83.27 (6) |
O6viii—Na—O7viii | 56.27 (5) | P1—O3—Kvi | 87.28 (9) |
O5—Na—O7viii | 70.10 (6) | Cuvi—O3—Kvi | 94.34 (7) |
O7i—Na—O7viii | 156.06 (5) | Naiii—O3—Kvi | 163.09 (7) |
O3viii—Na—O7viii | 59.34 (5) | Kv—O3—Kvi | 85.14 (5) |
O5i—Na—O7viii | 123.32 (6) | P2—O4—P1 | 119.01 (11) |
O1vii—Na—P2i | 93.49 (6) | P2—O5—Cuix | 128.83 (11) |
O6viii—Na—P2i | 94.77 (5) | P2—O5—Na | 106.28 (10) |
O5—Na—P2i | 138.41 (6) | Cuix—O5—Na | 86.95 (7) |
O7i—Na—P2i | 29.06 (4) | P2—O5—Kvii | 139.70 (11) |
O3viii—Na—P2i | 114.67 (5) | Cuix—O5—Kvii | 87.32 (5) |
O5i—Na—P2i | 28.80 (4) | Na—O5—Kvii | 90.88 (6) |
O7viii—Na—P2i | 150.56 (5) | P2—O5—Navi | 86.16 (8) |
O1vii—Na—P2viii | 96.04 (6) | Cuix—O5—Navi | 80.94 (6) |
O6viii—Na—P2viii | 28.24 (4) | Na—O5—Navi | 166.46 (9) |
O5—Na—P2viii | 98.55 (5) | Kvii—O5—Navi | 82.58 (6) |
O7i—Na—P2viii | 136.17 (6) | P2—O6—Cu | 126.10 (11) |
O3viii—Na—P2viii | 61.77 (4) | P2—O6—Naiii | 103.71 (9) |
O5i—Na—P2viii | 94.99 (5) | Cu—O6—Naiii | 99.80 (7) |
O7viii—Na—P2viii | 29.06 (3) | P2—O6—Kiv | 134.97 (10) |
P2i—Na—P2viii | 121.50 (4) | Cu—O6—Kiv | 92.63 (6) |
O1vii—Na—P2 | 99.77 (6) | Naiii—O6—Kiv | 89.12 (6) |
O6viii—Na—P2 | 151.35 (6) | P2—O7—Cuvi | 124.98 (11) |
O5—Na—P2 | 27.01 (4) | P2—O7—Navi | 99.93 (9) |
O7i—Na—P2 | 85.78 (5) | Cuvi—O7—Navi | 104.36 (7) |
O3viii—Na—P2 | 79.46 (5) | P2—O7—Kxii | 137.96 (10) |
O5i—Na—P2 | 140.25 (5) | Cuvi—O7—Kxii | 90.92 (6) |
O7viii—Na—P2 | 96.10 (4) | Navi—O7—Kxii | 89.80 (6) |
P2i—Na—P2 | 111.56 (3) | P2—O7—Naiii | 84.73 (7) |
P2viii—Na—P2 | 123.17 (4) | Cuvi—O7—Naiii | 81.55 (6) |
O1vii—Na—Cuix | 115.94 (6) | Navi—O7—Naiii | 167.87 (8) |
O6viii—Na—Cuix | 86.18 (5) | Kxii—O7—Naiii | 79.43 (5) |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, z+1/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) −x+1, −y+1, −z; (viii) x+1/2, −y+3/2, z−1/2; (ix) x−1/2, −y+3/2, z−1/2; (x) −x+3/2, y−1/2, −z+1/2; (xi) −x+1/2, y−1/2, −z+1/2; (xii) −x+1/2, y+1/2, −z+1/2. |
Cation | qi()·sof(i) | Q(i) | V(i)·sof(i) | CN(i) | ECoN(i) | dar(i) | dmed(i) |
Cu | 2.000 | 1.94 | 1.995 | 5 | 4.35 | 2.031 | 2.031 |
P1 | 5.000 | 5.07 | 4.921 | 4 | 3.84 | 1.540 | 1.541 |
P2 | 5.000 | 5.03 | 4.938 | 4 | 3.88 | 1.540 | 1.540 |
K | 1.000 | 0.98 | 1.103 | 9 | 5.20 | 2.622 | 2.564 |
Na | 1.000 | 0.98 | 1.106 | 7 | 7.80 | 2.912 | 2.912 |
Notes: qi = formal oxydation number; sof(i) = site occupation factor; dar(i) = average distance; dmed(i) = weighted average distance; CN(i) = coordination number; ECoN(i)= effective coordination number; σcat = dispersion factor on cationic charges measuring the deviation of the computed charges; σcat=[Σi(qi-Qi)2/N-1]1/2 = 0.019. |
Compound | Space group | a | b | c | β | Z | Reference |
Li2CuP2O7 | I2/a | 14.068 (2) | 4.8600 (8) | 8.604 (1) | 98.97 (1) | 4 | Spirlet et al. (1993) |
Li2CuP2O7 | C2/c | 15.3360 (14) | 4.8733 (13) | 8.6259 (16) | 114.795 (10) | 4 | Gopalakrishna et al. (2008) |
α-Na2CuP2O7 | P21/n | 8.823 (3) | 13.494 (3) | 5.108 (2) | 92.77 (3) | 4 | Erragh et al. (1995) |
β-Na2CuP2O7 | C2/c | 14.715 (1) | 5.704 (2) | 8.066 (1) | 115.14 (1) | 4 | Etheredge et al. (1995) |
K2CuP2O7 | Pbnm | 9.509 (4) | 14.389 (6) | 5.276 (2) | 4 | ElMaadi et al. (1995) | |
K2CuP2O7 | P421m | 8.056 (2) | 5.460 (11) | 2 | Keates et al. (2014) | ||
α-Rb2CuP2O7 | Pmcn | 5.183 (1) | 10.096 (1) | 15.146 (2) | 4 | Chernyatieva et al. (2008) | |
β-Rb2CuP2O7 | Cc | 7,002 (1) | 12.751 (3) | 9.773 (2) | 110.93 (3) | 4 | Shvanskaya et al. (2012) |
Cs2CuP2O7 | Cc | 7.460 (6) | 12.973 (10) | 9.980 (8) | 111.95 | 4 | Mannasova et al. (2016) |
NaCsCuP2O7 | Pmn21 | 5.147 (2) | 15.126 (3) | 9.717 (5) | 4 | Chernyatieva et al. (2009) | |
Na1.12Ag0.88CuP2O7 | C2/c | 15.088 (2) | 5.641 (1) | 8.171 (1) | 116.11 (1) | 4 | Bennazha et al. (2002) |
Acknowledgements
We acknowledge the assistance of the staff of the Tunisian Laboratory of Materials and Crystallography during the data collection.
Funding information
Funding for this research was provided by: Ministère de l'enseignement supérieur et de la recherche scientifique (Tunisie).
References
Adams, S. (2003). softBV. University of Göttingen, Germany. Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bennazha, J., Boukhari, A. & Holt, E. M. (2002). Acta Cryst. C58, i87–i89. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Chernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2008). Book of Abstracts, VI International Conference on Inorganic Materials, pp. 3–143. Dresden: Elsevier. Google Scholar
Chernyatieva, A. P., Krivovichev, S. V. & Spiridonova, D. V. (2009). Proceedings of the XX Russian Conference of Young Scientists in Memory of the Corresponding Member of the Academy of Sciences of the USSR, K. O. Kratts. Google Scholar
Coelho, A. A. (2009). TOPAS 4.2. www. topas-academic. net Google Scholar
ElMaadi, A., Boukhari, A. & Holt, E. M. (1995). J. Alloys Compd. 223, 13–17. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD–4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (1995). J. Solid State Chem. 120, 23–31. CrossRef CAS Web of Science Google Scholar
Etheredge, K. M. S. & Hwu, S. J. (1995). Inorg. Chem. 34, 1495–1499. CrossRef CAS Web of Science Google Scholar
Gopalakrishna, G. S., Mahesh, M. J., Ashamanjari, K. G. & Prasad, J. S. (2008). Mater. Res. Bull. 43, 1171–1178. Web of Science CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
ICSD (2017). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. https://www.fiz-karlsruhe. de/fiz/products/icsd/welcome. html Google Scholar
Keates, A. C., Wang, Q. & Weller, M. T. (2014). J. Solid State Chem. 210, 10–14. Web of Science CrossRef CAS Google Scholar
Mannasova, A. A., Chernyatieva, A. P. & Krivovichev, S. V. (2016). Z. Kristallogr. 231, 65–69. CAS Google Scholar
Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664. Web of Science CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shvanskaya, L. V., Yakubovich, O. V. & Urusov, V. S. (2012). Dokl. Phys. Chem. 442, 19–26. Web of Science CrossRef CAS Google Scholar
Spirlet, M. R., Rebizant, J. & Liegeois-Duyckaerts, M. (1993). Acta Cryst. C49, 209–211. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.