research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of tetra­kis­(pyridine-4-thio­amide-κN)bis­­(thio­cyanato-κN)cobalt(II) monohydrate and bis­­(pyridine-4-thio­amide-κN)bis­­(thio­cyanato-κN)zinc(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 December 2017; accepted 4 January 2018; online 12 January 2018)

Reaction of Co(NCS)2 and Zn(NCS)2 with 4-pyridine­thio­amide led to the formation of compounds with composition [Co(NCS)2(C6H6N2S)4]·H2O (1) and [Zn(NCS)2(C6H6N2S)2] (2), respectively. The asymmetric unit of compound 1, consists of one cobalt(II) cation, two thio­cyanate anions, four 4-pyridine­thio­amide ligands and one water mol­ecule whereas that of compound 2 comprises one zinc(II) cation that is located on a twofold rotation axis as well as one thio­cyanate anion and one 4-pyridine­thio­amide ligand in general positions. In the structure of compound 1, the cobalt(II) cations are octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions and by the N atoms of four 4-pyridine­thio­amide ligands, resulting in discrete and slightly distorted octa­hedral complexes. These complexes are linked into a three-dimensional network via inter­molecular N—H⋯S hydrogen bonding between the amino H atoms and the thio­cyanate S atoms. From this arrangement, channels are formed in which the water mol­ecules are embedded and linked to the host structure by inter­molecular O—H⋯S and N—H⋯O hydrogen bonding. In the structure of compound 2, the zinc(II) cations are tetra­hedrally coordinated by two N-bonding thio­cyanate anions and the N atoms of two 4-pyridine­thio­amide ligands into discrete complexes. These complexes are likewise connected into a three-dimensional network by inter­molecular N—H⋯S hydrogen bonding between the amino H atoms and the thio­amide S atoms.

1. Chemical context

Thio- and seleno­cyanate anions are useful ligands for the synthesis of new coordination compounds and polymers, because of their versatile coordination behaviour (Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]; Mousavi et al., 2012[Mousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Comm. 48, 10028-10030.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Kabešová et al., 1995[Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115-135.]). In this regard, compounds with general composition [M(NCS)2(L)2]n (M = MnII, FeII, CoII or NiII; L = neutral N-donor co-ligand) in which the metal cations are linked by these anionic ligands are of special inter­est, because magnetic exchange can be mediated (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Wöhlert et al., 2013a[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 12947-12957.]). In this context, we are especially inter­ested in cobalt(II) compounds in which the metal cations are octa­hedrally coordinated by two neutral co-ligands and four anionic ligands, which link the central metal cations into chains by pairs of anionic ligands, as symbolized in Fig. 1[link]. Some of these compounds show a slow relaxation of the magnetization, which in most cases can be traced back to single-chain magnetism (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.],b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Wöhlert et al., 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.], 2013b[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 1061-1068.]). To study the influence of the neutral co-ligand on the magnetic properties, different pyridine derivatives substituted in the 4-position such as 4-benzoyl­pyridine, 4-vinyl­pyridine, 4-acetyl­pyridine, 4-ethyl­pyridine were investigated (Rams et al., 2017b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]; Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]). It was found that all these compounds can be divided magnetically into two groups, even if the same Co(NCS)2 chains are observed. In one group, the compounds exhibit an anti­ferromagnetic ground state and the relaxations observed in the magnetic measurements can be attributed to those of single chains. In the second group, the compounds show a ferromagnetic ground state and the relaxations observed at zero field do not correspond to single-chain relaxations. To gain a better insight into this behaviour, additional examinations of such chain compounds are required, which is of extraordinary importance for our project.

[Figure 1]
Figure 1
View of a part of a chain in [Co(NCS)2(pyridine)2]n as a representative of compounds with the general composition [M(NCS)2(L)2]n (M = MnII, FeII, CoII or NiII and L = neutral N-donor co-ligand).

Therefore we became inter­ested in the monodentate ligand 4-pyridine­thio­amide. In contrast to all ligands used previously, this ligand might be able to link the Co(NCS)2 chains into layers by pairs of inter­molecular hydrogen bonds between the amino H atoms and the thio­amide S atom, which is observed, for example, in the crystal structure of the pure ligand (Colleter & Gadret, 1967[Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463-3469.]; Eccles et al., 2014[Eccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753-2762.]). It should be noted that only one such coordination polymer, namely with 4-pyridine­thio­amide and Cd, is reported in the literature (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370-373.]). Here the CdII cations are linked by pairs of anionic ligands into a linear chain, which corresponds exactly to the structure we are inter­ested in. However, irrespective of the ratio between Co(NCS)2 and the co-ligand, a compound with composition Co(NCS)2(4-pyridine­thio­amide)2 could not be obtained from solution. IR spectroscopic studies of all products showed bands for the CN stretching vibrations at about 2060 cm−1, thus indicating only terminal N-coordinating anionic ligands. Therefore the formation of compounds with bridging anionic ligands can be excluded (Bailey et al., 1971[Bailey, R. A., Kozak, S. L., Michelsen, T. W. & Mills, W. N. (1971). Coord. Chem. Rev. 6, 407-445.]), presumably because cobalt shows no high affinity to bond with sulfur atoms. Hence the formation of discrete complexes with only terminal N-bonding thio­cyanate anions is preferred. The situation is reversed for cadmium, which shows a high affinity to sulfur, and this is obviously the reason why a cadmium compound with a chain structure can easily be obtained from solution. In an alternative approach we tried to synthesize discrete complexes with terminal N-bonding thio­cyanate anions and with additional N-donor co-ligand in the coordination sphere, or mixed ligand complexes with 4-pyridine­thio­amide and other volatile ligands e.g. water. Such compounds can easily be transformed into compounds with anion bridges by thermal annealing, as shown previously (Suckert et al., 2017[Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.]). In most of these cases, half of the N-bonding co-ligands are replaced by the sulfur atom of the (then bridging) thio­cyanate anion, thus enabling the coordin­ation number of 6 to be maintained. In the course of these investigations, crystals of [Co(NCS)2(C6H6N2S)4]·H2O (1) were obtained from aqueous solution and characterized by single crystal X-ray diffraction, which revealed the formation of a discrete complex. Unfortunately, the powder pattern of all batches revealed multi-phase formation, and in several cases large amounts of the 4-pyridine­thio­amide ligand were present in the products (see Fig. S1 in the supporting information).

CoII sometimes forms discrete complexes with composition Co(NCS)2(L)2 in which the cations are tetra­hedrally coordinated by two terminal N-bonding thio­cyanate anions and the N atoms of two neutral co-ligands. In several cases these complexes are isotypic with the corresponding zinc analogues, which enables a simple method for checking whether a tetra­hedral Co complex might be present in the mixture. Hence we synthesized a compound with composition [Zn(NCS)2(C6H6N2S)4] (1) that shows the expected tetra­hedral coordination of zinc(II). However, the calculated X-ray powder diffraction pattern of 2 does not match with the additional reflections observed in some of the X-ray powder diffraction pattern of products obtained during synthesis of 1. Because of the unknown phase(s), no further investigations were performed.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The asymmetric unit of compound 1 consists of one CoII cation, two thio­cyanate anions, one water mol­ecule and four 4-pyridine­thio­amide co-ligands. The CoII cations are sixfold coordinated by two terminal N-bonding thio­cyanate anions and the N atoms of four 4-pyridine­thio­amide ligands, forming discrete octa­hedral complexes, in which all coordinating atoms are in trans-positions (Fig. 2[link]). This corresponds to the most common arrangement for structures of compounds with general composition M(NCS)2(L)4, where M is a divalent 3d metal cation and L a monodentate N-donor co-ligand (Małecki, et al., 2011[Małecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746-753.]). In this context, it is noted that for bridging N-donor co-ligands, like pyrazine or 4,4′-bi­pyridine, two-dimensional networks are obtained, in which the anionic ligands are still terminal coordinating (Real et al., 1991[Real, J. A., De Munno, G., Munoz, M. C. & Julve, M. (1991). Inorg. Chem. 30, 2701-2704.]; Lu et al., 1997[Lu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 923-929.]). The Co—N bond lengths to the thio­cyanate anions of 2.0944 (18) and 2.0956 (19) Å are significantly shorter than those to the pyridine N atoms of the 4-pyridine­thio­amide ligand [2.1640 (16) – 2.1761 (16) Å], which is in agreement with related coordination modes reported in the literature (Table 1[link]; Goodgame et al., 2003[Goodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187-193.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). The bond angles around the central metal cation deviate from the ideal values, indicating a slight distortion (Table 1[link]). For each co-ligand, the thio­amide group is rotated differently out of the pyridine ring plane, with dihedral angles of 11.8 (2), 55.5 (1), 40.1 (2) and 38.3 (1)°.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Co1—N1 2.0944 (18) Co1—N41 2.1723 (16)
Co1—N2 2.0956 (19) Co1—N21 2.1730 (16)
Co1—N11 2.1640 (16) Co1—N31 2.1761 (16)
       
N1—Co1—N2 175.82 (7) N11—Co1—N21 92.44 (6)
N1—Co1—N11 90.78 (7) N41—Co1—N21 176.64 (7)
N2—Co1—N11 91.08 (7) N1—Co1—N31 88.11 (7)
N1—Co1—N41 90.49 (7) N2—Co1—N31 90.22 (7)
N2—Co1—N41 93.31 (7) N11—Co1—N31 176.76 (6)
N11—Co1—N41 88.03 (6) N41—Co1—N31 88.93 (6)
N1—Co1—N21 86.18 (7) N21—Co1—N31 90.53 (6)
N2—Co1—N21 90.00 (7)    
[Figure 2]
Figure 2
View of the asymmetric unit of compound 1 with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the structure of compound 2, the asymmetric unit consists of a ZnII cation that is located on a twofold rotation axis, and one thio­cyanate anion as well as one 4-pyridine­thio­amide ligand in general positions. The ZnII cation is coordinated by the N atoms of two anionic and two neutral co-ligands within a slightly distorted tetra­hedron (Fig. 3[link]). Bond lengths and angles (Table 2[link]) are in agreement with values retrieved from the literature. The dihedral angle between the thio­amide group and the pyridine ring is 43.8 (4)°.

Table 2
Selected geometric parameters (Å, °) for 2[link]

Zn1—N1i 1.935 (6) Zn1—N11i 2.022 (5)
Zn1—N1 1.935 (6) Zn1—N11 2.023 (5)
       
N1i—Zn1—N1 118.4 (4) N1i—Zn1—N11 105.9 (2)
N1i—Zn1—N11i 106.8 (2) N1—Zn1—N11 106.8 (2)
N1—Zn1—N11i 105.9 (2) N11i—Zn1—N11 113.3 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 3]
Figure 3
View of the asymmetric unit of compound 2 with the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x + 3/2, −y + [{1\over 2}], z.]

3. Supra­molecular features

In the crystal of compound 1, the discrete complexes are linked by centrosymmetric pairs of inter­molecular N—H⋯S hydrogen bonds between the amino H atoms and the thio­cyanate S atoms into chains extending parallel to [100], which are further connected by additional N—H⋯S hydrogen bonds into a three-dimensional network (Fig. 4[link] and Table 3[link]). By this arrangement, channels along the a axis are formed in which the water mol­ecules are located (Fig. 4[link]). These solvent mol­ecules are linked to the network via inter­molecular O—H⋯S hydrogen bonding between the water H atoms and the thio­cyanate S atoms (Table 3[link]). The water mol­ecules additionally act as acceptors for N—H⋯O hydrogen bonding to the amino H atoms. There are additional short contacts between some of the aromatic hydrogen atoms and the thio­cyanate S atoms (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S46i 0.95 2.85 3.674 (2) 145
C12—H12⋯S26ii 0.95 2.94 3.695 (2) 137
C14—H14⋯O1 0.95 2.65 3.531 (3) 154
C15—H15⋯S36iii 0.95 2.91 3.581 (2) 129
N16—H2N⋯O1 0.88 2.06 2.893 (2) 159
C22—H22⋯S36iv 0.95 2.96 3.668 (2) 133
N26—H3N⋯S26v 0.88 2.64 3.5155 (18) 179
N26—H4N⋯O1ii 0.88 2.21 3.078 (2) 170
N36—H5N⋯S26vi 0.88 2.78 3.618 (2) 159
N36—H6N⋯S1vii 0.88 2.96 3.812 (2) 165
C41—H41⋯N1 0.95 2.58 3.104 (3) 115
N46—H7N⋯S2viii 0.88 2.91 3.782 (2) 174
N46—H8N⋯S1i 0.88 2.60 3.466 (2) 170
O1—H2O1⋯S36iii 0.84 2.53 3.2356 (16) 142
O1—H1O1⋯S2iv 0.84 2.59 3.2394 (16) 135
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+1, -z+2; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) x+1, y, z; (viii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal structure of compound 1 viewed along the a axis with inter­molecular hydrogen bonds shown as dashed lines.

In the crystal of compound 2, the discrete complexes are linked by inter­molecular N—H⋯S hydrogen-bonding interactions between the H atoms of the amino group and thio­amide (S1) and thiocyanate (S11) S atoms, so forming a three-dimensional hydrogen-bonded framework (Fig. 5[link] and Table 4[link]). There is also a weak C15—H15⋯S1ii interaction present within the framework (Table 4[link].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯S1ii 0.95 2.96 3.690 (6) 135
N12—H1N⋯S11iii 1.01 2.41 3.358 (5) 156
N12—H2N⋯S1iv 1.03 2.41 3.424 (6) 166
Symmetry codes: (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+1]; (iii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (iv) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Crystal structure of compound 2 viewed along the c axis with inter­molecular hydrogen bonds shown as dashed lines.

4. Database survey

There is only one cobalt thio­cyanate compound with 4-pyridine­thio­amide reported in the Cambridge Structure Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In tetra­kis(pyri­dine-4-carbo­thio­amide-κN1)bis-(thio­cyanato-κN)cobalt(II) methanol monosolvate, the CoII cations are octa­hedrally coordinated by four pyridine-4-carbo­thio­amide ligands and two thio­cyanate anions, and the solvent mol­ecules are located in the cavities of the structure (Neumann et al., 2017[Neumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786-1789.]). Moreover, there is one compound with cadmium, in which the CdII cations are octa­hedrally coordinated by two terminal N-bonding pyridine­thio­amide ligands and four thio­cyanate anions and linked by pairs of anionic ligands into linear chains (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370-373.]). Other coordination compounds with this ligand are unknown. Therefore, the title compound is the third structurally characterized coordination compound with 4-pyridine­thio­amide as a ligand. However, the pure 4-pyridine­thio­amide ligand is also known and in its structure the mol­ecules are linked by pairs of hydrogen bonds between the amino H atoms and the thio­amide S atom (Colleter & Gadret, 1967[Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463-3469.]; Eccles et al., 2014[Eccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753-2762.]). Finally, the protonated form with iodine as counter-anion was reported by Shotonwa & Boeré (2014[Shotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340-o341.]).

5. Synthesis and crystallization

Co(NCS)2 and 4-pyridine­thio­amide were purchased from Alfa Aesar. Zn(NCS)2 was prepared by the reaction of equimolar amounts of Ba(SCN)2·3H2O with ZnSO4·H2O in water. The white precipitate of BaSO4 was filtered off, and the resulting clear solution was evaporated until complete dryness. The purity of the obtained Zn(NCS)2 was checked by X-ray powder diffraction (XRPD) measurements.

Crystals of compound 1 were obtained by the reaction of 8.8 mg of Co(NCS)2 (0.05 mmol) with 6.9 mg of 4-pyridine­thio­amide (0.05 mmol) in a mixture of 1 ml of methanol and 1 ml of water. The reaction mixture was heated to boiling and then slowly cooled to ambient temperature, leading to crystals of the title compound suitable for single crystal X-ray diffraction. XRPD revealed impurities by crystals of the employed 4-pyridine­thio­amide ligand as the major phase (see Fig. S1 in the supporting information). Some crystals were selected by hand to measure an infrared spectrum (see Fig. S2 in the supporting information). We also tried to obtain pure samples by using different amounts of Co(NCS)2 and 4-pyridine­thio­amide, however without any success.

For the synthesis of compound 2, 18.2 mg Zn(NCS)2 (0.1 mmol) were reacted with 6.9 mg of 4-pyridine­thio­amide (0.05 mmol) in 1.0 ml of water which was then overlayed with 1.0 ml of chloro­form. After a few days, crystals suitable for single crystal X-ray diffraction formed at the inter­face of the solvents.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both compounds, the aromatic hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. The N—H and O—H hydrogen atoms were located in difference-Fourier maps. For compound 1, their bond lengths were set to ideal values (N—H = 0.88 Å, O—H = 0.84 Å), and refined with Uiso(H) = 1.5Ueq(N,O) using a riding model. For compound 2, the N—H atoms were initially refined and then held fixed (N—H = 1.01 and 1.03 Å) and refined with Uiso(H) = 1.5Ueq(N,O) using a riding model. The absolute structure of compound 2 was determined by resonant scattering [Flack parameter = 0.014 (18); Table 5[link]].

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(NCS)2(C6H6N2S)4]·H2O [Zn(NCS)2(C6H6N2S)2]
Mr 745.89 457.91
Crystal system, space group Monoclinic, P21/n Orthorhombic, Fdd2
Temperature (K) 200 200
a, b, c (Å) 10.9256 (2), 12.9595 (6), 24.1116 (6) 18.965 (3), 41.216 (7), 5.1117 (7)
α, β, γ (°) 90, 100.763 (2), 90 90, 90, 90
V3) 3353.91 (19) 3995.6 (11)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.92 1.66
Crystal size (mm) 0.18 × 0.14 × 0.11 0.11 × 0.08 × 0.06
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-RED32 and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.787, 0.886 0.789, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 35796, 7301, 6291 6296, 1919, 1711
Rint 0.031 0.087
(sin θ/λ)max−1) 0.639 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.07 0.040, 0.109, 1.07
No. of reflections 7301 1919
No. of parameters 397 114
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.38 0.41, −0.36
Absolute structure Flack x determined using 638 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.014 (18)
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1990[Brandenburg, K. (1990). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1990); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(pyridine-4-thioamide-κN)bis(thiocyanato-κN)cobalt(II) monohydrate (1) top
Crystal data top
[Co(NCS)2(C6H6N2S)4]·H2OF(000) = 1532
Mr = 745.89Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9256 (2) ÅCell parameters from 7301 reflections
b = 12.9595 (6) Åθ = 3.1–54.0°
c = 24.1116 (6) ŵ = 0.92 mm1
β = 100.763 (2)°T = 200 K
V = 3353.91 (19) Å3Block, light red
Z = 40.18 × 0.14 × 0.11 mm
Data collection top
Stoe IPDS-2
diffractometer
6291 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: numerical
(X-RED32 and X-SHAPE; Stoe, 2008)
θmax = 27.0°, θmin = 1.7°
Tmin = 0.787, Tmax = 0.886h = 1313
35796 measured reflectionsk = 1616
7301 independent reflectionsl = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.033P)2 + 1.8302P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7301 reflectionsΔρmax = 0.37 e Å3
397 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.56386 (2)0.32716 (2)0.65116 (2)0.02828 (7)
N10.50992 (16)0.18701 (14)0.68256 (8)0.0350 (4)
C10.50476 (18)0.11498 (17)0.71023 (9)0.0334 (4)
S10.49655 (7)0.01363 (5)0.74981 (3)0.05452 (17)
N20.62178 (16)0.47098 (14)0.62584 (8)0.0362 (4)
C20.65867 (18)0.55240 (17)0.61831 (9)0.0340 (4)
S20.71112 (5)0.66765 (5)0.60707 (3)0.05095 (16)
N110.37335 (14)0.35882 (13)0.61109 (7)0.0310 (3)
C110.30074 (18)0.28333 (16)0.58515 (9)0.0353 (4)
H110.33650.21710.58230.042*
C120.17590 (18)0.29742 (16)0.56226 (9)0.0356 (4)
H120.12810.24200.54360.043*
C130.12101 (17)0.39272 (15)0.56661 (8)0.0284 (4)
C140.19731 (19)0.47126 (16)0.59235 (10)0.0383 (5)
H140.16440.53840.59550.046*
C150.32153 (19)0.45127 (17)0.61330 (10)0.0388 (5)
H150.37260.50640.63020.047*
C160.01659 (17)0.40709 (15)0.54605 (8)0.0309 (4)
S160.10407 (5)0.31858 (4)0.50805 (2)0.03728 (12)
N160.06492 (15)0.49408 (14)0.56133 (8)0.0361 (4)
H1N0.14490.50730.55080.054*
H2N0.02200.54080.58330.054*
N210.53727 (15)0.39399 (13)0.73071 (7)0.0318 (3)
C210.43666 (18)0.37052 (17)0.75246 (9)0.0348 (4)
H210.36840.33810.72860.042*
C220.42671 (19)0.39088 (17)0.80772 (9)0.0344 (4)
H220.35340.37300.82140.041*
C230.52596 (18)0.43786 (15)0.84273 (8)0.0305 (4)
C240.62852 (19)0.46660 (17)0.82001 (9)0.0354 (4)
H240.69630.50200.84250.042*
C250.63077 (19)0.44304 (16)0.76421 (9)0.0337 (4)
H250.70170.46250.74910.040*
C260.51995 (18)0.45985 (16)0.90307 (8)0.0322 (4)
S260.53825 (5)0.58106 (4)0.92626 (2)0.03722 (12)
N260.49702 (18)0.38057 (14)0.93325 (8)0.0396 (4)
H3N0.48920.39040.96850.059*
H4N0.48500.32000.91670.059*
N310.75564 (14)0.28842 (13)0.68796 (7)0.0302 (3)
C310.78932 (18)0.23749 (16)0.73696 (8)0.0333 (4)
H310.72760.22430.75910.040*
C320.90894 (18)0.20355 (16)0.75667 (9)0.0328 (4)
H320.92930.16920.79200.039*
C330.99949 (17)0.22025 (15)0.72412 (8)0.0298 (4)
C340.96583 (18)0.27467 (16)0.67424 (8)0.0322 (4)
H341.02570.28900.65130.039*
C350.84442 (18)0.30784 (16)0.65808 (8)0.0323 (4)
H350.82290.34630.62410.039*
C361.12841 (18)0.17958 (16)0.74238 (9)0.0344 (4)
S361.19683 (5)0.18531 (5)0.80975 (3)0.04698 (14)
N361.18076 (17)0.14209 (16)0.70151 (9)0.0458 (5)
H5N1.14140.13790.66620.069*
H6N1.25800.11950.70670.069*
N410.58869 (15)0.25150 (13)0.57362 (7)0.0324 (4)
C410.6140 (2)0.15032 (17)0.57289 (9)0.0396 (5)
H410.62740.11370.60760.048*
C420.6215 (2)0.09683 (18)0.52419 (9)0.0403 (5)
H420.64130.02540.52570.048*
C430.59981 (17)0.14867 (17)0.47296 (9)0.0337 (4)
C440.57594 (19)0.25345 (17)0.47372 (9)0.0364 (4)
H440.56270.29200.43960.044*
C450.57158 (19)0.30155 (16)0.52443 (9)0.0345 (4)
H450.55560.37360.52430.041*
C460.60338 (19)0.09230 (17)0.41907 (9)0.0374 (5)
S460.70646 (6)0.00009 (5)0.41673 (3)0.05019 (15)
N460.51894 (19)0.12246 (17)0.37506 (8)0.0481 (5)
H7N0.46640.17330.37670.072*
H8N0.52040.09450.34190.072*
O10.01279 (14)0.67371 (12)0.63019 (7)0.0425 (4)
H2O10.06950.66860.65880.064*
H1O10.05040.66480.64480.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02703 (12)0.03082 (14)0.02647 (13)0.00297 (10)0.00368 (9)0.00167 (10)
N10.0347 (8)0.0343 (9)0.0356 (9)0.0011 (7)0.0053 (7)0.0004 (7)
C10.0310 (9)0.0368 (11)0.0320 (10)0.0019 (8)0.0050 (8)0.0077 (9)
S10.0897 (5)0.0383 (3)0.0367 (3)0.0010 (3)0.0148 (3)0.0037 (2)
N20.0357 (9)0.0364 (10)0.0364 (9)0.0014 (7)0.0068 (7)0.0007 (7)
C20.0276 (9)0.0423 (12)0.0330 (10)0.0064 (8)0.0076 (8)0.0012 (9)
S20.0403 (3)0.0413 (3)0.0735 (4)0.0019 (2)0.0164 (3)0.0135 (3)
N110.0283 (8)0.0305 (8)0.0332 (9)0.0038 (6)0.0033 (6)0.0007 (7)
C110.0310 (10)0.0292 (10)0.0449 (12)0.0031 (8)0.0050 (8)0.0045 (9)
C120.0305 (9)0.0309 (11)0.0448 (12)0.0018 (8)0.0056 (8)0.0040 (9)
C130.0289 (9)0.0295 (10)0.0271 (9)0.0004 (7)0.0060 (7)0.0030 (7)
C140.0341 (10)0.0283 (10)0.0496 (13)0.0050 (8)0.0002 (9)0.0029 (9)
C150.0327 (10)0.0311 (11)0.0492 (13)0.0029 (8)0.0010 (9)0.0074 (9)
C160.0309 (9)0.0316 (10)0.0311 (10)0.0001 (8)0.0079 (8)0.0065 (8)
S160.0319 (2)0.0361 (3)0.0416 (3)0.0025 (2)0.0012 (2)0.0011 (2)
N160.0287 (8)0.0348 (9)0.0441 (10)0.0032 (7)0.0056 (7)0.0021 (8)
N210.0340 (8)0.0332 (9)0.0291 (8)0.0002 (7)0.0083 (7)0.0033 (7)
C210.0311 (9)0.0407 (11)0.0331 (10)0.0035 (8)0.0073 (8)0.0054 (9)
C220.0330 (9)0.0380 (11)0.0337 (10)0.0050 (8)0.0104 (8)0.0022 (8)
C230.0365 (10)0.0264 (9)0.0297 (10)0.0024 (8)0.0089 (8)0.0009 (7)
C240.0363 (10)0.0363 (11)0.0337 (10)0.0074 (8)0.0069 (8)0.0058 (8)
C250.0352 (10)0.0350 (11)0.0333 (10)0.0051 (8)0.0121 (8)0.0050 (8)
C260.0344 (10)0.0342 (11)0.0284 (10)0.0009 (8)0.0070 (8)0.0004 (8)
S260.0519 (3)0.0308 (3)0.0302 (2)0.0042 (2)0.0112 (2)0.0028 (2)
N260.0589 (11)0.0319 (9)0.0301 (9)0.0003 (8)0.0136 (8)0.0011 (7)
N310.0277 (7)0.0349 (9)0.0278 (8)0.0033 (7)0.0047 (6)0.0004 (7)
C310.0301 (9)0.0403 (11)0.0297 (10)0.0003 (8)0.0060 (7)0.0031 (8)
C320.0316 (9)0.0362 (11)0.0292 (10)0.0002 (8)0.0022 (8)0.0037 (8)
C330.0277 (9)0.0268 (9)0.0338 (10)0.0011 (7)0.0028 (7)0.0025 (8)
C340.0307 (9)0.0355 (11)0.0316 (10)0.0008 (8)0.0084 (8)0.0008 (8)
C350.0329 (9)0.0369 (11)0.0274 (9)0.0022 (8)0.0062 (7)0.0021 (8)
C360.0276 (9)0.0282 (10)0.0461 (12)0.0017 (8)0.0032 (8)0.0020 (9)
S360.0340 (3)0.0548 (4)0.0469 (3)0.0003 (2)0.0058 (2)0.0079 (3)
N360.0307 (9)0.0502 (12)0.0555 (12)0.0077 (8)0.0058 (8)0.0066 (9)
N410.0303 (8)0.0368 (9)0.0290 (8)0.0061 (7)0.0031 (6)0.0039 (7)
C410.0467 (12)0.0394 (12)0.0323 (11)0.0134 (9)0.0062 (9)0.0002 (9)
C420.0440 (11)0.0372 (12)0.0398 (12)0.0080 (9)0.0079 (9)0.0042 (9)
C430.0269 (9)0.0396 (11)0.0341 (10)0.0016 (8)0.0048 (8)0.0067 (8)
C440.0373 (10)0.0389 (11)0.0325 (10)0.0009 (9)0.0050 (8)0.0018 (9)
C450.0354 (10)0.0342 (11)0.0327 (10)0.0012 (8)0.0034 (8)0.0025 (8)
C460.0373 (10)0.0399 (12)0.0367 (11)0.0070 (9)0.0111 (9)0.0066 (9)
S460.0470 (3)0.0524 (4)0.0524 (4)0.0055 (3)0.0126 (3)0.0179 (3)
N460.0593 (12)0.0506 (12)0.0334 (10)0.0037 (10)0.0060 (9)0.0092 (9)
O10.0393 (8)0.0445 (9)0.0423 (9)0.0037 (7)0.0037 (7)0.0009 (7)
Geometric parameters (Å, º) top
Co1—N12.0944 (18)C26—N261.310 (3)
Co1—N22.0956 (19)C26—S261.667 (2)
Co1—N112.1640 (16)N26—H3N0.8801
Co1—N412.1723 (16)N26—H4N0.8800
Co1—N212.1730 (16)N31—C351.336 (2)
Co1—N312.1761 (16)N31—C311.343 (3)
N1—C11.155 (3)C31—C321.377 (3)
C1—S11.636 (2)C31—H310.9500
N2—C21.156 (3)C32—C331.390 (3)
C2—S21.640 (2)C32—H320.9500
N11—C151.331 (3)C33—C341.384 (3)
N11—C111.339 (3)C33—C361.491 (3)
C11—C121.385 (3)C34—C351.380 (3)
C11—H110.9500C34—H340.9500
C12—C131.385 (3)C35—H350.9500
C12—H120.9500C36—N361.321 (3)
C13—C141.387 (3)C36—S361.658 (2)
C13—C161.504 (3)N36—H5N0.8803
C14—C151.381 (3)N36—H6N0.8800
C14—H140.9500N41—C451.334 (3)
C15—H150.9500N41—C411.341 (3)
C16—N161.326 (3)C41—C421.379 (3)
C16—S161.656 (2)C41—H410.9500
N16—H1N0.8799C42—C431.387 (3)
N16—H2N0.8800C42—H420.9500
N21—C211.338 (3)C43—C441.384 (3)
N21—C251.339 (3)C43—C461.497 (3)
C21—C221.382 (3)C44—C451.381 (3)
C21—H210.9500C44—H440.9500
C22—C231.385 (3)C45—H450.9500
C22—H220.9500C46—N461.328 (3)
C23—C241.387 (3)C46—S461.650 (2)
C23—C261.496 (3)N46—H7N0.8800
C24—C251.384 (3)N46—H8N0.8802
C24—H240.9500O1—H2O10.8400
C25—H250.9500O1—H1O10.8400
N1—Co1—N2175.82 (7)N21—C25—C24122.76 (18)
N1—Co1—N1190.78 (7)N21—C25—H25118.6
N2—Co1—N1191.08 (7)C24—C25—H25118.6
N1—Co1—N4190.49 (7)N26—C26—C23116.01 (18)
N2—Co1—N4193.31 (7)N26—C26—S26125.19 (16)
N11—Co1—N4188.03 (6)C23—C26—S26118.78 (15)
N1—Co1—N2186.18 (7)C26—N26—H3N119.2
N2—Co1—N2190.00 (7)C26—N26—H4N118.4
N11—Co1—N2192.44 (6)H3N—N26—H4N122.3
N41—Co1—N21176.64 (7)C35—N31—C31117.37 (17)
N1—Co1—N3188.11 (7)C35—N31—Co1118.52 (13)
N2—Co1—N3190.22 (7)C31—N31—Co1123.83 (13)
N11—Co1—N31176.76 (6)N31—C31—C32123.17 (18)
N41—Co1—N3188.93 (6)N31—C31—H31118.4
N21—Co1—N3190.53 (6)C32—C31—H31118.4
C1—N1—Co1163.19 (17)C31—C32—C33119.03 (18)
N1—C1—S1179.4 (2)C31—C32—H32120.5
C2—N2—Co1172.22 (18)C33—C32—H32120.5
N2—C2—S2179.5 (2)C34—C33—C32117.95 (17)
C15—N11—C11117.21 (17)C34—C33—C36121.32 (18)
C15—N11—Co1122.27 (14)C32—C33—C36120.73 (18)
C11—N11—Co1120.44 (13)C35—C34—C33119.33 (18)
N11—C11—C12122.93 (19)C35—C34—H34120.3
N11—C11—H11118.5C33—C34—H34120.3
C12—C11—H11118.5N31—C35—C34123.07 (18)
C11—C12—C13119.70 (19)N31—C35—H35118.5
C11—C12—H12120.1C34—C35—H35118.5
C13—C12—H12120.1N36—C36—C33115.24 (19)
C12—C13—C14117.11 (18)N36—C36—S36124.65 (16)
C12—C13—C16120.37 (18)C33—C36—S36120.10 (16)
C14—C13—C16122.48 (18)C36—N36—H5N122.8
C15—C14—C13119.58 (19)C36—N36—H6N123.6
C15—C14—H14120.2H5N—N36—H6N113.6
C13—C14—H14120.2C45—N41—C41117.31 (18)
N11—C15—C14123.4 (2)C45—N41—Co1121.76 (14)
N11—C15—H15118.3C41—N41—Co1120.79 (14)
C14—C15—H15118.3N41—C41—C42123.2 (2)
N16—C16—C13116.05 (18)N41—C41—H41118.4
N16—C16—S16121.60 (15)C42—C41—H41118.4
C13—C16—S16122.33 (15)C41—C42—C43119.2 (2)
C16—N16—H1N120.7C41—C42—H42120.4
C16—N16—H2N123.8C43—C42—H42120.4
H1N—N16—H2N115.4C44—C43—C42117.70 (19)
C21—N21—C25117.49 (17)C44—C43—C46121.7 (2)
C21—N21—Co1120.68 (14)C42—C43—C46120.6 (2)
C25—N21—Co1120.61 (13)C45—C44—C43119.5 (2)
N21—C21—C22123.54 (19)C45—C44—H44120.2
N21—C21—H21118.2C43—C44—H44120.2
C22—C21—H21118.2N41—C45—C44123.1 (2)
C21—C22—C23118.55 (18)N41—C45—H45118.5
C21—C22—H22120.7C44—C45—H45118.5
C23—C22—H22120.7N46—C46—C43115.02 (19)
C22—C23—C24118.41 (18)N46—C46—S46124.22 (17)
C22—C23—C26120.34 (17)C43—C46—S46120.76 (17)
C24—C23—C26121.22 (18)C46—N46—H7N123.1
C25—C24—C23119.14 (19)C46—N46—H8N118.4
C25—C24—H24120.4H7N—N46—H8N118.1
C23—C24—H24120.4H2O1—O1—H1O1100.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S46i0.952.853.674 (2)145
C12—H12···S26ii0.952.943.695 (2)137
C14—H14···O10.952.653.531 (3)154
C15—H15···S36iii0.952.913.581 (2)129
N16—H2N···O10.882.062.893 (2)159
C22—H22···S36iv0.952.963.668 (2)133
N26—H3N···S26v0.882.643.5155 (18)179
N26—H4N···O1ii0.882.213.078 (2)170
N36—H5N···S26vi0.882.783.618 (2)159
N36—H6N···S1vii0.882.963.812 (2)165
C41—H41···N10.952.583.104 (3)115
N46—H7N···S2viii0.882.913.782 (2)174
N46—H8N···S1i0.882.603.466 (2)170
O1—H2O1···S36iii0.842.533.2356 (16)142
O1—H1O1···S2iv0.842.593.2394 (16)135
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x1, y, z; (v) x+1, y+1, z+2; (vi) x+3/2, y1/2, z+3/2; (vii) x+1, y, z; (viii) x+1, y+1, z+1.
Bis(pyridine-4-thioamide-κN)bis(thiocyanato-κN)zinc(II) (2) top
Crystal data top
[Zn(NCS)2(C6H6N2S)2]Dx = 1.522 Mg m3
Mr = 457.91Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 6296 reflections
a = 18.965 (3) Åθ = 2.0–26.0°
b = 41.216 (7) ŵ = 1.66 mm1
c = 5.1117 (7) ÅT = 200 K
V = 3995.6 (11) Å3Block, colorless
Z = 80.11 × 0.08 × 0.06 mm
F(000) = 1856
Data collection top
Stoe IPDS-2
diffractometer
1711 reflections with I > 2σ(I)
ω scansRint = 0.087
Absorption correction: numerical
(X-RED32 and X-SHAPE; Stoe, 2008)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.789, Tmax = 0.894h = 2323
6296 measured reflectionsk = 5050
1919 independent reflectionsl = 56
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0506P)2 + 3.6629P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.41 e Å3
1919 reflectionsΔρmin = 0.36 e Å3
114 parametersAbsolute structure: Flack x determined using 638 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.014 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75000.25000.4335 (2)0.0566 (3)
N10.8164 (3)0.22371 (14)0.2398 (12)0.0719 (17)
C10.8585 (3)0.20935 (15)0.1215 (13)0.0598 (15)
S10.91578 (10)0.18998 (5)0.0532 (5)0.0774 (5)
N110.6912 (2)0.21920 (10)0.6510 (12)0.0554 (12)
C110.7150 (3)0.18989 (13)0.7237 (13)0.0572 (14)
H110.76180.18390.67810.069*
C120.6743 (3)0.16827 (14)0.8614 (13)0.0601 (15)
H120.69320.14790.91290.072*
C130.6053 (3)0.17635 (12)0.9247 (14)0.0550 (12)
C140.5813 (3)0.20657 (14)0.8525 (14)0.0616 (16)
H140.53480.21310.89620.074*
C150.6250 (3)0.22727 (13)0.7169 (15)0.0645 (16)
H150.60760.24800.66810.077*
C160.5580 (3)0.15290 (13)1.0657 (13)0.0563 (14)
N120.4930 (3)0.15183 (13)0.9681 (12)0.0618 (13)
H1N0.45370.13741.03130.093*
H2N0.47860.16440.80120.093*
S110.58394 (9)0.13158 (4)1.3212 (4)0.0673 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0576 (5)0.0490 (4)0.0632 (5)0.0008 (4)0.0000.000
N10.080 (4)0.066 (3)0.070 (4)0.001 (3)0.001 (3)0.003 (3)
C10.063 (4)0.060 (3)0.057 (4)0.003 (3)0.001 (3)0.003 (3)
S10.0802 (11)0.0795 (10)0.0724 (11)0.0212 (9)0.0063 (11)0.0055 (10)
N110.053 (3)0.048 (2)0.064 (3)0.0019 (19)0.000 (3)0.006 (2)
C110.052 (3)0.055 (3)0.065 (4)0.001 (2)0.000 (3)0.002 (3)
C120.053 (3)0.056 (3)0.071 (4)0.003 (3)0.000 (3)0.007 (3)
C130.052 (3)0.049 (2)0.064 (3)0.002 (2)0.001 (3)0.007 (3)
C140.058 (3)0.052 (3)0.075 (4)0.003 (2)0.010 (3)0.000 (3)
C150.060 (3)0.045 (2)0.088 (5)0.004 (2)0.009 (4)0.002 (3)
C160.054 (3)0.054 (3)0.061 (3)0.001 (2)0.004 (3)0.009 (3)
N120.052 (3)0.066 (3)0.067 (3)0.009 (2)0.001 (2)0.003 (3)
S110.0588 (9)0.0727 (9)0.0705 (10)0.0005 (8)0.0039 (8)0.0091 (9)
Geometric parameters (Å, º) top
Zn1—N1i1.935 (6)C12—H120.9500
Zn1—N11.935 (6)C13—C141.376 (8)
Zn1—N11i2.022 (5)C13—C161.502 (8)
Zn1—N112.023 (5)C14—C151.376 (9)
N1—C11.163 (8)C14—H140.9500
C1—S11.617 (7)C15—H150.9500
N11—C151.342 (8)C16—N121.331 (8)
N11—C111.342 (7)C16—S111.649 (7)
C11—C121.373 (8)N12—H1N1.0078
C11—H110.9500N12—H2N1.0347
C12—C131.389 (8)
N1i—Zn1—N1118.4 (4)C13—C12—H12120.2
N1i—Zn1—N11i106.8 (2)C14—C13—C12117.8 (5)
N1—Zn1—N11i105.9 (2)C14—C13—C16120.9 (5)
N1i—Zn1—N11105.9 (2)C12—C13—C16121.3 (5)
N1—Zn1—N11106.8 (2)C13—C14—C15119.8 (6)
N11i—Zn1—N11113.3 (3)C13—C14—H14120.1
C1—N1—Zn1176.5 (6)C15—C14—H14120.1
N1—C1—S1177.8 (7)N11—C15—C14122.4 (6)
C15—N11—C11117.9 (5)N11—C15—H15118.8
C15—N11—Zn1119.9 (4)C14—C15—H15118.8
C11—N11—Zn1122.1 (4)N12—C16—C13113.2 (6)
N11—C11—C12122.5 (5)N12—C16—S11123.7 (5)
N11—C11—H11118.8C13—C16—S11123.0 (5)
C12—C11—H11118.8C16—N12—H1N125.8
C11—C12—C13119.6 (5)C16—N12—H2N122.6
C11—C12—H12120.2H1N—N12—H2N111.3
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···S1ii0.952.963.690 (6)135
N12—H1N···S11iii1.012.413.358 (5)156
N12—H2N···S1iv1.032.413.424 (6)166
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x1/4, y+1/4, z1/4; (iv) x1/2, y, z+1/2.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationBailey, R. A., Kozak, S. L., Michelsen, T. W. & Mills, W. N. (1971). Coord. Chem. Rev. 6, 407–445.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1990). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationColleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463–3469.  Google Scholar
First citationEccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753–2762.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135.  Google Scholar
First citationLu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 923–929.  CSD CrossRef CAS Web of Science Google Scholar
First citationMałecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746–753.  Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationMousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Comm. 48, 10028–10030.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370–373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786–1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationReal, J. A., De Munno, G., Munoz, M. C. & Julve, M. (1991). Inorg. Chem. 30, 2701–2704.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340–o341.  CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997–4005.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 12947–12957.  Web of Science PubMed Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 1061–1068.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds