research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 5,5′-bis­(­hy­droxy­methyl)-3,3′-biisoxazole and 4,4′,5,5′-tetra­kis­­(hy­droxy­methyl)-3,3′-biisoxazole

CROSSMARK_Color_square_no_text.svg

aUS Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD 21005, USA, bUS Army Research Laboratory, RDRL-WML-C, Aberdeen Proving Ground, MD 21005, USA, and cUniversity of Maryland, College Park, MD 20742, USA
*Correspondence e-mail: rosario.c.sausa.civ@mail.mil

Edited by C. Massera, Università di Parma, Italy (Received 19 December 2017; accepted 12 January 2018; online 19 January 2018)

The mol­ecular structure of 5,5′-bis(­hydroxy­methyl)-3,3′-biisoxazole, C8H8N2O4 (1), is composed of two trans planar isoxazole rings [r.m.s deviation = 0.006 (1) Å], each connected with a methyl hydroxyl group. Similarly, the structure of 4,4′,5,5′-tetrakis­(hydroxy­methyl)-3,3′-biisoxazole, C10H12N2O6 (2), is composed of two planar isoxazole rings [r.m.s. deviation = 0.002 (1) Å], but with four hydroxymethyl groups as substituents. Both mol­ecules sit on a center of inversion, thus Z′ = 0.5. The crystal structures are stabilized by networks of O—H⋯N [for (1)] and O—H⋯O hydrogen-bonding inter­actions [for (2)], giving rise to corrugated supra­molecular planes. The isoxazole rings are packed in a slip-stacked fashion, with centroid-to-centroid distances of 4.0652 (1) Å for (1) (along the b-axis direction) and of 4.5379 (Å) for (2) (along the a-axis direction).

1. Chemical context

The five-membered, heterocyclic isoxazole moiety forms the basis for a number of medical and agricultural products, as well as energetic materials (Galenko et al., 2015[Galenko, A. V., Khlebnikov, A. F., Novikov, M. F., Pakalnis, V. V. & Rostovskii, N. V. (2015). Russ. Chem. Rev. 84, 335-377.]; Sausa et al., 2017[Sausa, R. C., Pesce-Rodriguez, R. A., Wingard, L. A., Guzmán, P. E. & Sabatini, J. J. (2017). Acta Cryst. E73, 644-646.]; Wingard et al., 2017a[Wingard, L. A., Guzmán, P. E., Johnson, E. C., Sabatini, J. J., Drake, G. W. & Byrd, E. F. C. (2017a). ChemPlusChem, 82, 195-198.],b[Wingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765-1768.]; Sysak & Obmińska-Mrukowicz, 2017[Sysak, A. & Obmińska-Mrukowicz, B. (2017). Eur. J. Med. Chem. 137, 292-309.]). Its versatility stems from the electronegative oxygen and nitro­gen atoms, which provide the ring nucleophilic activity, and its three carbon atoms, which afford the addition of a variety of functional groups. The title compounds 5,5′-bis(hydroxy­methyl)-3,3′-biisoxazole (1) and 4,4′,5,5′-tetrakis(hydroxy­methyl)-3,3′-biisoxazole (2) exhibit two isoxazole rings, each attached with one or two hydroxymethy groups. These compounds have been synthesized recently in our laboratory as useful precursors to a new class of energetic materials. The addition of nitric acid to the title compounds results in nitrate esterification, yielding the energetic materials biisoxazole­bis(methyl­ene dinitrate) (3) and biisoxazole­tetra­kis­(methyl nitrate) (4), where a nitrate functional group replaces the hydrogen atom in the hydroxyl groups (Wingard et al., 2017a[Wingard, L. A., Guzmán, P. E., Johnson, E. C., Sabatini, J. J., Drake, G. W. & Byrd, E. F. C. (2017a). ChemPlusChem, 82, 195-198.],b[Wingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765-1768.]). These derivative compounds are potential energetic plasticizing ingredients in nitro­cellulose or melt-castable formulations because the rings present Lewis-base behavior towards electrophilic nitro­cellulose and the alkyl nitric esters afford miscibility and compatibility with conventional energetic plasticizers.

[Scheme 1]

2. Structural commentary

The title compounds exhibit mol­ecular structures typical of biisoxazole derivatives. Fig. 1[link] reveals that the isoxazole rings of (1) exhibit a trans planar configuration [r.m.s deviation = 0.0009 (1) Å], suggesting a delocalized aromatic π system. The C4 atom is nearly coplanar with the ring (atom-to-mean plane distance = 0.006 Å), whereas the C4—O2 bond is twisted slightly out of the plane, as evidenced by the torsion angles C2—C1—C4—O2 = −13.3 (2)° and O1—C1—C4—O2 = 167.55 (11)°. Atoms C1/C4/O2 form a plane that subtends a dihedral angle of 12.72 (1)° with respect to the isoxazole ring. Similarly, the isoxazole rings of (2) are nearly planar [r.m.s deviation = 0.002 (1) Å]; however, the corresponding O2—C4 bond is twisted more out of plane than that of compound (1), as evidenced by the magnitude of the torsion angle O2—C4—C1—O1 = −54.93 (11)°. For comparison, the torsion angle formed by atoms O3—C5—C2—C1 is −110.02 (11)°. The atoms O2/C4/C1 and O3/C5/C2 form planes subtending dihedral angles of 53.78 (8) and 69.37 (7)° with respect to the isoxazole ring. Superimposition of the ring atoms of both structures (see Fig. 2[link]) yields an r.m.s. deviation of 0.01 Å. Finally, compound (2) exhibits a weak intra­molecular inter­action involving atoms O3—H3A and N1iii [see Table 2[link] for the geometrical parameters; symmetry code: (iii) = −x + 2, −y + 1, −z + 1.]

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.849 (18) 1.849 (18) 2.6936 (11) 172.8 (16)
O3—H3A⋯O2ii 0.792 (19) 2.085 (19) 2.7898 (11) 148.3 (18)
O3—H3A⋯N1iii 0.792 (19) 2.550 (19) 3.0728 (12) 125.0 (16)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular conformation and atom-numbering scheme of compounds (1) and (2). Non-labeled atoms of both structures are generated by inversion (−x + 2, −y + 1, −z + 1). Non-hydrogen atoms are shown as 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
An overlay of the asymmetric units of compounds (1) and (2), depicted in red and green, respectively.

3. Supra­molecular features

Inter­molecular hydrogen bonding plays a key role in the stabilization of the crystal structures of the title compounds. Figs. 3[link] and 4[link] show the packing of (1) and (2), respectively, and Tables 1[link] and 2[link] list their hydrogen-bonding geometries. Compound (1) displays hydrogen bonding between the oxygen atoms O2, belonging to the hy­droxy groups, and the N1 atoms of the isoxazole rings of adjacent mol­ecules, generating a supra­molecular framework parallel to ([\overline{2}]01) [O2⋯N1i = 2.8461 (15) Å; symmetry code: (i) x − [1\over2], −y + [1\over2], z − [1\over2]]. In contrast, compound (2) forms a network of hydrogen bonds involving the hy­droxy groups O2—H2A and O3—H3A of adjacent mol­ecules, so that each OH group acts both as donor and acceptor [see Table 2[link] and Fig. 4[link]; O2⋯O3i = 2.694 (1) Å; symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; O3⋯O2ii = 2.790 (1) Å; symmetry code: (ii) x + 1, −y + [{1\over 2}], z + [{1\over 2}]]. In this way, each mol­ecule forms eight hydrogen bonds with the four closest surrounding analogues, giving rise to corrugated planes parallel to ([\overline{1}]02).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 2.03 2.8461 (15) 171
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of (1) viewed along the a-axis direction. Dashed lines represent O2—H2A⋯N1i hydrogen bonds; symmetry code: (i) x − [1\over2], −y + [1\over2], z − [1\over2].
[Figure 4]
Figure 4
Crystal packing of (2) viewed along the a-axis direction. Dashed lines represent O2—H2A⋯O3i and O3—H3A⋯O2ii hydrogen bonds; symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) x + 1, −y + [{1\over 2}], z + [{1\over 2}].

The crystal structure of (1) reveals a slip-stacked geometry of the rings in the b-axis direction, with centroid-to-centroid distances of 4.0652 (1) Å and plane-to-plane shifts of 2.256 (2) Å. In contrast, in compound (2) the rings are stacked along the a-axis direction, with centroid-to-centroid distances of 4.5379 (4) Å and plane-to-plane shifts of 2.683 (2) Å.

4. Database survey

A search of the Cambridge Structural Database (CSD web inter­face, December 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and the Crystallography Open Database (Gražulis et al., 2009[Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726-729.]) yielded the crystal structures of several compounds containing the biisoxazole moiety. For examples, see Cannas & Marongiu (1967[Cannas, M. & Marongiu, G. (1967). Z. Kristallogr. 124, 143-151.]) (CCDC 1111317, BIOXZL); van der Peet et al. (2013[Peet, P. L. van der, Connell, T., Gunawan, C., White, J., Donnelly, P. & Williams, S. (2013). J. Org. Chem. 78, 7298-7304.]) (CCDC 935274, LIRLEF); Sausa et al. (2017[Sausa, R. C., Pesce-Rodriguez, R. A., Wingard, L. A., Guzmán, P. E. & Sabatini, J. J. (2017). Acta Cryst. E73, 644-646.]) (CCDC 1540757, TAXDUU); Wingard et al. (2017b[Wingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765-1768.]) (CCDC 1529260, WANVEP). Compounds (3) (Sausa et al., 2017[Sausa, R. C., Pesce-Rodriguez, R. A., Wingard, L. A., Guzmán, P. E. & Sabatini, J. J. (2017). Acta Cryst. E73, 644-646.]) and (4) (Wingard et al. 2017b[Wingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765-1768.]) are noteworthy because they are nitrate derivatives of the title compounds (1) and (2), respectively, with the hydrogen atoms in the OH groups replaced by NO2 moieties. A superimposition of the respective isoxazole rings of compound (1) and (3) yields an r.m.s. deviation of 0.004 Å (Fig. 5[link]A). In both mol­ecules, the rings adopt a trans conformations; however, in (1) the O1 and O2 atoms are in a trans conformation with respect to the C1—C4 bond, whereas in (3) the corresponding O atoms are in a cis conformation. In (1), the plane encompassing the atoms O2, C4, and C1 forms a dihedral angle of 12.72 (1)° with respect to the mean plane of the isoxazole ring, in contrast to a value of 66.8 (2)° in (3) for the corresponding atoms. A similar comparison between (2) and (4) yields an r.m.s. deviation of 0.01 Å for the superimposition of the isoxazole rings, and dihedral angles of 53.78 (8) and 69.37 (7)° for (2) (planes formed by the atoms O2/C4/C1 and O3/C5/C2, respectively) compared to those of 84.54 (14) and 84.81 (18)° or 79.19 (15) and 82.32 (17)° for (4) (Fig. 5[link]B). The most striking supra­molecular difference between the title compounds and (3) and (4) is that the former exhibit hydrogen bonding, which contributes to the stability of their crystal structure.

[Figure 5]
Figure 5
Overlays of the asymmetric units of (1) and (3) (A) and (2) and (4) (B).

5. Synthesis and crystallization

The synthesis of the title compounds has been reported recently (Wingard et al., 2017a[Wingard, L. A., Guzmán, P. E., Johnson, E. C., Sabatini, J. J., Drake, G. W. & Byrd, E. F. C. (2017a). ChemPlusChem, 82, 195-198.],b[Wingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765-1768.]). Briefly, they were prepared by [3 + 2] cyclo­addition of di­chloro­glyoxime and alcohol. In the case of compound (1), a saturated solution of sodium bicarbonate was added to a solution of di­chloro­glyoxime (30 g), propargyl alcohol (55.2 ml), and methanol (1900 ml) over 6 h. Once the reaction was complete, the product was stirred for an additional 10 h and the remaining solvent evaporated. A yield of 75% was obtained after the product was washed with distilled water, collected by Büchner filtration, and then dried. Compound (2) was prepared by adding dropwise a di­chloro­glyoxime and butyl alcohol solution (0.8 M) to a refluxing solution comprising NaHCO3 (6.7 g), 2-butyne-1,4-diol (13.72 g), and butyl alcohol (200 ml). Once the reaction was complete, the product was cooled to room temperature and the remaining solvent evaporated. Then, the product was washed with distilled water, filtered, and dried, resulting in a yield of 68%. Slow solvent evaporation of the title compounds in methanol yielded suitable single crystals for the X-ray diffraction experiments at 150K. We note the title compounds have nearly the same density (1.596 vs 1.597 Mg m−3), given that their mol­ecular mass and cell constants are quite different.

Fig. 6[link] shows the FTIR spectra of (1) and (2) recorded with a Nicolet iS50 spectrophotometer, using attenuated total reflectance. The intense peak frequencies (cm−1) are listed as follows: Compound (1): 3371.83, 3126.65, 1596.96, 1415.14, 1360.62, 1268.13, 1237.16, 1080.70, 1058.61, 1026.40, 993.24, 929.53, 901.95, 828.87, 746.83, 653.69, 621.96, and 424.11. Compound (2): 3234.89, 1623.59, 1456.55, 1418.41, 1354.66, 1261.30, 1185.44, 1128.41, 1046.52, 1011.82, 984.07, 964.14, 931.24, 906.80, 764.50, 725.86, 641.00, 576.90, 475.85, and 449.97.

[Figure 6]
Figure 6
FTIR spectra of the title compounds.

6. Refinement

Crystal data, data collection, structure solution and refinement details are summarized in Table 3[link]. The hydrogen atoms for compound (1) were refined using a riding model with C—H = 0.93 or 0.98 Å and Uiso(H) = 1.2Ueq(C) and O—H = 0.74–0.85 Å and Uiso(H) = 1.5Ueq(O), whereas for compound (2) all the hydrogen atoms were refined independently including isotropic displacement parameters.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C8H8N2O4 C10H12N2O6
Mr 196.16 256.22
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 7.7824 (3), 4.0652 (1), 13.2109 (5) 4.5379 (4), 9.9195 (8), 12.0177 (9)
β (°) 102.334 (4) 99.9312 (11)
V3) 408.31 (2) 532.86 (8)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.13 0.13
Crystal size (mm) 0.35 × 0.25 × 0.05 0.49 × 0.20 × 0.11
 
Data collection
Diffractometer Rigaku Oxford DiffractionSuperNova, Dualflex, EosS2 Bruker SMART APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.207, 1.000 0.904, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 3474, 823, 754 7638, 1737, 1570
Rint 0.027 0.019
(sin θ/λ)max−1) 0.624 0.730
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04 0.034, 0.072, 1.00
No. of reflections 823 1737
No. of parameters 66 106
H-atom treatment H-atom parameters constrained All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.15 0.44, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), APEX2, XSHELL and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (1); APEX2 (Bruker, 2010) for (2). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (1); SAINT (Bruker, 2010) for (2). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (1); SAINT (Bruker, 2010) for (2). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); SHELXS97 (Sheldrick, 2008) for (2). Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for (1); SHELXL2014 (Sheldrick, 2015b) for (2). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (1); XSHELL (Bruker, 2010) for (2). Software used to prepare material for publication: Mercury (Macrae et al., 2008) for (1); PLATON (Spek, 2009) for (2).

5,5'-Dihydroxymethyl-3,3'-biisoxazole (1) top
Crystal data top
C8H8N2O4F(000) = 204
Mr = 196.16Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7824 (3) ÅCell parameters from 1980 reflections
b = 4.0652 (1) Åθ = 2.8–26.2°
c = 13.2109 (5) ŵ = 0.13 mm1
β = 102.334 (4)°T = 150 K
V = 408.31 (2) Å3Block, colorless
Z = 20.35 × 0.25 × 0.05 mm
Data collection top
Rigaku Oxford DiffractionSuperNova, Dualflex, EosS2
diffractometer
823 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0945 pixels mm-1θmax = 26.3°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2015; Bourhis et al., 2015)
k = 55
Tmin = 0.207, Tmax = 1.000l = 1616
3474 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.040P)2 + 0.183P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.28 e Å3
823 reflectionsΔρmin = 0.15 e Å3
66 parametersExtinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.041 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64217 (17)0.3456 (3)0.39844 (9)0.0193 (3)
C20.78918 (17)0.5023 (3)0.38810 (10)0.0207 (3)
H20.8081280.6214130.3313700.025*
C30.90869 (16)0.4449 (3)0.48325 (9)0.0188 (3)
C40.46651 (17)0.3002 (3)0.32830 (10)0.0230 (3)
H4A0.4537880.0762290.3024460.028*
H4B0.3738260.3437340.3652860.028*
N10.83872 (14)0.2665 (3)0.54646 (8)0.0238 (3)
O10.66636 (12)0.2010 (2)0.49285 (7)0.0240 (3)
O20.45577 (14)0.5241 (3)0.24526 (7)0.0304 (3)
H2A0.4125480.4315900.1905840.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (7)0.0198 (7)0.0165 (6)0.0029 (5)0.0004 (5)0.0032 (5)
C20.0194 (7)0.0238 (7)0.0174 (6)0.0007 (5)0.0009 (5)0.0005 (5)
C30.0173 (7)0.0209 (7)0.0174 (6)0.0021 (5)0.0019 (5)0.0029 (5)
C40.0190 (7)0.0249 (7)0.0226 (7)0.0005 (5)0.0009 (5)0.0054 (5)
N10.0173 (6)0.0315 (7)0.0198 (6)0.0029 (5)0.0019 (4)0.0002 (5)
O10.0180 (5)0.0319 (6)0.0199 (5)0.0052 (4)0.0008 (4)0.0003 (4)
O20.0342 (6)0.0275 (6)0.0230 (5)0.0011 (4)0.0087 (4)0.0024 (4)
Geometric parameters (Å, º) top
C1—C21.3419 (19)C3—N11.3093 (17)
C1—C41.4901 (17)C4—H4A0.9700
C1—O11.3550 (15)C4—H4B0.9700
C2—H20.9300C4—O21.4142 (17)
C2—C31.4143 (18)N1—O11.4021 (14)
C3—C3i1.465 (2)O2—H2A0.8200
C2—C1—C4133.19 (12)C1—C4—H4A110.3
C2—C1—O1110.24 (11)C1—C4—H4B110.3
O1—C1—C4116.57 (11)H4A—C4—H4B108.5
C1—C2—H2127.9O2—C4—C1107.28 (11)
C1—C2—C3104.14 (11)O2—C4—H4A110.3
C3—C2—H2127.9O2—C4—H4B110.3
C2—C3—C3i129.00 (15)C3—N1—O1105.45 (10)
N1—C3—C2111.97 (11)C1—O1—N1108.21 (10)
N1—C3—C3i119.03 (14)C4—O2—H2A109.5
C1—C2—C3—C3i179.69 (17)C3—N1—O1—C10.23 (14)
C1—C2—C3—N10.03 (15)C4—C1—C2—C3179.05 (14)
C2—C1—C4—O213.3 (2)C4—C1—O1—N1179.11 (11)
C2—C1—O1—N10.26 (14)O1—C1—C2—C30.18 (14)
C2—C3—N1—O10.12 (15)O1—C1—C4—O2167.55 (11)
C3i—C3—N1—O1179.87 (14)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1ii0.822.032.8461 (15)171
Symmetry code: (ii) x1/2, y+1/2, z1/2.
4,4',5,5'-Tetrahydroxymethyl-3,3'-biisoxazole (2) top
Crystal data top
C10H12N2O6F(000) = 268
Mr = 256.22Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.5379 (4) ÅCell parameters from 3988 reflections
b = 9.9195 (8) Åθ = 2.7–32.1°
c = 12.0177 (9) ŵ = 0.13 mm1
β = 99.9312 (11)°T = 150 K
V = 532.86 (8) Å3Needle, colourless
Z = 20.49 × 0.20 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1737 independent reflections
Radiation source: sealed tube1570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.333 pixels mm-1θmax = 31.3°, θmin = 2.7°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1414
Tmin = 0.904, Tmax = 0.985l = 1717
7638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.072All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.010P)2 + 0.3955P]
where P = (Fo2 + 2Fc2)/3
1737 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58044 (17)0.58291 (7)0.30718 (6)0.01981 (16)
O20.23448 (16)0.42300 (8)0.13078 (6)0.01890 (15)
H2A0.174 (4)0.5035 (18)0.1182 (14)0.039 (4)*
O30.93528 (19)0.17777 (8)0.42532 (7)0.02252 (17)
H3A1.037 (4)0.1801 (18)0.4858 (16)0.045 (5)*
N10.7277 (2)0.60707 (9)0.41811 (7)0.02010 (18)
C10.6765 (2)0.46292 (10)0.27170 (8)0.01576 (17)
C20.8810 (2)0.40630 (9)0.35428 (8)0.01513 (17)
C30.9048 (2)0.50244 (10)0.44419 (8)0.01585 (18)
C40.5528 (2)0.42337 (10)0.15275 (8)0.01753 (18)
H4A0.631 (3)0.4856 (14)0.1016 (12)0.022 (3)*
H4B0.622 (3)0.3337 (14)0.1391 (11)0.021 (3)*
C51.0376 (2)0.27405 (10)0.35134 (9)0.01875 (19)
H5A1.255 (3)0.2866 (14)0.3717 (12)0.024 (3)*
H5B0.992 (3)0.2362 (14)0.2760 (11)0.021 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (4)0.0166 (3)0.0163 (3)0.0036 (3)0.0036 (3)0.0010 (3)
O20.0163 (3)0.0169 (3)0.0216 (3)0.0003 (3)0.0019 (3)0.0014 (3)
O30.0302 (4)0.0154 (3)0.0187 (4)0.0019 (3)0.0050 (3)0.0026 (3)
N10.0253 (4)0.0171 (4)0.0153 (4)0.0022 (3)0.0038 (3)0.0019 (3)
C10.0171 (4)0.0143 (4)0.0154 (4)0.0012 (3)0.0015 (3)0.0003 (3)
C20.0167 (4)0.0136 (4)0.0148 (4)0.0008 (3)0.0017 (3)0.0001 (3)
C30.0183 (4)0.0139 (4)0.0145 (4)0.0012 (3)0.0003 (3)0.0001 (3)
C40.0171 (4)0.0199 (4)0.0147 (4)0.0007 (3)0.0001 (3)0.0006 (3)
C50.0219 (4)0.0161 (4)0.0176 (4)0.0030 (3)0.0015 (3)0.0006 (3)
Geometric parameters (Å, º) top
O1—N11.4050 (11)C3—C21.4312 (13)
O2—H2A0.849 (18)C3—C3i1.4657 (18)
O2—C41.4229 (12)C4—C11.4952 (13)
O3—H3A0.792 (19)C4—H4A0.980 (14)
N1—C31.3171 (12)C4—H4B0.966 (14)
C1—O11.3612 (12)C5—O31.4354 (13)
C1—C21.3577 (13)C5—H5A0.982 (14)
C2—C51.4953 (13)C5—H5B0.969 (14)
C1—O1—N1108.71 (7)O2—C4—C1112.33 (8)
C4—O2—H2A108.4 (11)O2—C4—H4A110.6 (8)
C5—O3—H3A110.4 (13)O2—C4—H4B108.3 (8)
C3—N1—O1105.20 (8)C1—C4—H4A108.5 (8)
O1—C1—C4116.17 (8)C1—C4—H4B108.9 (8)
C2—C1—O1110.38 (8)H4A—C4—H4B108.1 (11)
C2—C1—C4133.38 (9)O3—C5—C2111.30 (8)
C1—C2—C3103.26 (8)O3—C5—H5A110.3 (8)
C1—C2—C5127.83 (9)O3—C5—H5B106.3 (8)
C3—C2—C5128.91 (9)C2—C5—H5A110.1 (8)
N1—C3—C2112.45 (8)C2—C5—H5B109.7 (8)
N1—C3—C3i118.88 (11)H5A—C5—H5B109.0 (11)
C2—C3—C3i128.67 (11)
O1—N1—C3—C20.53 (11)C1—C2—C5—O3110.02 (11)
O1—N1—C3—C3i179.26 (10)C2—C1—O1—N10.05 (11)
O1—C1—C2—C30.35 (10)C3—C2—C5—O368.82 (13)
O1—C1—C2—C5178.72 (9)C3i—C3—C2—C1179.21 (12)
O2—C4—C1—O154.93 (11)C3i—C3—C2—C51.74 (19)
O2—C4—C1—C2128.39 (11)C4—C1—O1—N1177.38 (8)
N1—C3—C2—C10.56 (11)C4—C1—C2—C3176.48 (10)
N1—C3—C2—C5178.49 (10)C4—C1—C2—C54.46 (18)
C1—O1—N1—C30.30 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.849 (18)1.849 (18)2.6936 (11)172.8 (16)
O3—H3A···O2iii0.792 (19)2.085 (19)2.7898 (11)148.3 (18)
O3—H3A···N1i0.792 (19)2.550 (19)3.0728 (12)125.0 (16)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Dr D. Taylor of the US Army Research Laboratory and Dr Eric Reinheimer of Rigaku for helpful suggestions regarding this work.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannas, M. & Marongiu, G. (1967). Z. Kristallogr. 124, 143–151.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalenko, A. V., Khlebnikov, A. F., Novikov, M. F., Pakalnis, V. V. & Rostovskii, N. V. (2015). Russ. Chem. Rev. 84, 335–377.  Web of Science CrossRef CAS Google Scholar
First citationGražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeet, P. L. van der, Connell, T., Gunawan, C., White, J., Donnelly, P. & Williams, S. (2013). J. Org. Chem. 78, 7298–7304.  Web of Science PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSausa, R. C., Pesce-Rodriguez, R. A., Wingard, L. A., Guzmán, P. E. & Sabatini, J. J. (2017). Acta Cryst. E73, 644–646.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSysak, A. & Obmińska-Mrukowicz, B. (2017). Eur. J. Med. Chem. 137, 292–309.  CrossRef CAS PubMed Google Scholar
First citationWingard, L. A., Guzmán, P. E., Johnson, E. C., Sabatini, J. J., Drake, G. W. & Byrd, E. F. C. (2017a). ChemPlusChem, 82, 195-198.  CrossRef CAS Google Scholar
First citationWingard, L. A., Johnson, E. C., Guzmán, P. E., Sabatini, J. J., Drake, G. W., Byrd, E. F. C. & Sausa, R. C. (2017b). Eur. J. Org. Chem. pp. 1765–1768.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds