research communications
κN1)bis(2,4,6-trimethylbenzoato-κ2O,O′)cadmium(II)
and Hirshfeld surface analysis of aquabis(nicotinamide-aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The 10H11O2)2(C6H6N2O)2(H2O)], contains one half of the complex molecule, with the CdII cation and the coordinated water O atom residing on a twofold rotation axis. The CdII cation is coordinated in a bidentate manner to the carboxylate O atoms of the two symmetry-related 2,4,6-trimethylbenzoate (TMB) anions and to the water O atom at distances of 2.297 (2), 2.527 (2) and 2.306 (3) Å to form a distorted pentagonal arrangement, while the distorted pentagonal–bipyramidal coordination sphere is completed by the two pyridine N atoms of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.371 (3) Å in the axial positions. In the crystal, molecules are linked via intermolecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds with R22(12), R33(8), R33(14), R33(16), R33(20), R33(22), R44(22), R55(16), R66(16) and R66(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are H⋯H (56.9%), H⋯C/C⋯H (21.3%) and H⋯O/O⋯H (19.0%) interactions.
of the title complex, [Cd(CKeywords: crystal structure; cadmium(II); transition metal complexes of benzoic acid and nicotinamide derivatives.
CCDC reference: 1818756
1. Chemical context
Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The of NA was first determined by Wright & King (1954). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).
Transition metal complexes with ligands of biochemical interest such as imidazole and some N-protected amino acids show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of the coordination modes. For example, Co and Cd complexes with 4-aminobenzoic acid (Chen & Chen, 2002), Co complexes with benzoic acid (Catterick et al., 1974), 4-nitrobenzoic acid (Nadzhafov et al., 1981) and phthalic acid (Adiwidjaja et al., 1978), and Cu complexes with 4-hydrochloric acid (Shnulin et al., 1981) have been described.
The structure–function–coordination relationships of the arylcarboxylate ion in CdII complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).
The structures of some mononuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and some benzoic acid derivatives as ligands have been determined previously, e.g. [Zn(C7H5O3)2(C6H6N2O)2] [(II); Necefoğlu et al., 2002], [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2] [(III); Hökelek et al., 2008], [Zn(C8H8NO2)2(C6H6N2O)2]·H2O [(IV); Hökelek et al., 2009a], [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] [(V); Hökelek et al., 2009b] and [Co(C9H10NO2)2(C6H6N2O)(H2O)2] [(VI); Hökelek et al., 2009c]. The of the title compound, (I), a cadmium complex with two 2,4,6-trimethylbenzoate (TMB) and two nicotinamide (NA) ligands and one coordinated water molecule, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the CdII-containing title compound and report herein its crystal and molecular structures along with the Hirshfeld surface analysis.
2. Structural commentary
The II cation (site symmetry 2), one 2,4,6-trimethylbenzoate (TMB) anion and one nicotinamide (NA) molecule together with half of a water molecule (point group symmetry 2), the TMB and NA ligands coordinating in bidentate and monodentate manners, respectively (Fig. 1).
of the of the mononuclear title complex contains half of a CdThe CdII cation is coordinated bidentately to the carboxylate O atoms (O1, O2, O1i and O2i) of two symmetry-related 2,4,6-trimethylbenzoate (TMB) anions and to the water O atom (O4) at distances of 2.297 (2), 2.527 (2) and 2.306 (3) Å, respectively, to form a distorted pentagonal arrangement. The sum of the bond angles O1—Cd1—O1i [87.57 (11)°], O1—Cd1—O2 [53.63 (7)°], O1i—Cd1—O2i [53.63 (7)°], O2—Cd1—O4 [84.47 (5)°] and O2i—Cd1—O4 [84.47 (5)°] in the basal plane around CdII cation is 363.77° [symmetry code: (i) 1 − x, y, − z]. This confirms the presence of the CdII cation with a small deviation from the basal plane. The distorted pentagonal–bipyramidal coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.371 (3) Å in the axial positions (Fig. 1).
The near equalities of the C1—O1 [1.249 (4) Å] and C1—O2 [1.253 (3) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [121.7 (3)°] seems to be slightly decreased than that present in a free acid [122.2°]. The O2—C1—O1 bond angle may be compared with the corresponding values of 123.5 (2) and 120.4 (2)° in (II), 125.2 (5)° in (III), 119.2 (3) and 123.8 (2)° in (IV), 123.6 (3) and 119.4 (3)° in (V) and 123.86 (13) and 118.49 (14)° in (VI), where the benzoate ions are coordinated to the metal atoms only monodentately in (III), and both monodentately and bidentately in (II), (IV), (V) and (VI). The Cd1 atom lies 0.0192 (1) Å above of the planar (O1/O2/C1) carboxylate group. The O1—Cd1—O2 angle is 53.63 (7)°. The corresponding O—M—O angles are 58.79 (6)° in (II), 59.02 (8)° in (IV), 58.45 (9)° in (V) and 60.70 (4)° in (VI). In the TMB anion, the carboxylate group is twisted away from the attached benzene ring, A (C2–C7), ring by 60.94 (18)°, while the benzene and pyridine rings [pyridine = B (N1/C11–C15)], are oriented at a dihedral angle of 50.32 (11)°. The four-membered ring D (Cd1/O1/O2/C1) is nearly planar with a maximum deviation of 0.0029 (30) Å (for C1) from the mean plane, and it is oriented at dihedral angles of 60.98 (11) and 81.91 (7)°, with respect to the A and B rings.
3. Supramolecular features
In the crystal, the molecules are linked via intermolecular N—HNA⋯ONA, N—HNA⋯OC, O—HW⋯ONA and C—HTMB⋯OC (NA = nicotinamide, C = carboxylate, W = water and TMB = 2,4,6-trimethylbenzoate) hydrogen bonds (Table 1) with R22(12), R33(8), R33(14), R33(16), R33(20), R33(22), R44(22), R55(16), R66(16) and R66(18) ring motifs (Fig. 2), forming a three-dimensional architecture. Hydrogen-bonding and van der Waals contacts are the dominant interactions in the crystal packing. No significant π–π or C—H⋯π interactions are observed.
4. Hirshfeld surface analysis
Visulization and exploration of intermolecular close contacts of a structure is invaluable, and this can be achieved using Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009). An HS analysis was carried out by using CrystalExplorer17.5 (Turner et al., 2017) to investigate the locations of atom⋯atom short contacts with the potential to form hydrogen bonds and the quantitative ratios of these interactions and the π-stacking interactions in the of the title complex.
In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near NA-O3, TMB-O1 and O2, and hydrogen atoms H2A, H2B, H41 and H8C indicate their role as the respective donors and acceptors in the dominant O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and O⋯C/C⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 56.9% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule. The single spike in the centre at de = di = 1.2 Å in Fig. 6b is due to a short interatomic H⋯H contact (Table 2). In the absence of C—H⋯π interactions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts, with 21.3% contribution to the HS, Fig. 6c; the pair of thin edges at de + di ∼ 1.67 Å result from short interatomic H⋯C/C⋯H contacts (Table 2). In the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 6d, the 19.0% contribution to the HS arises from intermolecular O—H⋯O hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼ 1.74 Å. The short H⋯O/O⋯H contacts are masked by strong O—H⋯O hydrogen bonding in this plot. The H⋯N/N⋯H contacts in the structure, with a 1.9% contribution to the HS, has a symmetrical distribution of points, Fig. 6e, with the tips at de + di ∼ 2.96 Å arising from the short interatomic H⋯N/N⋯H contact listed in Table 2. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions in Fig. 7a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Synthesis and crystallization
The title compound was prepared by the reaction of 3CdSO4·8H2O (0.64 g, 2.5 mmol) in water (50 ml) and nicotinamide (0.61 g, 5 mmol) in water (25 ml) with sodium 2,4,6-trimethylbenzoate (0.93 g, 5 mmol) in water (150 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for six weeks, giving colourless single crystals (yield: 1.42 g, 85%). Combustion analysis: found; C, 57.07, H, 5.67, N, 7.92%. Calculated: C32H36CdN4O7 C, 57.42; H, 5.43, N, 8.34%. FT–IR: 3390, 3122, 2921, 1669, 1619, 1539, 1445, 1399, 1113, 1038, 847, 731, 641 cm−1.
6. Refinement
Crystal data, data collection and structure . The H atoms of the NH2 group and of the water molecule were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for aromatic H-atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1818756
https://doi.org/10.1107/S2056989018001494/xu5916sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001494/xu5916Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Cd(C10H11O2)2(C6H6N2O)2(H2O)] | F(000) = 1440 |
Mr = 701.05 | Dx = 1.383 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 9766 reflections |
a = 23.6876 (5) Å | θ = 2.6–28.4° |
b = 15.6711 (4) Å | µ = 0.70 mm−1 |
c = 9.0682 (2) Å | T = 296 K |
V = 3366.21 (13) Å3 | Block, colorless |
Z = 4 | 0.45 × 0.28 × 0.21 mm |
Bruker SMART BREEZE CCD diffractometer | 4213 independent reflections |
Radiation source: fine-focus sealed tube | 3681 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 28.4°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −31→31 |
Tmin = 0.784, Tmax = 0.867 | k = −20→20 |
68263 measured reflections | l = −11→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.32 | w = 1/[σ2(Fo2) + (0.0171P)2 + 5.5549P] where P = (Fo2 + 2Fc2)/3 |
4213 reflections | (Δ/σ)max = 0.001 |
215 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.746100 (17) | 0.2500 | 0.03358 (9) | |
O1 | 0.43935 (10) | 0.64030 (14) | 0.1751 (3) | 0.0472 (6) | |
O2 | 0.42005 (10) | 0.76163 (14) | 0.0676 (3) | 0.0468 (6) | |
O3 | 0.42068 (10) | 0.98712 (14) | 0.6880 (3) | 0.0471 (5) | |
O4 | 0.5000 | 0.8932 (2) | 0.2500 | 0.0481 (8) | |
H41 | 0.5257 (14) | 0.924 (2) | 0.272 (4) | 0.041 (10)* | |
N1 | 0.44028 (11) | 0.75971 (16) | 0.4585 (3) | 0.0392 (6) | |
N2 | 0.41074 (13) | 0.91347 (19) | 0.9004 (3) | 0.0434 (7) | |
H2A | 0.4139 (15) | 0.960 (2) | 0.957 (4) | 0.053 (11)* | |
H2B | 0.4105 (15) | 0.867 (2) | 0.939 (4) | 0.050 (11)* | |
C1 | 0.41017 (13) | 0.68404 (18) | 0.0888 (3) | 0.0344 (6) | |
C2 | 0.36190 (13) | 0.64076 (19) | 0.0124 (3) | 0.0387 (7) | |
C3 | 0.30699 (16) | 0.6685 (3) | 0.0358 (5) | 0.0587 (10) | |
C4 | 0.26341 (18) | 0.6243 (4) | −0.0346 (6) | 0.0812 (15) | |
H4 | 0.2264 | 0.6419 | −0.0194 | 0.097* | |
C5 | 0.2733 (2) | 0.5561 (4) | −0.1254 (6) | 0.0801 (15) | |
C6 | 0.32799 (19) | 0.5306 (3) | −0.1478 (5) | 0.0662 (12) | |
H6 | 0.3351 | 0.4847 | −0.2100 | 0.079* | |
C7 | 0.37317 (16) | 0.5717 (2) | −0.0798 (4) | 0.0475 (8) | |
C8 | 0.43251 (18) | 0.5435 (3) | −0.1127 (5) | 0.0715 (13) | |
H8A | 0.4488 | 0.5186 | −0.0259 | 0.107* | |
H8B | 0.4546 | 0.5919 | −0.1425 | 0.107* | |
H8C | 0.4320 | 0.5021 | −0.1907 | 0.107* | |
C9 | 0.2941 (2) | 0.7424 (4) | 0.1375 (7) | 0.099 (2) | |
H9A | 0.3084 | 0.7301 | 0.2343 | 0.149* | |
H9B | 0.2540 | 0.7509 | 0.1424 | 0.149* | |
H9C | 0.3118 | 0.7932 | 0.1004 | 0.149* | |
C10 | 0.2234 (3) | 0.5105 (5) | −0.1995 (8) | 0.143 (3) | |
H10A | 0.2204 | 0.4535 | −0.1614 | 0.214* | |
H10B | 0.2295 | 0.5083 | −0.3041 | 0.214* | |
H10C | 0.1892 | 0.5411 | −0.1792 | 0.214* | |
C11 | 0.44160 (12) | 0.82871 (18) | 0.5440 (3) | 0.0361 (6) | |
H11 | 0.4655 | 0.8732 | 0.5176 | 0.043* | |
C12 | 0.40932 (12) | 0.83775 (17) | 0.6698 (3) | 0.0314 (6) | |
C13 | 0.37296 (15) | 0.7725 (2) | 0.7083 (4) | 0.0445 (8) | |
H13 | 0.3509 | 0.7761 | 0.7929 | 0.053* | |
C14 | 0.37015 (16) | 0.7016 (2) | 0.6178 (4) | 0.0529 (9) | |
H14 | 0.3455 | 0.6572 | 0.6398 | 0.064* | |
C15 | 0.40397 (16) | 0.6973 (2) | 0.4953 (4) | 0.0470 (8) | |
H15 | 0.4017 | 0.6493 | 0.4353 | 0.056* | |
C16 | 0.41406 (12) | 0.91928 (18) | 0.7553 (3) | 0.0357 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.03990 (16) | 0.02586 (14) | 0.03497 (16) | 0.000 | −0.00070 (14) | 0.000 |
O1 | 0.0606 (14) | 0.0357 (11) | 0.0452 (13) | −0.0048 (10) | −0.0166 (11) | 0.0054 (10) |
O2 | 0.0552 (14) | 0.0349 (11) | 0.0504 (14) | −0.0075 (10) | −0.0097 (12) | 0.0037 (10) |
O3 | 0.0675 (15) | 0.0323 (11) | 0.0413 (12) | −0.0071 (10) | −0.0008 (12) | 0.0041 (10) |
O4 | 0.0467 (19) | 0.0269 (14) | 0.071 (2) | 0.000 | −0.0015 (19) | 0.000 |
N1 | 0.0449 (14) | 0.0373 (13) | 0.0356 (14) | −0.0081 (11) | 0.0017 (11) | −0.0062 (11) |
N2 | 0.0645 (19) | 0.0310 (13) | 0.0346 (14) | 0.0058 (13) | −0.0028 (13) | −0.0019 (12) |
C1 | 0.0408 (15) | 0.0326 (14) | 0.0299 (14) | −0.0032 (12) | 0.0014 (12) | −0.0019 (12) |
C2 | 0.0418 (16) | 0.0375 (15) | 0.0369 (16) | −0.0074 (13) | −0.0042 (13) | 0.0058 (13) |
C3 | 0.0457 (19) | 0.073 (3) | 0.057 (2) | −0.0045 (18) | 0.0016 (17) | −0.003 (2) |
C4 | 0.042 (2) | 0.121 (4) | 0.081 (3) | −0.018 (2) | −0.003 (2) | 0.005 (3) |
C5 | 0.072 (3) | 0.101 (4) | 0.067 (3) | −0.043 (3) | −0.016 (2) | 0.001 (3) |
C6 | 0.085 (3) | 0.056 (2) | 0.058 (2) | −0.030 (2) | −0.011 (2) | −0.0060 (19) |
C7 | 0.061 (2) | 0.0349 (16) | 0.0465 (19) | −0.0115 (15) | −0.0078 (16) | 0.0007 (14) |
C8 | 0.074 (3) | 0.057 (2) | 0.083 (3) | 0.010 (2) | −0.005 (2) | −0.032 (2) |
C9 | 0.055 (3) | 0.130 (5) | 0.113 (5) | 0.017 (3) | 0.009 (3) | −0.042 (4) |
C10 | 0.103 (4) | 0.189 (7) | 0.137 (6) | −0.085 (5) | −0.034 (4) | −0.022 (5) |
C11 | 0.0391 (15) | 0.0323 (14) | 0.0368 (15) | −0.0100 (12) | 0.0041 (13) | 0.0004 (12) |
C12 | 0.0359 (14) | 0.0310 (13) | 0.0274 (13) | −0.0027 (11) | −0.0015 (11) | 0.0032 (11) |
C13 | 0.0507 (19) | 0.0490 (18) | 0.0340 (16) | −0.0122 (15) | 0.0065 (14) | 0.0034 (14) |
C14 | 0.068 (2) | 0.0449 (18) | 0.0457 (19) | −0.0277 (17) | 0.0084 (17) | 0.0038 (15) |
C15 | 0.067 (2) | 0.0339 (15) | 0.0403 (17) | −0.0140 (15) | 0.0006 (16) | −0.0033 (14) |
C16 | 0.0361 (14) | 0.0356 (14) | 0.0353 (14) | 0.0009 (11) | −0.0012 (13) | 0.0013 (13) |
Cd1—O1 | 2.297 (2) | C4—H4 | 0.9300 |
Cd1—O1i | 2.297 (2) | C5—C10 | 1.536 (6) |
Cd1—O2 | 2.527 (2) | C6—C5 | 1.371 (7) |
Cd1—O2i | 2.527 (2) | C6—H6 | 0.9300 |
Cd1—O4 | 2.306 (3) | C7—C6 | 1.392 (5) |
Cd1—N1 | 2.371 (3) | C7—C8 | 1.503 (5) |
Cd1—N1i | 2.371 (3) | C8—H8A | 0.9600 |
Cd1—C1 | 2.759 (3) | C8—H8B | 0.9600 |
Cd1—C1i | 2.759 (3) | C8—H8C | 0.9600 |
O1—C1 | 1.249 (4) | C11—H11 | 0.9300 |
O2—C1 | 1.253 (3) | C12—C11 | 1.380 (4) |
O3—C16 | 1.236 (4) | C12—C13 | 1.382 (4) |
O4—H41 | 0.80 (3) | C12—C16 | 1.499 (4) |
N1—C11 | 1.331 (4) | C13—C14 | 1.382 (5) |
N1—C15 | 1.344 (4) | C13—H13 | 0.9300 |
N2—C16 | 1.321 (4) | C14—H14 | 0.9300 |
N2—H2A | 0.90 (4) | C15—C14 | 1.371 (5) |
N2—H2B | 0.81 (4) | C15—H15 | 0.9300 |
C1—C2 | 1.499 (4) | C9—H9A | 0.9600 |
C2—C3 | 1.388 (5) | C9—H9B | 0.9600 |
C2—C7 | 1.394 (5) | C9—H9C | 0.9600 |
C3—C4 | 1.397 (6) | C10—H10A | 0.9600 |
C3—C9 | 1.512 (6) | C10—H10B | 0.9600 |
C4—C5 | 1.370 (7) | C10—H10C | 0.9600 |
O1···H8Cii | 2.55 | N2···H13 | 2.75 |
O2···H2Biii | 2.03 (3) | C6···H14iii | 2.80 |
O3···H41iv | 1.92 (3) | C16···H41iv | 2.85 (3) |
O3···H2Av | 2.26 (4) | H8A···H8Avi | 2.54 |
O1—Cd1—O1i | 87.57 (11) | C7—C2—C1 | 118.9 (3) |
O1—Cd1—O2 | 53.63 (7) | C2—C3—C4 | 117.9 (4) |
O1i—Cd1—O2 | 137.06 (8) | C2—C3—C9 | 121.5 (4) |
O1—Cd1—O2i | 137.06 (8) | C4—C3—C9 | 120.6 (4) |
O1i—Cd1—O2i | 53.63 (7) | C3—C4—H4 | 118.8 |
O1—Cd1—O4 | 136.22 (6) | C5—C4—C3 | 122.3 (4) |
O1i—Cd1—O4 | 136.22 (6) | C5—C4—H4 | 118.8 |
O1—Cd1—N1 | 85.85 (9) | C4—C5—C6 | 118.6 (4) |
O1i—Cd1—N1 | 101.67 (9) | C4—C5—C10 | 119.7 (5) |
O1—Cd1—N1i | 101.67 (9) | C6—C5—C10 | 121.8 (5) |
O1i—Cd1—N1i | 85.85 (9) | C5—C6—C7 | 121.8 (4) |
O1—Cd1—C1 | 26.66 (8) | C5—C6—H6 | 119.1 |
O1i—Cd1—C1 | 112.62 (9) | C7—C6—H6 | 119.1 |
O1—Cd1—C1i | 112.62 (9) | C2—C7—C8 | 121.7 (3) |
O1i—Cd1—C1i | 26.66 (8) | C6—C7—C2 | 118.5 (4) |
O2—Cd1—O2i | 168.94 (10) | C6—C7—C8 | 119.7 (4) |
O2—Cd1—C1 | 26.97 (7) | C7—C8—H8A | 109.5 |
O2i—Cd1—C1 | 163.57 (8) | C7—C8—H8B | 109.5 |
O2—Cd1—C1i | 163.57 (8) | C7—C8—H8C | 109.5 |
O2i—Cd1—C1i | 26.97 (7) | H8A—C8—H8B | 109.5 |
O4—Cd1—O2 | 84.47 (5) | H8A—C8—H8C | 109.5 |
O4—Cd1—O2i | 84.47 (5) | H8B—C8—H8C | 109.5 |
O4—Cd1—N1 | 84.84 (6) | C3—C9—H9A | 109.5 |
O4—Cd1—N1i | 84.84 (6) | C3—C9—H9B | 109.5 |
O4—Cd1—C1 | 110.64 (6) | C3—C9—H9C | 109.5 |
O4—Cd1—C1i | 110.64 (6) | H9A—C9—H9B | 109.5 |
N1—Cd1—O2 | 93.81 (9) | H9A—C9—H9C | 109.5 |
N1i—Cd1—O2 | 85.20 (9) | H9B—C9—H9C | 109.5 |
N1—Cd1—O2i | 85.20 (9) | C5—C10—H10A | 109.5 |
N1i—Cd1—O2i | 93.81 (9) | C5—C10—H10B | 109.5 |
N1—Cd1—N1i | 169.68 (12) | C5—C10—H10C | 109.5 |
N1—Cd1—C1 | 89.67 (9) | H10A—C10—H10B | 109.5 |
N1i—Cd1—C1 | 93.97 (9) | H10A—C10—H10C | 109.5 |
N1—Cd1—C1i | 93.97 (9) | H10B—C10—H10C | 109.5 |
N1i—Cd1—C1i | 89.67 (9) | N1—C11—C12 | 123.5 (3) |
C1—Cd1—C1i | 138.71 (12) | N1—C11—H11 | 118.3 |
C1—O1—Cd1 | 97.78 (18) | C12—C11—H11 | 118.3 |
C1—O2—Cd1 | 86.90 (18) | C11—C12—C13 | 118.6 (3) |
Cd1—O4—H41 | 127 (2) | C11—C12—C16 | 118.3 (3) |
C11—N1—Cd1 | 121.6 (2) | C13—C12—C16 | 123.1 (3) |
C11—N1—C15 | 117.5 (3) | C12—C13—C14 | 118.3 (3) |
C15—N1—Cd1 | 120.9 (2) | C12—C13—H13 | 120.8 |
C16—N2—H2A | 121 (2) | C14—C13—H13 | 120.8 |
C16—N2—H2B | 120 (3) | C13—C14—H14 | 120.3 |
H2A—N2—H2B | 119 (4) | C15—C14—C13 | 119.5 (3) |
O1—C1—Cd1 | 55.57 (15) | C15—C14—H14 | 120.3 |
O1—C1—O2 | 121.7 (3) | N1—C15—C14 | 122.6 (3) |
O1—C1—C2 | 117.6 (3) | N1—C15—H15 | 118.7 |
O2—C1—Cd1 | 66.13 (17) | C14—C15—H15 | 118.7 |
O2—C1—C2 | 120.7 (3) | O3—C16—N2 | 124.0 (3) |
C2—C1—Cd1 | 173.1 (2) | O3—C16—C12 | 119.1 (3) |
C3—C2—C1 | 120.2 (3) | N2—C16—C12 | 116.9 (3) |
C3—C2—C7 | 121.0 (3) | ||
O1i—Cd1—O1—C1 | −160.5 (2) | N1i—Cd1—C1—O2 | −71.26 (19) |
O2—Cd1—O1—C1 | −0.25 (18) | C1i—Cd1—C1—O1 | 14.27 (18) |
O2i—Cd1—O1—C1 | 175.96 (17) | C1i—Cd1—C1—O2 | −165.28 (19) |
O4—Cd1—O1—C1 | 19.5 (2) | Cd1—O1—C1—O2 | 0.5 (3) |
N1—Cd1—O1—C1 | 97.6 (2) | Cd1—O1—C1—C2 | −178.5 (2) |
N1i—Cd1—O1—C1 | −75.3 (2) | Cd1—O2—C1—O1 | −0.4 (3) |
C1i—Cd1—O1—C1 | −169.85 (13) | Cd1—O2—C1—C2 | 178.6 (3) |
O1—Cd1—O2—C1 | 0.25 (17) | Cd1—N1—C11—C12 | −177.2 (2) |
O1i—Cd1—O2—C1 | 29.9 (2) | C15—N1—C11—C12 | 2.4 (5) |
O2i—Cd1—O2—C1 | −166.18 (18) | Cd1—N1—C15—C14 | 177.8 (3) |
O4—Cd1—O2—C1 | −166.18 (18) | C11—N1—C15—C14 | −1.8 (5) |
N1—Cd1—O2—C1 | −81.75 (19) | O1—C1—C2—C3 | 118.2 (4) |
N1i—Cd1—O2—C1 | 108.55 (19) | O1—C1—C2—C7 | −60.7 (4) |
C1i—Cd1—O2—C1 | 36.3 (5) | O2—C1—C2—C3 | −60.9 (4) |
O1—Cd1—N1—C11 | −162.7 (3) | O2—C1—C2—C7 | 120.2 (3) |
O1i—Cd1—N1—C11 | 110.6 (2) | C1—C2—C3—C4 | −178.2 (4) |
O1—Cd1—N1—C15 | 17.7 (3) | C1—C2—C3—C9 | 0.1 (6) |
O1i—Cd1—N1—C15 | −68.9 (3) | C7—C2—C3—C4 | 0.7 (6) |
O2—Cd1—N1—C11 | −109.6 (2) | C7—C2—C3—C9 | 179.0 (4) |
O2i—Cd1—N1—C11 | 59.3 (2) | C3—C2—C7—C6 | −0.3 (5) |
O2—Cd1—N1—C15 | 70.8 (3) | C1—C2—C7—C6 | 178.6 (3) |
O2i—Cd1—N1—C15 | −120.2 (3) | C3—C2—C7—C8 | 176.8 (4) |
O4—Cd1—N1—C11 | −25.6 (2) | C1—C2—C7—C8 | −4.3 (5) |
O4—Cd1—N1—C15 | 154.9 (3) | C2—C3—C4—C5 | −0.5 (7) |
N1i—Cd1—N1—C11 | −25.6 (2) | C9—C3—C4—C5 | −178.8 (5) |
N1i—Cd1—N1—C15 | 154.9 (3) | C3—C4—C5—C6 | −0.2 (8) |
C1—Cd1—N1—C11 | −136.3 (2) | C3—C4—C5—C10 | −180.0 (5) |
C1i—Cd1—N1—C11 | 84.8 (3) | C7—C6—C5—C4 | 0.6 (7) |
C1—Cd1—N1—C15 | 44.1 (3) | C7—C6—C5—C10 | −179.6 (5) |
C1i—Cd1—N1—C15 | −94.7 (3) | C2—C7—C6—C5 | −0.4 (6) |
O1i—Cd1—C1—O1 | 21.1 (3) | C8—C7—C6—C5 | −177.6 (4) |
O1—Cd1—C1—O2 | −179.6 (3) | C13—C12—C11—N1 | −1.1 (5) |
O1i—Cd1—C1—O2 | −158.40 (18) | C16—C12—C11—N1 | −179.1 (3) |
O2—Cd1—C1—O1 | 179.6 (3) | C11—C12—C13—C14 | −0.8 (5) |
O2i—Cd1—C1—O1 | −9.8 (4) | C16—C12—C13—C14 | 177.1 (3) |
O2i—Cd1—C1—O2 | 170.68 (14) | C11—C12—C16—O3 | 36.2 (4) |
O4—Cd1—C1—O1 | −165.73 (18) | C11—C12—C16—N2 | −143.9 (3) |
O4—Cd1—C1—O2 | 14.72 (19) | C13—C12—C16—O3 | −141.7 (3) |
N1—Cd1—C1—O1 | −81.4 (2) | C13—C12—C16—N2 | 38.2 (4) |
N1i—Cd1—C1—O1 | 108.3 (2) | C12—C13—C14—C15 | 1.3 (6) |
N1—Cd1—C1—O2 | 99.07 (19) | N1—C15—C14—C13 | 0.0 (6) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y, z−1; (iv) −x+1, −y+2, −z+1; (v) x, −y+2, z−1/2; (vi) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3vii | 0.89 (3) | 2.26 (4) | 3.047 (4) | 147 (3) |
N2—H2B···O2viii | 0.81 (3) | 2.03 (3) | 2.830 (4) | 168 (4) |
O4—H41···O3iv | 0.80 (3) | 1.92 (3) | 2.714 (3) | 170 (3) |
C8—H8C···O1ix | 0.96 | 2.55 | 3.468 (5) | 161 |
Symmetry codes: (iv) −x+1, −y+2, −z+1; (vii) x, −y+2, z+1/2; (viii) x, y, z+1; (ix) x, −y+1, z−1/2. |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State Planning Organization).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Chen, H.-J. & Chen, X.-M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037–m1038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m627–m628. CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/ Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CrossRef CAS PubMed Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm. 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288. CSD CrossRef IUCr Journals Web of Science Google Scholar
You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.