research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of aqua­bis­­(nicotinamide-κN1)bis­­(2,4,6-tri­methyl­benzoato-κ2O,O′)cadmium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 January 2018; accepted 23 January 2018; online 31 January 2018)

The asymmetric unit of the title complex, [Cd(C10H11O2)2(C6H6N2O)2(H2O)], contains one half of the complex mol­ecule, with the CdII cation and the coordinated water O atom residing on a twofold rotation axis. The CdII cation is coordinated in a bidentate manner to the carboxyl­ate O atoms of the two symmetry-related 2,4,6-tri­methyl­benzoate (TMB) anions and to the water O atom at distances of 2.297 (2), 2.527 (2) and 2.306 (3) Å to form a distorted penta­gonal arrangement, while the distorted penta­gonal–bipyramidal coordin­ation sphere is completed by the two pyridine N atoms of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.371 (3) Å in the axial positions. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds with R22(12), R33(8), R33(14), R33(16), R33(20), R33(22), R44(22), R55(16), R66(16) and R66(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are H⋯H (56.9%), H⋯C/C⋯H (21.3%) and H⋯O/O⋯H (19.0%) inter­actions.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The crystal structure of NA was first determined by Wright & King (1954[Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283-288.]). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978[You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]).

Transition metal complexes with ligands of biochemical inter­est such as imidazole and some N-protected amino acids show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of the coordination modes. For example, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002[Chen, H.-J. & Chen, X.-M. (2002). Inorg. Chim. Acta, 329, 13-21.]), Co complexes with benzoic acid (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]), 4-nitro­benzoic acid (Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]) and phthalic acid (Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]), and Cu complexes with 4-hydro­chloric acid (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]) have been described.

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in CdII complexes of benzoic acid deriv­atives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]).

The structures of some mononuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and some benzoic acid derivatives as ligands have been determined previously, e.g. [Zn(C7H5O3)2(C6H6N2O)2] [(II); Necefoğlu et al., 2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]], [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2] [(III); Hökelek et al., 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]], [Zn(C8H8NO2)2(C6H6N2O)2]·H2O [(IV); Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.]], [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] [(V); Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037-m1038.]] and [Co(C9H10NO2)2(C6H6N2O)(H2O)2] [(VI); Hökelek et al., 2009c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m627-m628.]]. The structure determination of the title compound, (I)[link], a cadmium complex with two 2,4,6-tri­methyl­benzoate (TMB) and two nicotinamide (NA) ligands and one coordinated water mol­ecule, was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the CdII-containing title compound and report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal structure of the mononuclear title complex contains half of a CdII cation (site symmetry 2), one 2,4,6-tri­methyl­benzoate (TMB) anion and one nicotin­amide (NA) mol­ecule together with half of a water mol­ecule (point group symmetry 2), the TMB and NA ligands coord­inating in bidentate and monodentate manners, respectively (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 − x, y, [{1\over 2}] − z). Displacement ellipsoids are drawn at the 50% probability level.

The CdII cation is coordinated bidentately to the carboxyl­ate O atoms (O1, O2, O1i and O2i) of two symmetry-related 2,4,6-tri­methyl­benzoate (TMB) anions and to the water O atom (O4) at distances of 2.297 (2), 2.527 (2) and 2.306 (3) Å, respectively, to form a distorted penta­gonal arrangement. The sum of the bond angles O1—Cd1—O1i [87.57 (11)°], O1—Cd1—O2 [53.63 (7)°], O1i—Cd1—O2i [53.63 (7)°], O2—Cd1—O4 [84.47 (5)°] and O2i—Cd1—O4 [84.47 (5)°] in the basal plane around CdII cation is 363.77° [symmetry code: (i) 1 − x, y, [{1\over 2}] − z]. This confirms the presence of the CdII cation with a small deviation from the basal plane. The distorted penta­gonal–bipyramidal coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.371 (3) Å in the axial positions (Fig. 1[link]).

The near equalities of the C1—O1 [1.249 (4) Å] and C1—O2 [1.253 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [121.7 (3)°] seems to be slightly decreased than that present in a free acid [122.2°]. The O2—C1—O1 bond angle may be compared with the corresponding values of 123.5 (2) and 120.4 (2)° in (II), 125.2 (5)° in (III), 119.2 (3) and 123.8 (2)° in (IV), 123.6 (3) and 119.4 (3)° in (V) and 123.86 (13) and 118.49 (14)° in (VI), where the benzoate ions are coordinated to the metal atoms only monodentately in (III), and both monodentately and bidentately in (II), (IV), (V) and (VI). The Cd1 atom lies 0.0192 (1) Å above of the planar (O1/O2/C1) carboxyl­ate group. The O1—Cd1—O2 angle is 53.63 (7)°. The corresponding O—M—O angles are 58.79 (6)° in (II), 59.02 (8)° in (IV), 58.45 (9)° in (V) and 60.70 (4)° in (VI). In the TMB anion, the carboxyl­ate group is twisted away from the attached benzene ring, A (C2–C7), ring by 60.94 (18)°, while the benzene and pyridine rings [pyridine = B (N1/C11–C15)], are oriented at a dihedral angle of 50.32 (11)°. The four-membered ring D (Cd1/O1/O2/C1) is nearly planar with a maximum deviation of 0.0029 (30) Å (for C1) from the mean plane, and it is oriented at dihedral angles of 60.98 (11) and 81.91 (7)°, with respect to the A and B rings.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via inter­molecular N—HNA⋯ONA, N—HNA⋯OC, O—HW⋯ONA and C—HTMB⋯OC (NA = nicotinamide, C = carboxyl­ate, W = water and TMB = 2,4,6-tri­methyl­benzoate) hydrogen bonds (Table 1[link]) with R22(12), R33(8), R33(14), R33(16), R33(20), R33(22), R44(22), R55(16), R66(16) and R66(18) ring motifs (Fig. 2[link]), forming a three-dimensional architecture. Hydrogen-bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. No significant ππ or C—H⋯π inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3vi 0.89 (3) 2.26 (4) 3.047 (4) 147 (3)
N2—H2B⋯O2vii 0.81 (3) 2.03 (3) 2.830 (4) 168 (4)
O4—H41⋯O3iii 0.80 (3) 1.92 (3) 2.714 (3) 170 (3)
C8—H8C⋯O1viii 0.96 2.55 3.468 (5) 161
Symmetry codes: (iii) -x+1, -y+2, -z+1; (vi) [x, -y+2, z+{\script{1\over 2}}]; (vii) x, y, z+1; (viii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure. O—HW⋯ONA, N—HNA⋯OC and N—HNA⋯ONA (W = water, C = carboxyl­ate and NA = nicotinamide) hydrogen bonds, enclosing R22(12), R33(8), R33(14), R33(16), R33(20), R33(22), R44(22), R55(16), R66(16) and R66(18) ring motifs are shown as dashed lines. C-bound H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Visulization and exploration of inter­molecular close contacts of a structure is invaluable, and this can be achieved using Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). An HS analysis was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to investigate the locations of atom⋯atom short contacts with the potential to form hydrogen bonds and the qu­anti­tative ratios of these inter­actions and the π-stacking inter­actions in the crystal structure of the title complex.

In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near NA-O3, TMB-O1 and O2, and hydrogen atoms H2A, H2B, H41 and H8C indicate their role as the respective donors and acceptors in the dominant O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm. 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.6741 to 1.6440 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1379 to 0.1988 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. The N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title complex plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and O⋯C/C⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 56.9% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The single spike in the centre at de = di = 1.2 Å in Fig. 6[link]b is due to a short inter­atomic H⋯H contact (Table 2[link]). In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts, with 21.3% contribution to the HS, Fig. 6[link]c; the pair of thin edges at de + di ∼ 1.67 Å result from short inter­atomic H⋯C/C⋯H contacts (Table 2[link]). In the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 6[link]d, the 19.0% contribution to the HS arises from inter­molecular O—H⋯O hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼ 1.74 Å. The short H⋯O/O⋯H contacts are masked by strong O—H⋯O hydrogen bonding in this plot. The H⋯N/N⋯H contacts in the structure, with a 1.9% contribution to the HS, has a symmetrical distribution of points, Fig. 6[link]e, with the tips at de + di ∼ 2.96 Å arising from the short inter­atomic H⋯N/N⋯H contact listed in Table 2[link]. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 7[link]ad, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯H8Ci 2.55 N2⋯H13 2.75
O2⋯H2Bii 2.03 (3) C6⋯H14ii 2.80
O3⋯H41iii 1.92 (3) C16⋯H41iii 2.85 (3)
O3⋯H2Aiv 2.26 (4) H8A⋯H8Av 2.54
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+1, -y+2, -z+1; (iv) [x, -y+2, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title complex, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) O⋯C/C⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of 3CdSO4·8H2O (0.64 g, 2.5 mmol) in water (50 ml) and nicotinamide (0.61 g, 5 mmol) in water (25 ml) with sodium 2,4,6-tri­methyl­benzoate (0.93 g, 5 mmol) in water (150 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for six weeks, giving colourless single crystals (yield: 1.42 g, 85%). Combustion analysis: found; C, 57.07, H, 5.67, N, 7.92%. Calculated: C32H36CdN4O7 C, 57.42; H, 5.43, N, 8.34%. FT–IR: 3390, 3122, 2921, 1669, 1619, 1539, 1445, 1399, 1113, 1038, 847, 731, 641 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the NH2 group and of the water mol­ecule were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for aromatic H-atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C10H11O2)2(C6H6N2O)2(H2O)]
Mr 701.05
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 23.6876 (5), 15.6711 (4), 9.0682 (2)
V3) 3366.21 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.45 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.784, 0.867
No. of measured, independent and observed [I > 2σ(I)] reflections 68263, 4213, 3681
Rint 0.028
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.32
No. of reflections 4213
No. of parameters 215
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Aquabis(nicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(C10H11O2)2(C6H6N2O)2(H2O)]F(000) = 1440
Mr = 701.05Dx = 1.383 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9766 reflections
a = 23.6876 (5) Åθ = 2.6–28.4°
b = 15.6711 (4) ŵ = 0.70 mm1
c = 9.0682 (2) ÅT = 296 K
V = 3366.21 (13) Å3Block, colorless
Z = 40.45 × 0.28 × 0.21 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4213 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3131
Tmin = 0.784, Tmax = 0.867k = 2020
68263 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.32 w = 1/[σ2(Fo2) + (0.0171P)2 + 5.5549P]
where P = (Fo2 + 2Fc2)/3
4213 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.746100 (17)0.25000.03358 (9)
O10.43935 (10)0.64030 (14)0.1751 (3)0.0472 (6)
O20.42005 (10)0.76163 (14)0.0676 (3)0.0468 (6)
O30.42068 (10)0.98712 (14)0.6880 (3)0.0471 (5)
O40.50000.8932 (2)0.25000.0481 (8)
H410.5257 (14)0.924 (2)0.272 (4)0.041 (10)*
N10.44028 (11)0.75971 (16)0.4585 (3)0.0392 (6)
N20.41074 (13)0.91347 (19)0.9004 (3)0.0434 (7)
H2A0.4139 (15)0.960 (2)0.957 (4)0.053 (11)*
H2B0.4105 (15)0.867 (2)0.939 (4)0.050 (11)*
C10.41017 (13)0.68404 (18)0.0888 (3)0.0344 (6)
C20.36190 (13)0.64076 (19)0.0124 (3)0.0387 (7)
C30.30699 (16)0.6685 (3)0.0358 (5)0.0587 (10)
C40.26341 (18)0.6243 (4)0.0346 (6)0.0812 (15)
H40.22640.64190.01940.097*
C50.2733 (2)0.5561 (4)0.1254 (6)0.0801 (15)
C60.32799 (19)0.5306 (3)0.1478 (5)0.0662 (12)
H60.33510.48470.21000.079*
C70.37317 (16)0.5717 (2)0.0798 (4)0.0475 (8)
C80.43251 (18)0.5435 (3)0.1127 (5)0.0715 (13)
H8A0.44880.51860.02590.107*
H8B0.45460.59190.14250.107*
H8C0.43200.50210.19070.107*
C90.2941 (2)0.7424 (4)0.1375 (7)0.099 (2)
H9A0.30840.73010.23430.149*
H9B0.25400.75090.14240.149*
H9C0.31180.79320.10040.149*
C100.2234 (3)0.5105 (5)0.1995 (8)0.143 (3)
H10A0.22040.45350.16140.214*
H10B0.22950.50830.30410.214*
H10C0.18920.54110.17920.214*
C110.44160 (12)0.82871 (18)0.5440 (3)0.0361 (6)
H110.46550.87320.51760.043*
C120.40932 (12)0.83775 (17)0.6698 (3)0.0314 (6)
C130.37296 (15)0.7725 (2)0.7083 (4)0.0445 (8)
H130.35090.77610.79290.053*
C140.37015 (16)0.7016 (2)0.6178 (4)0.0529 (9)
H140.34550.65720.63980.064*
C150.40397 (16)0.6973 (2)0.4953 (4)0.0470 (8)
H150.40170.64930.43530.056*
C160.41406 (12)0.91928 (18)0.7553 (3)0.0357 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03990 (16)0.02586 (14)0.03497 (16)0.0000.00070 (14)0.000
O10.0606 (14)0.0357 (11)0.0452 (13)0.0048 (10)0.0166 (11)0.0054 (10)
O20.0552 (14)0.0349 (11)0.0504 (14)0.0075 (10)0.0097 (12)0.0037 (10)
O30.0675 (15)0.0323 (11)0.0413 (12)0.0071 (10)0.0008 (12)0.0041 (10)
O40.0467 (19)0.0269 (14)0.071 (2)0.0000.0015 (19)0.000
N10.0449 (14)0.0373 (13)0.0356 (14)0.0081 (11)0.0017 (11)0.0062 (11)
N20.0645 (19)0.0310 (13)0.0346 (14)0.0058 (13)0.0028 (13)0.0019 (12)
C10.0408 (15)0.0326 (14)0.0299 (14)0.0032 (12)0.0014 (12)0.0019 (12)
C20.0418 (16)0.0375 (15)0.0369 (16)0.0074 (13)0.0042 (13)0.0058 (13)
C30.0457 (19)0.073 (3)0.057 (2)0.0045 (18)0.0016 (17)0.003 (2)
C40.042 (2)0.121 (4)0.081 (3)0.018 (2)0.003 (2)0.005 (3)
C50.072 (3)0.101 (4)0.067 (3)0.043 (3)0.016 (2)0.001 (3)
C60.085 (3)0.056 (2)0.058 (2)0.030 (2)0.011 (2)0.0060 (19)
C70.061 (2)0.0349 (16)0.0465 (19)0.0115 (15)0.0078 (16)0.0007 (14)
C80.074 (3)0.057 (2)0.083 (3)0.010 (2)0.005 (2)0.032 (2)
C90.055 (3)0.130 (5)0.113 (5)0.017 (3)0.009 (3)0.042 (4)
C100.103 (4)0.189 (7)0.137 (6)0.085 (5)0.034 (4)0.022 (5)
C110.0391 (15)0.0323 (14)0.0368 (15)0.0100 (12)0.0041 (13)0.0004 (12)
C120.0359 (14)0.0310 (13)0.0274 (13)0.0027 (11)0.0015 (11)0.0032 (11)
C130.0507 (19)0.0490 (18)0.0340 (16)0.0122 (15)0.0065 (14)0.0034 (14)
C140.068 (2)0.0449 (18)0.0457 (19)0.0277 (17)0.0084 (17)0.0038 (15)
C150.067 (2)0.0339 (15)0.0403 (17)0.0140 (15)0.0006 (16)0.0033 (14)
C160.0361 (14)0.0356 (14)0.0353 (14)0.0009 (11)0.0012 (13)0.0013 (13)
Geometric parameters (Å, º) top
Cd1—O12.297 (2)C4—H40.9300
Cd1—O1i2.297 (2)C5—C101.536 (6)
Cd1—O22.527 (2)C6—C51.371 (7)
Cd1—O2i2.527 (2)C6—H60.9300
Cd1—O42.306 (3)C7—C61.392 (5)
Cd1—N12.371 (3)C7—C81.503 (5)
Cd1—N1i2.371 (3)C8—H8A0.9600
Cd1—C12.759 (3)C8—H8B0.9600
Cd1—C1i2.759 (3)C8—H8C0.9600
O1—C11.249 (4)C11—H110.9300
O2—C11.253 (3)C12—C111.380 (4)
O3—C161.236 (4)C12—C131.382 (4)
O4—H410.80 (3)C12—C161.499 (4)
N1—C111.331 (4)C13—C141.382 (5)
N1—C151.344 (4)C13—H130.9300
N2—C161.321 (4)C14—H140.9300
N2—H2A0.90 (4)C15—C141.371 (5)
N2—H2B0.81 (4)C15—H150.9300
C1—C21.499 (4)C9—H9A0.9600
C2—C31.388 (5)C9—H9B0.9600
C2—C71.394 (5)C9—H9C0.9600
C3—C41.397 (6)C10—H10A0.9600
C3—C91.512 (6)C10—H10B0.9600
C4—C51.370 (7)C10—H10C0.9600
O1···H8Cii2.55N2···H132.75
O2···H2Biii2.03 (3)C6···H14iii2.80
O3···H41iv1.92 (3)C16···H41iv2.85 (3)
O3···H2Av2.26 (4)H8A···H8Avi2.54
O1—Cd1—O1i87.57 (11)C7—C2—C1118.9 (3)
O1—Cd1—O253.63 (7)C2—C3—C4117.9 (4)
O1i—Cd1—O2137.06 (8)C2—C3—C9121.5 (4)
O1—Cd1—O2i137.06 (8)C4—C3—C9120.6 (4)
O1i—Cd1—O2i53.63 (7)C3—C4—H4118.8
O1—Cd1—O4136.22 (6)C5—C4—C3122.3 (4)
O1i—Cd1—O4136.22 (6)C5—C4—H4118.8
O1—Cd1—N185.85 (9)C4—C5—C6118.6 (4)
O1i—Cd1—N1101.67 (9)C4—C5—C10119.7 (5)
O1—Cd1—N1i101.67 (9)C6—C5—C10121.8 (5)
O1i—Cd1—N1i85.85 (9)C5—C6—C7121.8 (4)
O1—Cd1—C126.66 (8)C5—C6—H6119.1
O1i—Cd1—C1112.62 (9)C7—C6—H6119.1
O1—Cd1—C1i112.62 (9)C2—C7—C8121.7 (3)
O1i—Cd1—C1i26.66 (8)C6—C7—C2118.5 (4)
O2—Cd1—O2i168.94 (10)C6—C7—C8119.7 (4)
O2—Cd1—C126.97 (7)C7—C8—H8A109.5
O2i—Cd1—C1163.57 (8)C7—C8—H8B109.5
O2—Cd1—C1i163.57 (8)C7—C8—H8C109.5
O2i—Cd1—C1i26.97 (7)H8A—C8—H8B109.5
O4—Cd1—O284.47 (5)H8A—C8—H8C109.5
O4—Cd1—O2i84.47 (5)H8B—C8—H8C109.5
O4—Cd1—N184.84 (6)C3—C9—H9A109.5
O4—Cd1—N1i84.84 (6)C3—C9—H9B109.5
O4—Cd1—C1110.64 (6)C3—C9—H9C109.5
O4—Cd1—C1i110.64 (6)H9A—C9—H9B109.5
N1—Cd1—O293.81 (9)H9A—C9—H9C109.5
N1i—Cd1—O285.20 (9)H9B—C9—H9C109.5
N1—Cd1—O2i85.20 (9)C5—C10—H10A109.5
N1i—Cd1—O2i93.81 (9)C5—C10—H10B109.5
N1—Cd1—N1i169.68 (12)C5—C10—H10C109.5
N1—Cd1—C189.67 (9)H10A—C10—H10B109.5
N1i—Cd1—C193.97 (9)H10A—C10—H10C109.5
N1—Cd1—C1i93.97 (9)H10B—C10—H10C109.5
N1i—Cd1—C1i89.67 (9)N1—C11—C12123.5 (3)
C1—Cd1—C1i138.71 (12)N1—C11—H11118.3
C1—O1—Cd197.78 (18)C12—C11—H11118.3
C1—O2—Cd186.90 (18)C11—C12—C13118.6 (3)
Cd1—O4—H41127 (2)C11—C12—C16118.3 (3)
C11—N1—Cd1121.6 (2)C13—C12—C16123.1 (3)
C11—N1—C15117.5 (3)C12—C13—C14118.3 (3)
C15—N1—Cd1120.9 (2)C12—C13—H13120.8
C16—N2—H2A121 (2)C14—C13—H13120.8
C16—N2—H2B120 (3)C13—C14—H14120.3
H2A—N2—H2B119 (4)C15—C14—C13119.5 (3)
O1—C1—Cd155.57 (15)C15—C14—H14120.3
O1—C1—O2121.7 (3)N1—C15—C14122.6 (3)
O1—C1—C2117.6 (3)N1—C15—H15118.7
O2—C1—Cd166.13 (17)C14—C15—H15118.7
O2—C1—C2120.7 (3)O3—C16—N2124.0 (3)
C2—C1—Cd1173.1 (2)O3—C16—C12119.1 (3)
C3—C2—C1120.2 (3)N2—C16—C12116.9 (3)
C3—C2—C7121.0 (3)
O1i—Cd1—O1—C1160.5 (2)N1i—Cd1—C1—O271.26 (19)
O2—Cd1—O1—C10.25 (18)C1i—Cd1—C1—O114.27 (18)
O2i—Cd1—O1—C1175.96 (17)C1i—Cd1—C1—O2165.28 (19)
O4—Cd1—O1—C119.5 (2)Cd1—O1—C1—O20.5 (3)
N1—Cd1—O1—C197.6 (2)Cd1—O1—C1—C2178.5 (2)
N1i—Cd1—O1—C175.3 (2)Cd1—O2—C1—O10.4 (3)
C1i—Cd1—O1—C1169.85 (13)Cd1—O2—C1—C2178.6 (3)
O1—Cd1—O2—C10.25 (17)Cd1—N1—C11—C12177.2 (2)
O1i—Cd1—O2—C129.9 (2)C15—N1—C11—C122.4 (5)
O2i—Cd1—O2—C1166.18 (18)Cd1—N1—C15—C14177.8 (3)
O4—Cd1—O2—C1166.18 (18)C11—N1—C15—C141.8 (5)
N1—Cd1—O2—C181.75 (19)O1—C1—C2—C3118.2 (4)
N1i—Cd1—O2—C1108.55 (19)O1—C1—C2—C760.7 (4)
C1i—Cd1—O2—C136.3 (5)O2—C1—C2—C360.9 (4)
O1—Cd1—N1—C11162.7 (3)O2—C1—C2—C7120.2 (3)
O1i—Cd1—N1—C11110.6 (2)C1—C2—C3—C4178.2 (4)
O1—Cd1—N1—C1517.7 (3)C1—C2—C3—C90.1 (6)
O1i—Cd1—N1—C1568.9 (3)C7—C2—C3—C40.7 (6)
O2—Cd1—N1—C11109.6 (2)C7—C2—C3—C9179.0 (4)
O2i—Cd1—N1—C1159.3 (2)C3—C2—C7—C60.3 (5)
O2—Cd1—N1—C1570.8 (3)C1—C2—C7—C6178.6 (3)
O2i—Cd1—N1—C15120.2 (3)C3—C2—C7—C8176.8 (4)
O4—Cd1—N1—C1125.6 (2)C1—C2—C7—C84.3 (5)
O4—Cd1—N1—C15154.9 (3)C2—C3—C4—C50.5 (7)
N1i—Cd1—N1—C1125.6 (2)C9—C3—C4—C5178.8 (5)
N1i—Cd1—N1—C15154.9 (3)C3—C4—C5—C60.2 (8)
C1—Cd1—N1—C11136.3 (2)C3—C4—C5—C10180.0 (5)
C1i—Cd1—N1—C1184.8 (3)C7—C6—C5—C40.6 (7)
C1—Cd1—N1—C1544.1 (3)C7—C6—C5—C10179.6 (5)
C1i—Cd1—N1—C1594.7 (3)C2—C7—C6—C50.4 (6)
O1i—Cd1—C1—O121.1 (3)C8—C7—C6—C5177.6 (4)
O1—Cd1—C1—O2179.6 (3)C13—C12—C11—N11.1 (5)
O1i—Cd1—C1—O2158.40 (18)C16—C12—C11—N1179.1 (3)
O2—Cd1—C1—O1179.6 (3)C11—C12—C13—C140.8 (5)
O2i—Cd1—C1—O19.8 (4)C16—C12—C13—C14177.1 (3)
O2i—Cd1—C1—O2170.68 (14)C11—C12—C16—O336.2 (4)
O4—Cd1—C1—O1165.73 (18)C11—C12—C16—N2143.9 (3)
O4—Cd1—C1—O214.72 (19)C13—C12—C16—O3141.7 (3)
N1—Cd1—C1—O181.4 (2)C13—C12—C16—N238.2 (4)
N1i—Cd1—C1—O1108.3 (2)C12—C13—C14—C151.3 (6)
N1—Cd1—C1—O299.07 (19)N1—C15—C14—C130.0 (6)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y, z1; (iv) x+1, y+2, z+1; (v) x, y+2, z1/2; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3vii0.89 (3)2.26 (4)3.047 (4)147 (3)
N2—H2B···O2viii0.81 (3)2.03 (3)2.830 (4)168 (4)
O4—H41···O3iv0.80 (3)1.92 (3)2.714 (3)170 (3)
C8—H8C···O1ix0.962.553.468 (5)161
Symmetry codes: (iv) x+1, y+2, z+1; (vii) x, y+2, z+1/2; (viii) x, y, z+1; (ix) x, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H.-J. & Chen, X.-M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m627–m628.  CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm. 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationYou, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds