research communications
Supramolecular interactions in 2,6-diamino-4-chloropyrimidin-1-ium 5-chlorosalicylate and bis(2,6-diamino-4-chloropyrimidin-1-ium) naphthalene-1,5-disulfonate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna, pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in
The crystals of two new salts, 2,6-diamino-4-chloropyrimidin-1-ium 5-chlorosalicylate, C4H6ClN4+·C7H4ClO3−, (I), and bis(2,6-diamino-4-chloropyrimidin-1-ium) naphthalene-1,5-di-sulfonate, 2C4H6ClN4+·C10H6O6S22−, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both compounds, the N atom of the pyrimidine group in between the amino substituents is protonated and the pyrimidinium cation forms a pair of N—H⋯O hydrogen bonds with the carboxylate/sulfonate ion, leading to a robust R22(8) motif (supramolecular heterosynthon). In compound (I), a self-complementary involving the other pyrimidinium ring nitrogen atom and one of the amino groups via a pair of N—H⋯N hydrogen bonds [R22(8) homosynthon] is also present. In compound (II), the crystallographic inversion centre coincides with the inversion centre of the naphthalene-1,5-disulfonate ion and all the sulfonate O atoms are hydrogen-bond acceptors, generating fused-ring motifs and a quadruple DDAA array. A halogen-bond (Cl⋯Cl) interaction is present in (I) with a distance and angle of 3.3505 (12) Å and 151.37 (10)°, respectively. In addition, a C—Cl⋯π interaction and a π–π interaction in (I) and a π–π interaction in (II) further stabilize these crystal structures.
1. Chemical context
The study of supramolecular interactions in the crystals of pyrimidinium salts continues to be an active field since the pyrimidine fragment is a component of nucleobases and many drug molecules. The pyrimidine group offers two protonation sites (the two ring nitrogens) and the site of protonation depends on the nature of the substituents. et al., 2017). The pyrimidinium–carboxylate interaction is also of fundamental importance in biology since it is involved in protein–nucleic acid interactions and drug-receptor recognition (Hunt et al., 1980; Baker & Santi, 1965). The molecules are often self-assembled by hydrogen bonding, halogen bonding, cation⋯π, anion⋯π and π–π stacking interactions. Among these interactions, halogen bonding is of particular current interest (Cavallo et al., 2016). Various substituted pyrimidines and their interactions with different acids have been studied systematically in our laboratory. The variation in supramolecular architectures resulting from the different substituents in the base and the acid is being investigated, and crystal structures of 2,6-diamino-4-chloropyrimidinium salts with carboxylate/sulfonate have been reported recently from our laboratory (Mohana et al., 2017). The same pyrimidine derivative has been used to prepare the title compounds in order to further study the supramolecular architectures and the role of the halogen bond.
of the pyrimidinium cation has also been reported recently (Rajam2. Structural commentary
The salt of compound (I) crystallizes with one CDAPY (2,6-diamino-4-chloropyrimidinium) cation and one CSA (5-chlorosalicylate) anion in the (Fig. 1). The pyrimidinium cation is protonated at the N1 position (see Fig. 1 for atom numbering) and this is confirmed by an increase in the internal bond angle. The C2—N3—C4 angle at the unprotonated N3 atom is 115.1 (2)°, while for the protonated N1 atom, the C2—N1—C6 angle is 121.8 (2)°. The ion-pair (CDAPY and CSA) is almost planar [dihedral angle = 4.22 (11)°]. The carboxylate group of CSA is twisted slightly with respect to the remainder of the anion [dihedral angle= 3.9 (3)°]. The salt of compound (II) crystallizes with one CDAPY (2,6-diamino-4-chloropyrimidinium) cation and half a molecule of NSA (naphthalene-1,5-disulfonate) anion in the (Fig. 2), the other half of NSA being generated by an inversion centre. A crystallographic inversion centre coinciding with the inversion centre of the NSA ion has also been reported earlier (Liu, 2012; Xu, 2012; Liu & Chen, 2012). The pyrimidinium cation is again protonated at the N1 position (see Fig. 2 for atom numbering) and this is confirmed by an increase in the internal bond angle. The C2—N3—C4 angle at the unprotonated N3 atom is 115.40 (16)°, while the angle at the protonated N1 atom (C2—N1—C6) is 121.84 (16)°. All of the sulfonate oxygen atoms of the NSA anion are involved in hydrogen bonding. The S1—O1, S1—O2 and S1—O3 distances are similar [1.4550 (15), 1.4584 (15) and 1.4431 (16) Å respectively].
3. Supramolecular features
In salt (I), the protonated N1 atom and the amino hydrogen (N6) atom of CDAPY are hydrogen bonded via two N—H⋯O bonds (Table 1) forming a robust R22(8) ring motif (heterosynthon) involving the carboxylate group. The typical intramolecular hydrogen-bond S(6) motif (involving the carboxyl group and the phenolic –OH) observed in salicylates/salicylic acid is also present (Bernstein et al., 1995; Prabakaran et al., 2001; Panneerselvam et al., 2002) (Fig. 1). The 2-amino hydrogen atom of CDAPY interacts with the carboxylate oxygen O1 of CSA via an N—H⋯O hydrogen bond forming an R21(6) ring motif. Thus, the O1 oxygen atom acts as a trifurcated acceptor. A similar set of three fused rings was observed in the of 2,6-diamino-4-chloropyrimidinium 2-carboxy-3-nitrobenzoate (Mohana et al., 2017). However, in compound (I) the role of the 2-amino and 6-amino groups has been reversed. A self-complementary via a pair of N2—H⋯N3i (homosynthon) hydrogen bonds forming an R22(8) ring motif is also been observed. This type of is also observed in the crystal structures of 2,6-diamino-4-chloropyridinium 4-carboxybutanoate (Edison et al., 2014), 2,6-diamino-4-chloropyrimidine-benzoic acid (Thanigaimani et al., 2012a) and bis(2,6-diamino-4-chloropyrimidin-1-ium) fumarate (Thanigaimani et al., 2012b). The 2,6-diamino-4-chloropyrimidinium 5-chlorosalicylate units are linked via a Cl⋯Cl interaction (a type I interaction; Cavallo et al., 2016) with a distance and angle of 3.3505 (12) Å and 151.37 (10)°, respectively (Durka et al., 2015) (Fig. 3). Furthermore, a weak C—H⋯Oiii hydrogen-bonding interaction is present in this In addition, a weak stacking interaction with Cg1⋯Cg2 [3.6624 (14) Å; symmetry code: x, −1 + y, z; Cg1 and Cg2 are the centroids of the N1/C2/N3/C4/C5/C6 and C8–C13 rings, respectively] and C—Cl⋯π interactions [3.4469 (13) Å with an angle of 152.24 (9)°; symmetry code: − + x, − y, − + z] (Muthukumaran et al., 2011) further stabilize this (Fig. 4).
In salt (II), the sulfonate group mimics the role of the carboxylate oxygen atoms in generating an R22(8) motif (heterosynthon) involving the aminopyrimidinium cation (CDAPY) (Bernstein et al., 1995; Balasubramani et al., 2007). All units of the CDAPY and NSA ions are hydrogen bonded (Table 2) to generate a quadruple DDAA array with fused ring motifs R22(8), R42(8) and R22(8) (Fig. 5). This type of array has also been reported earlier (Robert et al., 2001; Umadevi et al., 2002; Raj et al., 2003; Subashini et al., 2007; Thanigaimani et al., 2007; Liu & Chen, 2012). In addition, the NSA anions also generate R32(10) and R33(21) ring motifs via N—H⋯O bonds. Weak π–π stacking interactions [Cg1⋯Cg4 = 3.4781 (11) Å; symmetry code: − x, − + y, − z and Cg4⋯Cg2 =3.4781 (11) Å; symmetry code: + x, − y, + z; Cg1, Cg2 and Cg4 are the centroids of the C7/C8/C9/C9′/C10′/C11′, C9/C10/C11/C7′/C8′/C9′ and N1/C2/N3/C4/C5/C6 rings, respectively] is also present (Fig. 6).
4. Database survey
Various salts of 5-chlorosalicylate have been reported: 2-methylquinolinium 5-chloro-2-hydroxybenzoate (Zhang et al., 2014), 4-amino-5-chloro-2,6-dimethylpyrimidinium 5-chloro-2-hydroxybenzoate (Rajam et al., 2017) and 2-amino-4,6-dimethylpyrimidinium 5-chlorosalicylate (Ebenezer & Muthiah, 2012). Similarly, various salts of half a molecule of naphthalene-1,5-disulfonate have been reported: bis(2-trifluoromethyl-1H-benzimidazole-3-ium) naphthalene-1,5-disulfonate (Liu, 2012), bis(3-methylanilinium) naphthalene-1,5-disulfonate (Liu & Chen, 2012) and bis(2-methylpiperidinium) naphthalene-1,5-disulfonate (Xu, 2012).
5. Synthesis and crystallization
Compounds (I) and (II) were synthesized by mixing hot ethanolic solutions (1:1) of 2,6-diamino-4-chloropyrimidine (36 mg) with 5-chlorosalicylic acid (43 mg) (I)/naphthalene-1,5-disulfonic acid (72 mg) (II). These mixtures were warmed to 333 K for 25 min. Colourless crystals separated out from the mother liquor at room temperature after a week.
6. Refinement
Crystal data, data collection and structure . All H atoms were initially located readily in difference-Fourier maps and were treated as riding atoms with C—H = 0.93 Å (aromatic), N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hydroxy and 1.2 for all other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018001196/zl2723sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001196/zl2723Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018001196/zl2723IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001196/zl2723Isup4.cml
For both structures, data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C4H6ClN4+·C7H4ClO3− | F(000) = 648 |
Mr = 317.13 | Dx = 1.534 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9203 (14) Å | Cell parameters from 1734 reflections |
b = 7.0285 (6) Å | θ = 3.9–27.5° |
c = 15.4294 (14) Å | µ = 0.49 mm−1 |
β = 114.544 (12)° | T = 293 K |
V = 1373.2 (3) Å3 | Needle, colorless |
Z = 4 | 0.40 × 0.10 × 0.03 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 3144 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2137 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4933 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
ω scans | h = −18→17 |
Absorption correction: multi-scan (CrysAlis PRO); Agilent, 2013) | k = −7→9 |
Tmin = 0.644, Tmax = 1.000 | l = −20→19 |
7906 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5033P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3144 reflections | Δρmax = 0.29 e Å−3 |
182 parameters | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.25461 (6) | −0.27636 (11) | −0.00641 (5) | 0.0674 (2) | |
N1 | 0.38557 (14) | 0.2707 (3) | 0.12207 (13) | 0.0386 (4) | |
H1 | 0.4128 | 0.3792 | 0.1450 | 0.046* | |
N2 | 0.50448 (17) | 0.2485 (3) | 0.05504 (16) | 0.0566 (6) | |
H2B | 0.5313 | 0.1895 | 0.0215 | 0.068* | |
H2A | 0.5293 | 0.3573 | 0.0796 | 0.068* | |
N3 | 0.38700 (15) | 0.0032 (3) | 0.03064 (13) | 0.0442 (5) | |
N6 | 0.27205 (16) | 0.3072 (3) | 0.19347 (15) | 0.0503 (5) | |
H6A | 0.3023 | 0.4141 | 0.2157 | 0.060* | |
H6B | 0.2207 | 0.2687 | 0.2063 | 0.060* | |
C2 | 0.42485 (18) | 0.1715 (3) | 0.06889 (16) | 0.0404 (5) | |
C4 | 0.30522 (17) | −0.0606 (3) | 0.04713 (16) | 0.0414 (5) | |
C5 | 0.26096 (16) | 0.0273 (3) | 0.09993 (15) | 0.0398 (5) | |
H5 | 0.2048 | −0.0266 | 0.1089 | 0.048* | |
C6 | 0.30401 (16) | 0.2033 (3) | 0.14025 (15) | 0.0368 (5) | |
Cl2 | 0.50995 (6) | 1.29096 (12) | 0.45221 (5) | 0.0745 (3) | |
O1 | 0.49261 (13) | 0.5917 (2) | 0.18881 (13) | 0.0534 (5) | |
O2 | 0.38734 (12) | 0.6467 (2) | 0.26174 (12) | 0.0501 (4) | |
O3 | 0.62982 (14) | 0.8382 (3) | 0.19368 (15) | 0.0617 (5) | |
H3 | 0.5981 | 0.7365 | 0.1805 | 0.093* | |
C7 | 0.46259 (17) | 0.6930 (3) | 0.24184 (16) | 0.0393 (5) | |
C8 | 0.51962 (15) | 0.8751 (3) | 0.27862 (15) | 0.0362 (5) | |
C9 | 0.60003 (17) | 0.9377 (4) | 0.25339 (17) | 0.0437 (6) | |
C10 | 0.65092 (19) | 1.1105 (4) | 0.28915 (19) | 0.0563 (7) | |
H10 | 0.7038 | 1.1527 | 0.2718 | 0.068* | |
C11 | 0.6235 (2) | 1.2181 (4) | 0.34943 (19) | 0.0580 (7) | |
H11 | 0.6576 | 1.3330 | 0.3729 | 0.070* | |
C12 | 0.54500 (19) | 1.1548 (4) | 0.37507 (17) | 0.0488 (6) | |
C13 | 0.49410 (17) | 0.9865 (3) | 0.34066 (16) | 0.0412 (5) | |
H13 | 0.4417 | 0.9458 | 0.3590 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0648 (4) | 0.0561 (5) | 0.0783 (5) | −0.0240 (3) | 0.0267 (4) | −0.0292 (4) |
N1 | 0.0432 (10) | 0.0303 (10) | 0.0503 (10) | −0.0045 (8) | 0.0274 (9) | −0.0059 (9) |
N2 | 0.0670 (13) | 0.0480 (13) | 0.0795 (15) | −0.0198 (11) | 0.0551 (12) | −0.0247 (12) |
N3 | 0.0479 (11) | 0.0401 (11) | 0.0490 (11) | −0.0089 (9) | 0.0245 (9) | −0.0100 (10) |
N6 | 0.0527 (11) | 0.0418 (12) | 0.0747 (14) | −0.0065 (10) | 0.0448 (11) | −0.0087 (11) |
C2 | 0.0460 (12) | 0.0383 (13) | 0.0442 (12) | −0.0032 (11) | 0.0258 (10) | −0.0027 (11) |
C4 | 0.0403 (12) | 0.0346 (13) | 0.0421 (11) | −0.0045 (10) | 0.0099 (10) | −0.0031 (11) |
C5 | 0.0337 (11) | 0.0385 (13) | 0.0477 (12) | −0.0050 (10) | 0.0176 (10) | 0.0007 (11) |
C6 | 0.0354 (11) | 0.0341 (12) | 0.0433 (11) | 0.0029 (9) | 0.0187 (10) | 0.0030 (10) |
Cl2 | 0.0751 (5) | 0.0685 (5) | 0.0735 (5) | 0.0006 (4) | 0.0245 (4) | −0.0334 (4) |
O1 | 0.0566 (10) | 0.0395 (10) | 0.0798 (12) | −0.0057 (8) | 0.0439 (9) | −0.0171 (9) |
O2 | 0.0519 (10) | 0.0380 (9) | 0.0762 (11) | −0.0081 (8) | 0.0425 (9) | −0.0081 (9) |
O3 | 0.0555 (11) | 0.0592 (13) | 0.0892 (13) | −0.0074 (9) | 0.0487 (10) | −0.0126 (11) |
C7 | 0.0401 (12) | 0.0314 (12) | 0.0494 (12) | 0.0037 (10) | 0.0216 (10) | 0.0012 (10) |
C8 | 0.0315 (10) | 0.0326 (12) | 0.0427 (11) | 0.0022 (9) | 0.0136 (9) | 0.0001 (10) |
C9 | 0.0351 (11) | 0.0427 (14) | 0.0539 (13) | 0.0011 (10) | 0.0192 (10) | 0.0002 (12) |
C10 | 0.0436 (13) | 0.0566 (17) | 0.0695 (16) | −0.0126 (13) | 0.0242 (13) | −0.0008 (15) |
C11 | 0.0517 (15) | 0.0456 (15) | 0.0638 (16) | −0.0121 (13) | 0.0112 (13) | −0.0105 (14) |
C12 | 0.0451 (13) | 0.0436 (14) | 0.0485 (13) | 0.0009 (11) | 0.0102 (11) | −0.0088 (12) |
C13 | 0.0356 (11) | 0.0399 (13) | 0.0466 (12) | 0.0005 (10) | 0.0156 (10) | −0.0032 (11) |
Cl1—C4 | 1.731 (2) | Cl2—C12 | 1.747 (3) |
N1—C2 | 1.353 (3) | O1—C7 | 1.279 (3) |
N1—C6 | 1.362 (3) | O2—C7 | 1.251 (3) |
N1—H1 | 0.8600 | O3—C9 | 1.352 (3) |
N2—C2 | 1.328 (3) | O3—H3 | 0.8200 |
N2—H2B | 0.8600 | C7—C8 | 1.488 (3) |
N2—H2A | 0.8600 | C8—C13 | 1.392 (3) |
N3—C2 | 1.329 (3) | C8—C9 | 1.400 (3) |
N3—C4 | 1.342 (3) | C9—C10 | 1.399 (4) |
N6—C6 | 1.307 (3) | C10—C11 | 1.370 (4) |
N6—H6A | 0.8600 | C10—H10 | 0.9300 |
N6—H6B | 0.8600 | C11—C12 | 1.382 (4) |
C4—C5 | 1.357 (3) | C11—H11 | 0.9300 |
C5—C6 | 1.402 (3) | C12—C13 | 1.368 (3) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C2—N1—C6 | 121.80 (19) | C9—O3—H3 | 109.5 |
C2—N1—H1 | 119.1 | O2—C7—O1 | 122.8 (2) |
C6—N1—H1 | 119.1 | O2—C7—C8 | 119.9 (2) |
C2—N2—H2B | 120.0 | O1—C7—C8 | 117.29 (19) |
C2—N2—H2A | 120.0 | C13—C8—C9 | 118.4 (2) |
H2B—N2—H2A | 120.0 | C13—C8—C7 | 119.85 (19) |
C2—N3—C4 | 115.1 (2) | C9—C8—C7 | 121.7 (2) |
C6—N6—H6A | 120.0 | O3—C9—C10 | 118.0 (2) |
C6—N6—H6B | 120.0 | O3—C9—C8 | 122.3 (2) |
H6A—N6—H6B | 120.0 | C10—C9—C8 | 119.7 (2) |
N2—C2—N3 | 119.6 (2) | C11—C10—C9 | 120.6 (2) |
N2—C2—N1 | 117.5 (2) | C11—C10—H10 | 119.7 |
N3—C2—N1 | 122.8 (2) | C9—C10—H10 | 119.7 |
N3—C4—C5 | 126.4 (2) | C10—C11—C12 | 119.5 (2) |
N3—C4—Cl1 | 114.28 (18) | C10—C11—H11 | 120.2 |
C5—C4—Cl1 | 119.28 (18) | C12—C11—H11 | 120.2 |
C4—C5—C6 | 116.8 (2) | C13—C12—C11 | 120.7 (2) |
C4—C5—H5 | 121.6 | C13—C12—Cl2 | 119.5 (2) |
C6—C5—H5 | 121.6 | C11—C12—Cl2 | 119.8 (2) |
N6—C6—N1 | 117.7 (2) | C12—C13—C8 | 121.0 (2) |
N6—C6—C5 | 125.3 (2) | C12—C13—H13 | 119.5 |
N1—C6—C5 | 117.0 (2) | C8—C13—H13 | 119.5 |
C4—N3—C2—N2 | −178.7 (2) | O1—C7—C8—C9 | 2.6 (3) |
C4—N3—C2—N1 | 1.2 (3) | C13—C8—C9—O3 | 179.9 (2) |
C6—N1—C2—N2 | −180.0 (2) | C7—C8—C9—O3 | 0.7 (3) |
C6—N1—C2—N3 | 0.2 (3) | C13—C8—C9—C10 | −1.2 (3) |
C2—N3—C4—C5 | −1.7 (3) | C7—C8—C9—C10 | 179.5 (2) |
C2—N3—C4—Cl1 | 178.08 (16) | O3—C9—C10—C11 | 179.5 (2) |
N3—C4—C5—C6 | 0.9 (3) | C8—C9—C10—C11 | 0.7 (4) |
Cl1—C4—C5—C6 | −178.93 (16) | C9—C10—C11—C12 | 0.1 (4) |
C2—N1—C6—N6 | 179.0 (2) | C10—C11—C12—C13 | −0.2 (4) |
C2—N1—C6—C5 | −1.1 (3) | C10—C11—C12—Cl2 | 179.8 (2) |
C4—C5—C6—N6 | −179.5 (2) | C11—C12—C13—C8 | −0.3 (4) |
C4—C5—C6—N1 | 0.6 (3) | Cl2—C12—C13—C8 | 179.61 (17) |
O2—C7—C8—C13 | 4.7 (3) | C9—C8—C13—C12 | 1.1 (3) |
O1—C7—C8—C13 | −176.68 (19) | C7—C8—C13—C12 | −179.7 (2) |
O2—C7—C8—C9 | −176.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.82 | 2.664 (3) | 168 |
N2—H2A···O1 | 0.86 | 2.56 | 3.223 (3) | 135 |
N2—H2B···N3i | 0.86 | 2.13 | 2.970 (3) | 165 |
O3—H3···O1 | 0.82 | 1.83 | 2.557 (3) | 146 |
N6—H6A···O2 | 0.86 | 1.97 | 2.824 (3) | 172 |
N6—H6B···O2ii | 0.86 | 1.96 | 2.819 (3) | 172 |
C10—H10···O3iii | 0.93 | 2.51 | 3.358 (4) | 151 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
2C4H6ClN4+·C10H6O6S22− | F(000) = 592 |
Mr = 577.42 | Dx = 1.604 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1696 (4) Å | Cell parameters from 3749 reflections |
b = 13.0848 (7) Å | θ = 3.7–30.1° |
c = 9.9663 (5) Å | µ = 0.50 mm−1 |
β = 90.526 (5)° | T = 293 K |
V = 1195.73 (10) Å3 | Prism, colorless |
Z = 2 | 0.40 × 0.40 × 0.06 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 2735 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2274 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.4933 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −8→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −16→15 |
Tmin = 0.527, Tmax = 1.000 | l = −12→12 |
10382 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5881P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2735 reflections | Δρmax = 0.49 e Å−3 |
163 parameters | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.10474 (6) | 0.91005 (5) | 0.13497 (8) | 0.0693 (2) | |
N1 | 0.47951 (17) | 0.72194 (12) | 0.24106 (15) | 0.0379 (4) | |
H1 | 0.5541 | 0.6839 | 0.2572 | 0.045* | |
N2 | 0.4259 (2) | 0.61789 (16) | 0.0635 (2) | 0.0675 (7) | |
H2A | 0.3734 | 0.6006 | −0.0047 | 0.081* | |
H2B | 0.5013 | 0.5823 | 0.0853 | 0.081* | |
N3 | 0.27559 (18) | 0.75496 (14) | 0.10314 (17) | 0.0437 (4) | |
N6 | 0.54208 (19) | 0.81915 (14) | 0.42350 (17) | 0.0444 (4) | |
H6A | 0.6148 | 0.7789 | 0.4376 | 0.053* | |
H6B | 0.5275 | 0.8701 | 0.4761 | 0.053* | |
C2 | 0.3908 (2) | 0.69909 (16) | 0.1347 (2) | 0.0420 (5) | |
C4 | 0.2528 (2) | 0.83590 (15) | 0.1817 (2) | 0.0393 (4) | |
C5 | 0.3328 (2) | 0.86453 (15) | 0.2911 (2) | 0.0377 (4) | |
H5 | 0.3089 | 0.9215 | 0.3422 | 0.045* | |
C6 | 0.45350 (19) | 0.80277 (14) | 0.32183 (18) | 0.0333 (4) | |
S1 | 0.80386 (5) | 0.55638 (4) | 0.21480 (4) | 0.03723 (15) | |
O1 | 0.75993 (16) | 0.65802 (11) | 0.25770 (15) | 0.0491 (4) | |
O2 | 0.68017 (17) | 0.49952 (12) | 0.15999 (15) | 0.0517 (4) | |
O3 | 0.92854 (18) | 0.55687 (13) | 0.12748 (14) | 0.0541 (4) | |
C7 | 0.7936 (2) | 0.40041 (15) | 0.39206 (19) | 0.0379 (4) | |
H7 | 0.7184 | 0.3761 | 0.3375 | 0.045* | |
C8 | 0.86088 (18) | 0.49007 (14) | 0.36151 (17) | 0.0307 (4) | |
C9 | 0.97829 (18) | 0.52894 (13) | 0.44251 (17) | 0.0293 (4) | |
C10 | 1.0523 (2) | 0.62150 (15) | 0.41375 (19) | 0.0385 (4) | |
H10 | 1.0250 | 0.6595 | 0.3388 | 0.046* | |
C11 | 1.1626 (2) | 0.65540 (16) | 0.4944 (2) | 0.0427 (5) | |
H11 | 1.2097 | 0.7163 | 0.4739 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0446 (3) | 0.0740 (4) | 0.0888 (5) | 0.0223 (3) | −0.0221 (3) | −0.0052 (4) |
N1 | 0.0362 (8) | 0.0366 (8) | 0.0405 (8) | 0.0056 (7) | −0.0128 (7) | −0.0061 (7) |
N2 | 0.0709 (13) | 0.0633 (13) | 0.0676 (13) | 0.0230 (11) | −0.0364 (11) | −0.0346 (11) |
N3 | 0.0371 (9) | 0.0485 (10) | 0.0454 (9) | 0.0019 (7) | −0.0144 (7) | −0.0041 (8) |
N6 | 0.0459 (10) | 0.0451 (9) | 0.0420 (9) | 0.0073 (8) | −0.0150 (8) | −0.0107 (7) |
C2 | 0.0415 (11) | 0.0420 (11) | 0.0424 (10) | 0.0010 (8) | −0.0122 (9) | −0.0066 (8) |
C4 | 0.0275 (9) | 0.0429 (11) | 0.0474 (11) | 0.0012 (8) | −0.0047 (8) | 0.0052 (9) |
C5 | 0.0347 (9) | 0.0367 (10) | 0.0416 (10) | 0.0032 (8) | −0.0022 (8) | −0.0028 (8) |
C6 | 0.0327 (9) | 0.0338 (9) | 0.0333 (9) | −0.0023 (7) | −0.0023 (7) | 0.0000 (7) |
S1 | 0.0411 (3) | 0.0401 (3) | 0.0303 (2) | 0.0063 (2) | −0.00909 (19) | 0.00095 (18) |
O1 | 0.0499 (8) | 0.0425 (8) | 0.0545 (9) | 0.0128 (7) | −0.0185 (7) | −0.0033 (7) |
O2 | 0.0563 (9) | 0.0532 (9) | 0.0451 (8) | 0.0030 (7) | −0.0252 (7) | −0.0052 (7) |
O3 | 0.0625 (10) | 0.0643 (10) | 0.0356 (8) | 0.0090 (8) | 0.0075 (7) | 0.0121 (7) |
C7 | 0.0326 (9) | 0.0426 (11) | 0.0382 (10) | −0.0054 (8) | −0.0048 (8) | −0.0017 (8) |
C8 | 0.0295 (8) | 0.0349 (9) | 0.0276 (8) | 0.0026 (7) | −0.0017 (7) | 0.0004 (7) |
C9 | 0.0279 (8) | 0.0325 (9) | 0.0276 (8) | 0.0019 (7) | −0.0002 (6) | 0.0012 (7) |
C10 | 0.0415 (10) | 0.0380 (10) | 0.0361 (9) | −0.0029 (8) | −0.0033 (8) | 0.0086 (8) |
C11 | 0.0437 (11) | 0.0387 (10) | 0.0456 (11) | −0.0133 (8) | −0.0023 (9) | 0.0073 (8) |
Cl1—C4 | 1.7290 (19) | S1—O3 | 1.4431 (16) |
N1—C6 | 1.352 (2) | S1—O1 | 1.4550 (15) |
N1—C2 | 1.363 (2) | S1—O2 | 1.4584 (15) |
N1—H1 | 0.8600 | S1—C8 | 1.7749 (17) |
N2—C2 | 1.319 (3) | C7—C8 | 1.361 (3) |
N2—H2A | 0.8600 | C7—C11i | 1.403 (3) |
N2—H2B | 0.8600 | C7—H7 | 0.9300 |
N3—C2 | 1.321 (3) | C8—C9 | 1.433 (2) |
N3—C4 | 1.335 (3) | C9—C10 | 1.419 (3) |
N6—C6 | 1.311 (2) | C9—C9i | 1.427 (3) |
N6—H6A | 0.8600 | C10—C11 | 1.361 (3) |
N6—H6B | 0.8600 | C10—H10 | 0.9300 |
C4—C5 | 1.361 (3) | C11—C7i | 1.403 (3) |
C5—C6 | 1.402 (3) | C11—H11 | 0.9300 |
C5—H5 | 0.9300 | ||
C6—N1—C2 | 121.84 (16) | O3—S1—O1 | 113.34 (10) |
C6—N1—H1 | 119.1 | O3—S1—O2 | 113.21 (10) |
C2—N1—H1 | 119.1 | O1—S1—O2 | 111.10 (9) |
C2—N2—H2A | 120.0 | O3—S1—C8 | 105.66 (8) |
C2—N2—H2B | 120.0 | O1—S1—C8 | 106.56 (8) |
H2A—N2—H2B | 120.0 | O2—S1—C8 | 106.34 (9) |
C2—N3—C4 | 115.40 (16) | C8—C7—C11i | 120.15 (17) |
C6—N6—H6A | 120.0 | C8—C7—H7 | 119.9 |
C6—N6—H6B | 120.0 | C11i—C7—H7 | 119.9 |
H6A—N6—H6B | 120.0 | C7—C8—C9 | 121.31 (16) |
N2—C2—N3 | 121.08 (18) | C7—C8—S1 | 118.35 (13) |
N2—C2—N1 | 116.65 (18) | C9—C8—S1 | 120.31 (13) |
N3—C2—N1 | 122.27 (18) | C10—C9—C9i | 119.00 (19) |
N3—C4—C5 | 127.02 (18) | C10—C9—C8 | 123.19 (15) |
N3—C4—Cl1 | 114.47 (14) | C9i—C9—C8 | 117.8 (2) |
C5—C4—Cl1 | 118.51 (16) | C11—C10—C9 | 120.90 (17) |
C4—C5—C6 | 115.80 (18) | C11—C10—H10 | 119.6 |
C4—C5—H5 | 122.1 | C9—C10—H10 | 119.6 |
C6—C5—H5 | 122.1 | C10—C11—C7i | 120.83 (18) |
N6—C6—N1 | 118.48 (17) | C10—C11—H11 | 119.6 |
N6—C6—C5 | 123.87 (18) | C7i—C11—H11 | 119.6 |
N1—C6—C5 | 117.64 (16) | ||
C4—N3—C2—N2 | −179.1 (2) | O3—S1—C8—C7 | −116.17 (16) |
C4—N3—C2—N1 | 0.7 (3) | O1—S1—C8—C7 | 122.99 (16) |
C6—N1—C2—N2 | −179.4 (2) | O2—S1—C8—C7 | 4.41 (18) |
C6—N1—C2—N3 | 0.8 (3) | O3—S1—C8—C9 | 61.75 (17) |
C2—N3—C4—C5 | −1.8 (3) | O1—S1—C8—C9 | −59.08 (16) |
C2—N3—C4—Cl1 | 178.00 (16) | O2—S1—C8—C9 | −177.67 (14) |
N3—C4—C5—C6 | 1.3 (3) | C7—C8—C9—C10 | 179.44 (18) |
Cl1—C4—C5—C6 | −178.48 (14) | S1—C8—C9—C10 | 1.6 (2) |
C2—N1—C6—N6 | 178.92 (19) | C7—C8—C9—C9i | −0.6 (3) |
C2—N1—C6—C5 | −1.3 (3) | S1—C8—C9—C9i | −178.50 (17) |
C4—C5—C6—N6 | −179.95 (19) | C9i—C9—C10—C11 | −0.3 (3) |
C4—C5—C6—N1 | 0.3 (3) | C8—C9—C10—C11 | 179.62 (19) |
C11i—C7—C8—C9 | 0.8 (3) | C9—C10—C11—C7i | 0.1 (3) |
C11i—C7—C8—S1 | 178.73 (16) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.92 | 2.708 (2) | 152 |
N2—H2A···O2ii | 0.86 | 2.08 | 2.868 (3) | 152 |
N2—H2B···O2 | 0.86 | 2.10 | 2.953 (2) | 174 |
N6—H6A···N3iii | 0.86 | 2.25 | 2.943 (2) | 138 |
N6—H6B···O3iv | 0.86 | 2.01 | 2.808 (2) | 154 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x+1/2, −y+3/2, z+1/2; (iv) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
The EN–FIST Centre of Excellence, Ljubljana, Slovenia, is thanked for the use of the SuperNova diffractometer.
Funding information
RSD thanks the UGC–BSR India for the award of an RFSMS. PTM thanks UGC, New Delhi, for a UGC Emeritus fellowship. FP thanks the Slovenian Research Agency for financial support (PI-0230–0175).
References
Agilent. (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Balasubramani, K., Thomas Muthiah, P. & Lynch, D. E. (2007). Chem. Cent. J. 1, 28. CSD CrossRef PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Durka, K., Kliś, T. & Serwatowski, J. (2015). Acta Cryst. E71, 1471–1474. CSD CrossRef IUCr Journals Google Scholar
Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785. Web of Science CSD CrossRef CAS Google Scholar
Edison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857–o858. CSD CrossRef IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CSD CrossRef CAS PubMed Web of Science Google Scholar
Liu, M.-L. (2012). Acta Cryst. E68, o342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, M.-L. & Chen, Z.-Q. (2012). Acta Cryst. E68, o1745. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540. CSD CrossRef IUCr Journals Google Scholar
Muthukumaran, J., Parthiban, A., Kannan, M., Rao, H. S. P. & Krishna, R. (2011). Acta Cryst. E67, o898–o899. CSD CrossRef IUCr Journals Google Scholar
Panneerselvam, P., Stanley, N. & Muthiah, P. T. (2002). Acta Cryst. E58, o180–o182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raj, S. B., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48–53. CAS Google Scholar
Rajam, A., Muthiah, P. T., Butcher, R. J., Jasinski, J. P. & Glidewell, C. (2017). Acta Cryst. C73, 862–868. Web of Science CSD CrossRef IUCr Journals Google Scholar
Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o3442–o3443. CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Khalib, N. C., Farhadikoutenaei, A., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o3321–o3322. CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556. Web of Science CSD CrossRef IUCr Journals Google Scholar
Umadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510–o512. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xu, Q. (2012). Acta Cryst. E68, o1733. CSD CrossRef IUCr Journals Google Scholar
Zhang, J., Jin, S., Tao, L., Liu, B. & Wang, D. (2014). J. Mol. Struct. 1072, 208–220. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.