research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of eight- and ten-membered cyclic bis­­anisyl­phosphono­thioyl disulfanes and comparison with their P-ferrocenyl analogues

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Gdańsk University of Technology, G.Narutowicza 11/12, 80233-PL, Gdańsk, Poland, and bDepartment of Inorganic Chemistry, Gdańsk University of Technology, G.Narutowicza 11/12, 80233-PL, Gdańsk, Poland
*Correspondence e-mail: jaroslaw.chojnacki@pg.edu.pl

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 4 December 2017; accepted 17 January 2018; online 26 January 2018)

Two new crystal structures of eight- and ten-membered cyclic bis­anisyl­phosphono­thioyl disulfanes, namely 2,5-bis­(4-meth­oxy­phen­yl)-1,6,3,4,2λ5,5λ5-dioxadi­thiadi­phospho­cane-2,5-di­thione, C16H18O4P2S4, and 2,5-bis­(4-meth­oxy­phen­yl)-1,6,3,4,2λ5,5λ5-dioxadi­thia­diphosphecane-2,5-di­thione, C18H22O4P2S4, have been determined and compared to structures of the ferrocenyl analogues. The eight-membered rings have similar conformations (TBC) but the ten-membered macrocycles are differently puckered. Structural parameters of the relevant SPSSPS motif have been analysed and are discussed in detail. Compound 1 was refined as an inversion twin and 2 was refined as a two-component rotational twin.

1. Chemical context

The most widely used sulfur-transfer agents for thio­nation of carbonyl compounds are the four-membered 2,4-dianisyl-1,3-di­thia­diphosphetane di­sulfide dimer [AnP(μ-S)S]2 and the 2,4-diferrocenyl-1,3-di­thia­diphosphetane di­sulfide dimer [FcP(μ-S)S]2, i.e. Lawesson reagent LR (Jesberger et al., 2003[Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929-1958.]) and ferrocenyl Lawesson reagent fLR (Foreman et al., 1996[Foreman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653-3657.]). However, thio­phosphine oxides (AnPSO or FcPSO) separating as cyclic trimers during thio­nation reactions are usually unwanted side-products. On the other hand, the corresponding alk­oxy­phosphinodi­thioic acids, i.e. An(RO)P(S)SH and Fc(RO)P(S)SH, obtained in a simple reaction between LR or fLR and alcohols, are of considerable inter­est because they form a plethora of structurally inter­esting chelate complexes with metal ions (van Zyl & Woollins, 2013[Zyl, W. E. van & Woollins, J. D. (2013). Coord. Chem. Rev. 257, 718-731.]).

The reactions between Lawesson's reagent and diols/diphenols have been successfully involved in the preparation of bis­(anisyl­phosphono­dithioic) acid derivatives and among them the unique eight-, nine- and ten-membered cyclic bis­anisyl­phosphono­thioyl disulfanes (Przychodzeń, 2004[Przychodzeń, W. (2004). Phosphorus Sulfur Silicon, 179, 1621-1633.]). A high-yielding formation of these medium-sized cyclic disulf­anes upon oxidation of bis­(anisyl­phosphono­dithtioic) acid salts by iodine proceeding without oligomeric by-products may be attributed to their fixed structure, containing the most preferred a zigzag motif of the SPSSPS unit. Slightly modified procedures with respect to the original method have recently been applied for the synthesis of related cyclic bis­(ferro­cenyl­phosphono­thio­yl)disulfanes, e.g. eight-membered 1a (Pillay et al., 2015[Pillay, M. N., van der Walt, H., Staples, R. J. & van Zyl, W. E. (2015). J. Organomet. Chem. 794, 33-39.]) and ten-membered 2a (Hua et al., 2017[Hua, G., Davidson, K., Cordes, D. B., Du, J., Slavin, A. M. Z. & Woollins, J. D. (2017). Molecules, 22, 1687-1700.]) and their crystal structures have been determined. Here we report crystal structures compounds 1 and 2, containing anisyl groups instead of the ferrocenyl moiety.

[Scheme 1]

2. Structural commentary

Views of mol­ecular structures and atom-labeling scheme for 1 and 2 are given in Figs. 1[link] and 2[link], respectively. Compound 1 crystallizes in the P43212 space group with a half-mol­ecule in the asymmetric unit. It follows that the mol­ecule obeys point group symmetry described by Schoenflies symbol C2 (or symbol 2 in inter­national notation). The related ferrocenyl compound 1a crystallizes in space group C2/c with non-typical three and half independent mol­ecules in the asymmetric unit (Z = 28), which complicates comparisons.

[Figure 1]
Figure 1
The mol­ecular structure of 1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry-equivalent atoms are generated by the operation (y + 1, x − 1, −z).
[Figure 2]
Figure 2
View of the asymmetric unit of 2, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Compound 2 forms a monoclinic crystalline phase obeying P21/c space-group symmetry with one mol­ecule in the asymmetric unit and Z = 4. The related ferrocenyl structure 2a crystallizes in space group P[\overline{1}] with one mol­ecule in the asymmetric unit.

The anisyl groups as well as the ferrocenyl groups on the two phospho­rus atoms are positioned in a trans arrangement, i.e. above and below the macrocycle ring plane for all compounds 12a, which is also typical for all open-chain bis­phospho­rothioyl disulfanes studied previously (Gray et al., 2004[Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). New J. Chem. 28, 1383-1389.]).

The S—S bond lengths have values of 2.068 (2) Å for 1; 2.0697 (10), 2.0704 (10), 2.0685 (10), 2.0711 (15) Å for 1a; 2.074 (3) Å for 2 and 2.0788 (9) Å for 2a. They are longer than the typical S—S bond lengths for known diorganyl disulfanes RSSR [2.05 (3) Å]. The observed S—S bond elongation in 12a may be correlated with the PSSP torsion angles (Knopik et al., 1993[Knopik, P., Łuczak, L., Potrzebowski, M. J., Michalski, J., Błaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749-2757.]). As expected, exocyclic P=S bond lengths (ca 1.92 Å) are shorter than the endocyclic P—S bonds (ca 2.10 Å).

All phospho­rus atoms in 12a adopt a distorted tetra­hedral geometry, where the C—P=S angles deviated the most (116.1–118.5°) from the ideal tetra­hedral angle. This is obviously due to the steric effects of the anisyl and ferrocenyl substituents. On the other hand, it is worthy to note that the O—P–S bond angles in 12a (107–108°) are not distorted, probably due to minimal conformational strain present in those medium-sized heterocycles. Moreover, both the P=S and aromatic anisyl groups in 1 are almost perfectly coplanar (unlike P=S and the cyclopentadienyl ring in 1a), which provides energetically favorable conjugation [torsion angle S2—P1—C10—C15 = −3.8 (4)° in 1 vs 35.75 (3)° for the equivalent angle in a selected representative mol­ecule with Fe7 in 1a]. The other related independent torsion angles in 1a are −31. (3), −33.9 (3), −27.0 (3), −28.7 (3), 34.8 (3), 35.7 (3)°, for Fe1–Fe6, respectively.

It is well recognised that PSSP torsion is a characteristic feature of all disulfanes as a class of organic compounds. The structure of 1 is the most symmetric with the lowest PSSP torsion [−93.68 (8)°] and shows only a moderate deviation from a right angle. The PSSP torsion angles in 1a [−101.19 (4), −100.06 (4), −101.47 (4) and 99.89 (4)°] are 6–8° wider than in 1. Notably, ten-membered disulfanes have even wider PSSP torsion angles and the difference between them is smaller, −112.89 (11) and 114.9 (4)°, for 2 and 2a, respectively.

Only non-classical hydrogen-bonding inter­actions of the type C—H⋯X (X = O or S) can be found in the structures of 1 and 2 (Tables 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.97 2.60 3.4843 (2) 151
C14—H14⋯O1ii 0.93 2.55 3.4548 (2) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 4}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 4}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯S3 0.99 2.81 3.3883 (2) 118
C4—H4B⋯O1 0.99 2.48 3.1308 (2) 123
C4—H4B⋯O4i 0.99 2.56 3.2708 (2) 128
C11—H11⋯O4i 0.95 2.62 3.4951 (3) 154
C24—H24⋯O3ii 0.95 2.51 3.4240 (3) 162
C16—H16ACgiii 0.98 2.62 3.454 (8) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The transannular P⋯P distances are very similar within the same ring size and increase, from 4.3331 (17) Å in 1 and 4.2625 (9), 4.2670 (9), 4.2652 (9) or 4.261 (1) Å (for different independent mol­ecules in 1a) for eight-membered rings, to 4.614 (2) in 2 and 4.604 (1) Å in 2a for the ten-membered rings.

The conformation of the eight-membered macrocycles in 1 and 1a was recognised by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) as being closest to the TBC form (twist–boat chair; Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]; Wiberg, 2003[Wiberg, K. B. (2003). J. Org. Chem. 68, 9322-9329.]), which is consistent with C2 point symmetry. Fig. 3[link] shows the overlay of the two structures based on the best fit of the PSSP fragment. The conformation of 2 was not assigned to any border type by PLATON, but Fig. 4[link] shows the puckering in 2 and 2a is distinctively different.

[Figure 3]
Figure 3
Superimposition of eight-membered di­phospho­canes 1 (blue) and 1a (grey) based on the best PSSP fragment fit.
[Figure 4]
Figure 4
Overlay of ten-membered diphosphecanes 2 (blue) and 2a (grey) based on the best PSSP fragment fit.

It is probably important to note that the intra­molecular C4—H4B⋯O1 hydrogen bond (Table 2[link]) stabilizes the ten-membered ring of 2.

3. Supra­molecular features

The strongest inter­molecular hydrogen-bonding inter­action in 1 is between the anisyl ortho-hydrogen and macrocyclic O1 atoms and links the mol­ecules into a diamondoid network. There are no ring-stacking inter­actions since the shortest centroid–centroid distance is 5.0965 (3) Å. The anisyl substituents may have inhibited this kind of inter­action.

Inter­molecular inter­actions in 2 are mainly based on the anisyl methoxyl CH3O oxygen atoms O3 and O4 and the P=S sulfur atom S3 as acceptors. Hydrogen-bond donors are the anisyl ortho-hydrogen atoms or methyl­ene hydrogen atoms. Moreover, some C—H..π. inter­actions may play some role in the system, e.g. C16—H16A⋯ring(C20–C25), see Fig. 5[link]. Again, the stacking inter­actions are weak since the closest inter­centroid distance is equal to 4.9213 (4) Å.

[Figure 5]
Figure 5
C—H⋯π inter­action and inter­nal C—H⋯O hydrogen bonding in the ten-membered ring of 2.

4. Database survey

Bisphosphono­thioyl disulfanes represent a rather rare class of compounds (CSD Version 5.28, updated to Nov. 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Only three structures of cyclic bis­phosphono­thioyl disulfanes can be found in the database, HUGXAK, HUXEO and HUGXIS (ferrocenyl derivatives; Pillay et al., 2015[Pillay, M. N., van der Walt, H., Staples, R. J. & van Zyl, W. E. (2015). J. Organomet. Chem. 794, 33-39.]) and four more will be available there soon (Hua et al., 2017[Hua, G., Davidson, K., Cordes, D. B., Du, J., Slavin, A. M. Z. & Woollins, J. D. (2017). Molecules, 22, 1687-1700.]). For structures of acyclic bis­phosphono­thioyl disulfanes see: FATTEA, FATTIE, FATVEC (Gray et al., 2004[Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). New J. Chem. 28, 1383-1389.]), YESDIY (Łopusiński et al., 1991[Łopusiński, A., Łuczak, L., Michalski, J., Kozioł, A. E. & Gdaniec, M. (1991). Chem. Commun. pp. 889-890.]), SIZHUF (Przychodzeń & Chojnacki, 2008[Przychodzeń, W. & Chojnacki, J. (2008). Heteroat. Chem. 19, 271-282.]) and WAYMEO (Knopik et al., 1993[Knopik, P., Łuczak, L., Potrzebowski, M. J., Michalski, J., Błaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749-2757.]).

5. Synthesis and crystallization

Eight- and ten-membered cyclic bis­anisyl­phosphono­thioyl disulfanes 1 and 2 were prepared using previously reported procedure (Przychodzeń, 2004[Przychodzeń, W. (2004). Phosphorus Sulfur Silicon, 179, 1621-1633.]). Compound 1 was fully spectroscopically characterized in that paper. Disulfane 2 is quite new, so all available spectroscopic data are given below. Both 1 and 2 gave good quality colourless crystals after crystallization from ethyl acetate–cyclo­hexane (1:2 v/v) solvent system.

2,5-Bis(4-meth­oxy­phen­yl)-1,6,3,4,2,5-dioxadi­thiadi­phos­pho­cane 2,5-di­thione, 1

M.p. 441-443 K.

2,5-Bis(4-meth­oxy­phen­yl)-1,6,3,4,2,5-dioxadi­thia­diphos­phecane 2,5-di­thione, 2

Yield: 65%, m.p. 415–417 K.

1H NMR (CDCl3): 2.20 (m, 2H, OCH2CH2), 2.25 (m, 2H, OCH2CH2), 3.89 (s, 6H, OCH3), 4.37 (dddd, 3JHH = 11.6 Hz, 2JHH = 10.4 Hz, 3JHP = 5.4 Hz, 3JHH = 2.2 Hz, 2H, OCHAHB), 4.89 (ddt, 2JHH = 10.4 Hz, 3JHP = 9.3 Hz, 3JHH = 3.5 Hz, 2H, OCHAHB), 7.01 (dd, 3JHH = 8.8 Hz, 4JHP = 3.9 Hz, 4H, Hmeta), 7.87 (dd, 3JHP = 14.2 Hz, 3JHH = 8.8 Hz, 4H, Hortho).

13C NMR: 27.21 (d, J = 6.9 Hz), 55.46 (s), 67.08 (d, J = 6.3 Hz), 114.03 (d, J = 17.5 Hz), 125.41 (d, J = 134 Hz), 132.89 (d, J = 14.5 Hz), 163.09 (s).

31P{1H} NMR (CDCl3): 89.19 (3JPP = 4 Hz)

MS calculated for C18H22O4P2S4: 492.0. Found: 492.9 [M+H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Structure 1 was refined as an inversion twin with contribution of the second domain equal to 0.45 (17). This explains the ambiguous Flack parameter and is not surprising since we started from achiral substrates. Structure 2 was refined as a two-component rotational twin with twin law: {[\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 1} and BASF = 0.767 (3). Relatively high residual electron-density peaks in 2 (Q1–Q3 ca 2e Å3), which are close to sulfur atoms (0.58 Å from S4, 0.49 Å from S2, 0.49 Å from S1), may stem from conformational flexibility of the ring. Note: the structure of 1 was determined at room temperature (due to a failure of our CryoStream unit) not at 120 K as for 2 but we believe it did not influence the qualitative conclusions drawn from the results.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C16H18O4P2S4 C18H22O4P2S4
Mr 464.48 492.53
Crystal system, space group Tetragonal, P43212 Monoclinic, P21/c
Temperature (K) 296 120
a, b, c (Å) 7.2415 (3), 7.2415 (3), 39.516 (2) 9.4262 (6), 13.3761 (8), 17.7998 (13)
α, β, γ (°) 90, 90, 90 90, 90.068 (7), 90
V3) 2072.2 (2) 2244.3 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.63 0.59
Crystal size (mm) 0.44 × 0.42 × 0.03 0.21 × 0.20 × 0.14
 
Data collection
Diffractometer Oxford Diffraction KM-4 CCD Oxford Diffraction KM-4 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.689, 0.98 0.893, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 14211, 2019, 1839 9496, 4047, 3309
Rint 0.036 0.051
(sin θ/λ)max−1) 0.617 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.09 0.082, 0.241, 1.05
No. of reflections 2019 4047
No. of parameters 120 256
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.22 2.27, −0.84
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.45 (17)
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008). Software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010) for (1); WinGX (Farrugia, 2012) for (2).

2,5-Bis(4-methoxyphenyl)-1,6,3,4,2λ5,5λ5-dioxadithiadiphosphocane-2,5-dithione (1) top
Crystal data top
C16H18O4P2S4Dx = 1.489 Mg m3
Mr = 464.48Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 6759 reflections
Hall symbol: P 4nw 2abwθ = 2.1–32.4°
a = 7.2415 (3) ŵ = 0.63 mm1
c = 39.516 (2) ÅT = 296 K
V = 2072.2 (2) Å3Plate, colourless
Z = 40.44 × 0.42 × 0.03 mm
F(000) = 960
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
1839 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.036
ω scans, 0.40 deg widthθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 88
Tmin = 0.689, Tmax = 0.98k = 88
14211 measured reflectionsl = 4838
2019 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.5163P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2019 reflectionsΔρmax = 0.33 e Å3
120 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.45 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.93887 (12)0.21832 (13)0.04117 (2)0.0424 (2)
S10.84270 (13)0.04364 (17)0.00256 (2)0.0584 (3)
S20.79007 (17)0.43697 (17)0.03709 (3)0.0715 (4)
O11.1556 (3)0.2344 (3)0.03669 (5)0.0424 (6)
O20.8974 (4)0.1523 (4)0.17469 (6)0.0552 (7)
C11.2424 (5)0.3553 (5)0.01202 (8)0.0450 (8)
H1A1.32090.44390.02350.054*
H1B1.14850.42280.00040.054*
C100.9277 (5)0.1007 (5)0.08087 (8)0.0412 (7)
C111.0238 (5)0.0610 (6)0.08670 (9)0.0576 (10)
H111.09490.11130.06940.069*
C121.0170 (6)0.1496 (6)0.11749 (9)0.0584 (10)
H121.0820.25890.12070.07*
C130.9144 (5)0.0768 (5)0.14352 (7)0.0434 (8)
C140.8206 (6)0.0864 (6)0.13813 (9)0.0555 (10)
H140.75290.13840.15570.067*
C150.8252 (6)0.1736 (5)0.10720 (9)0.0526 (9)
H150.7590.28230.1040.063*
C161.0028 (6)0.3130 (6)0.18232 (11)0.0672 (12)
H16A0.96130.41380.16850.101*
H16B0.98710.34420.20580.101*
H16C1.13090.28940.17790.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0373 (4)0.0559 (5)0.0340 (4)0.0025 (4)0.0018 (3)0.0025 (4)
S10.0423 (5)0.0932 (8)0.0396 (5)0.0164 (5)0.0034 (4)0.0029 (5)
S20.0711 (7)0.0755 (7)0.0678 (7)0.0285 (6)0.0106 (5)0.0156 (6)
O10.0403 (12)0.0552 (14)0.0318 (11)0.0057 (11)0.0003 (9)0.0010 (10)
O20.0598 (16)0.0694 (17)0.0363 (13)0.0070 (13)0.0086 (11)0.0069 (11)
C10.054 (2)0.0427 (18)0.0381 (17)0.0144 (16)0.0004 (15)0.0036 (14)
C100.0358 (16)0.054 (2)0.0336 (15)0.0004 (15)0.0034 (14)0.0006 (14)
C110.056 (2)0.076 (3)0.0400 (18)0.026 (2)0.0145 (16)0.0035 (18)
C120.062 (2)0.069 (2)0.0443 (19)0.0260 (19)0.0073 (17)0.0058 (17)
C130.0363 (18)0.061 (2)0.0329 (15)0.0035 (15)0.0030 (13)0.0010 (15)
C140.066 (3)0.061 (2)0.0402 (18)0.0157 (19)0.0169 (16)0.0040 (17)
C150.065 (3)0.050 (2)0.0424 (19)0.0145 (18)0.0131 (17)0.0021 (16)
C160.073 (3)0.078 (3)0.051 (2)0.011 (2)0.0064 (19)0.016 (2)
Geometric parameters (Å, º) top
P1—O11.584 (2)C10—C151.383 (5)
P1—C101.787 (3)C11—C121.376 (5)
P1—S21.9220 (14)C11—H110.93
P1—S12.1006 (13)C12—C131.374 (5)
S1—S1i2.068 (2)C12—H120.93
O1—C11.453 (4)C13—C141.380 (5)
O2—C131.353 (4)C14—C151.376 (5)
O2—C161.424 (5)C14—H140.93
C1—C1i1.496 (7)C15—H150.93
C1—H1A0.97C16—H16A0.96
C1—H1B0.97C16—H16B0.96
C10—C111.382 (5)C16—H16C0.96
O1—P1—C10100.26 (14)C10—C11—H11119.2
O1—P1—S2119.05 (11)C13—C12—C11120.2 (4)
C10—P1—S2116.15 (13)C13—C12—H12119.9
O1—P1—S1106.97 (9)C11—C12—H12119.9
C10—P1—S1109.61 (12)O2—C13—C12125.1 (3)
S2—P1—S1104.44 (6)O2—C13—C14116.2 (3)
S1i—S1—P1105.17 (6)C12—C13—C14118.6 (3)
C1—O1—P1123.2 (2)C15—C14—C13121.2 (3)
C13—O2—C16118.3 (3)C15—C14—H14119.4
O1—C1—C1i109.5 (3)C13—C14—H14119.4
O1—C1—H1A109.8C14—C15—C10120.4 (3)
C1i—C1—H1A109.8C14—C15—H15119.8
O1—C1—H1B109.8C10—C15—H15119.8
C1i—C1—H1B109.8O2—C16—H16A109.5
H1A—C1—H1B108.2O2—C16—H16B109.5
C11—C10—C15117.9 (3)H16A—C16—H16B109.5
C11—C10—P1121.8 (3)O2—C16—H16C109.5
C15—C10—P1120.2 (3)H16A—C16—H16C109.5
C12—C11—C10121.6 (3)H16B—C16—H16C109.5
C12—C11—H11119.2
C10—P1—O1—C1165.8 (2)P1—C10—C11—C12179.0 (3)
S2—P1—O1—C138.0 (3)C10—C11—C12—C130.6 (7)
S1—P1—O1—C179.8 (2)C16—O2—C13—C124.4 (6)
P1—O1—C1—C1i119.6 (3)C16—O2—C13—C14175.3 (4)
O1—P1—C10—C1152.2 (3)C11—C12—C13—O2179.8 (4)
S2—P1—C10—C11178.1 (3)C11—C12—C13—C140.5 (6)
S1—P1—C10—C1160.1 (3)O2—C13—C14—C15178.8 (4)
O1—P1—C10—C15125.9 (3)C12—C13—C14—C151.5 (6)
S2—P1—C10—C153.8 (4)C13—C14—C15—C101.2 (7)
S1—P1—C10—C15121.9 (3)C11—C10—C15—C140.1 (6)
C15—C10—C11—C120.9 (6)P1—C10—C15—C14178.1 (3)
Symmetry code: (i) y+1, x1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.972.603.4843 (2)151
C14—H14···O1iii0.932.553.4548 (2)163
Symmetry codes: (ii) x+1/2, y+1/2, z+1/4; (iii) x1/2, y+1/2, z+1/4.
2,5-Bis(4-methoxyphenyl)-1,6,3,4,2λ5,5λ5-dioxadithiadiphosphecane-2,5-dithione (2) top
Crystal data top
C18H22O4P2S4F(000) = 1024
Mr = 492.53Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5521 reflections
a = 9.4262 (6) Åθ = 1.9–28.8°
b = 13.3761 (8) ŵ = 0.59 mm1
c = 17.7998 (13) ÅT = 120 K
β = 90.068 (7)°Prism, colourless
V = 2244.3 (3) Å30.21 × 0.20 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
4047 independent reflections
Graphite monochromator3309 reflections with I > 2σ(I)
Detector resolution: 8.19 pixels mm-1Rint = 0.051
ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
h = 611
Tmin = 0.893, Tmax = 0.929k = 1316
9496 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1828P)2 + 0.8642P]
where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 2.27 e Å3
0 restraintsΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.34560 (19)0.44281 (13)0.17369 (10)0.0294 (4)
P20.74857 (19)0.25294 (12)0.13780 (10)0.0288 (4)
S10.40975 (19)0.31382 (12)0.11377 (10)0.0318 (4)
S20.5483 (2)0.24408 (12)0.18767 (10)0.0325 (4)
S30.1939 (2)0.49814 (14)0.11372 (11)0.0384 (5)
S40.8724 (2)0.19798 (14)0.21394 (12)0.0413 (5)
O10.4806 (6)0.5097 (3)0.1892 (3)0.0342 (11)
O20.7721 (6)0.3641 (3)0.1101 (3)0.0348 (11)
O30.2227 (5)0.2847 (4)0.4774 (3)0.0344 (11)
O40.7677 (6)0.0419 (4)0.1545 (3)0.0377 (12)
C10.5242 (8)0.5920 (5)0.1389 (4)0.0356 (16)
H1A0.56180.64770.16960.043*
H1B0.43990.61690.11140.043*
C20.6350 (8)0.5604 (5)0.0833 (4)0.0357 (16)
H2A0.64290.6130.04440.043*
H2B0.60190.49870.05810.043*
C30.7811 (9)0.5412 (5)0.1152 (5)0.0392 (17)
H3A0.80830.59910.14670.047*
H3B0.84930.53760.0730.047*
C40.7962 (8)0.4456 (5)0.1626 (4)0.0335 (15)
H4A0.89230.4410.18490.04*
H4B0.72520.44430.20350.04*
C100.3054 (7)0.3994 (5)0.2668 (4)0.0303 (15)
C110.4091 (7)0.3973 (5)0.3230 (4)0.0288 (14)
H110.5010.42330.31320.035*
C120.3784 (7)0.3576 (5)0.3929 (4)0.0311 (15)
H120.44940.35490.43070.037*
C130.2422 (8)0.3216 (5)0.4072 (4)0.0302 (15)
C140.1390 (8)0.3237 (5)0.3512 (4)0.0343 (16)
H140.04650.29850.36070.041*
C150.1728 (8)0.3631 (5)0.2814 (4)0.0341 (15)
H150.10260.36490.24310.041*
C160.0843 (8)0.2559 (5)0.4988 (5)0.0377 (17)
H16A0.02020.31330.49420.057*
H16B0.08540.23270.55110.057*
H16C0.05130.20170.46610.057*
C200.7453 (7)0.1893 (5)0.0491 (4)0.0291 (14)
C210.7321 (8)0.2409 (5)0.0182 (4)0.0302 (15)
H210.71730.31120.0180.036*
C220.7406 (8)0.1894 (5)0.0860 (4)0.0320 (15)
H220.73330.22420.13230.038*
C230.7602 (7)0.0850 (5)0.0852 (4)0.0302 (14)
C240.7703 (9)0.0347 (5)0.0185 (4)0.0372 (17)
H240.78190.03590.01830.045*
C250.7636 (9)0.0867 (5)0.0488 (4)0.0368 (16)
H250.77160.05170.09510.044*
C260.7930 (13)0.0639 (6)0.1555 (5)0.058 (3)
H26A0.87890.07890.12660.087*
H26B0.80550.08630.20750.087*
H26C0.71190.09860.13310.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0321 (9)0.0271 (9)0.0289 (9)0.0023 (7)0.0031 (7)0.0019 (7)
P20.0358 (9)0.0216 (8)0.0292 (10)0.0003 (7)0.0061 (8)0.0005 (6)
S10.0380 (9)0.0291 (8)0.0285 (9)0.0009 (7)0.0034 (8)0.0020 (7)
S20.0407 (9)0.0271 (8)0.0299 (9)0.0032 (7)0.0086 (8)0.0039 (7)
S30.0399 (9)0.0405 (10)0.0348 (10)0.0079 (7)0.0008 (8)0.0061 (8)
S40.0486 (11)0.0347 (10)0.0404 (11)0.0097 (8)0.0055 (9)0.0018 (8)
O10.047 (3)0.025 (2)0.030 (3)0.001 (2)0.007 (2)0.005 (2)
O20.051 (3)0.021 (2)0.033 (3)0.005 (2)0.005 (2)0.002 (2)
O30.040 (3)0.031 (2)0.032 (3)0.004 (2)0.008 (2)0.007 (2)
O40.051 (3)0.030 (3)0.032 (3)0.008 (2)0.000 (2)0.003 (2)
C10.043 (4)0.021 (3)0.043 (4)0.001 (3)0.010 (3)0.008 (3)
C20.047 (4)0.026 (3)0.034 (4)0.007 (3)0.002 (3)0.006 (3)
C30.052 (4)0.023 (3)0.042 (4)0.007 (3)0.001 (4)0.000 (3)
C40.040 (4)0.025 (3)0.035 (4)0.001 (3)0.001 (3)0.002 (3)
C100.036 (3)0.022 (3)0.032 (4)0.006 (3)0.003 (3)0.001 (3)
C110.025 (3)0.027 (3)0.035 (4)0.003 (2)0.008 (3)0.000 (3)
C120.033 (4)0.029 (3)0.031 (4)0.003 (3)0.001 (3)0.003 (3)
C130.040 (4)0.020 (3)0.030 (4)0.008 (3)0.007 (3)0.003 (3)
C140.038 (4)0.027 (3)0.038 (4)0.004 (3)0.005 (3)0.004 (3)
C150.034 (4)0.037 (4)0.032 (4)0.003 (3)0.002 (3)0.001 (3)
C160.042 (4)0.033 (4)0.038 (4)0.006 (3)0.010 (3)0.001 (3)
C200.030 (3)0.026 (3)0.031 (4)0.002 (3)0.009 (3)0.002 (3)
C210.037 (4)0.024 (3)0.030 (4)0.001 (3)0.001 (3)0.000 (3)
C220.035 (4)0.028 (3)0.033 (4)0.000 (3)0.001 (3)0.001 (3)
C230.028 (3)0.029 (3)0.034 (4)0.003 (3)0.003 (3)0.005 (3)
C240.057 (5)0.020 (3)0.035 (4)0.005 (3)0.009 (4)0.003 (3)
C250.051 (4)0.029 (4)0.031 (4)0.003 (3)0.009 (3)0.004 (3)
C260.106 (8)0.030 (4)0.037 (5)0.024 (5)0.000 (5)0.010 (3)
Geometric parameters (Å, º) top
P1—O11.580 (5)C10—C151.366 (10)
P1—C101.798 (7)C10—C111.398 (9)
P1—S31.931 (3)C11—C121.383 (10)
P1—S12.117 (2)C11—H110.95
P2—O21.582 (5)C12—C131.395 (10)
P2—C201.794 (7)C12—H120.95
P2—S41.933 (3)C13—C141.393 (10)
P2—S22.091 (3)C14—C151.387 (10)
S1—S22.074 (3)C14—H140.95
O1—C11.477 (8)C15—H150.95
O2—C41.453 (8)C16—H16A0.98
O3—C131.357 (8)C16—H16B0.98
O3—C161.413 (9)C16—H16C0.98
O4—C231.364 (8)C20—C251.383 (10)
O4—C261.435 (9)C20—C211.389 (10)
C1—C21.501 (11)C21—C221.391 (10)
C1—H1A0.99C21—H210.95
C1—H1B0.99C22—C231.408 (10)
C2—C31.511 (11)C22—H220.95
C2—H2A0.99C23—C241.368 (10)
C2—H2B0.99C24—C251.388 (10)
C3—C41.539 (10)C24—H240.95
C3—H3A0.99C25—H250.95
C3—H3B0.99C26—H26A0.98
C4—H4A0.99C26—H26B0.98
C4—H4B0.99C26—H26C0.98
O1—P1—C10101.1 (3)C12—C11—C10120.3 (6)
O1—P1—S3118.4 (2)C12—C11—H11119.9
C10—P1—S3118.5 (2)C10—C11—H11119.9
O1—P1—S1108.6 (2)C11—C12—C13119.4 (6)
C10—P1—S1105.2 (2)C11—C12—H12120.3
S3—P1—S1104.22 (11)C13—C12—H12120.3
O2—P2—C20100.0 (3)O3—C13—C14124.9 (7)
O2—P2—S4119.4 (2)O3—C13—C12114.8 (6)
C20—P2—S4116.5 (2)C14—C13—C12120.3 (7)
O2—P2—S2108.2 (2)C15—C14—C13119.2 (7)
C20—P2—S2109.4 (2)C15—C14—H14120.4
S4—P2—S2103.04 (11)C13—C14—H14120.4
S2—S1—P1103.13 (10)C10—C15—C14121.1 (7)
S1—S2—P2105.87 (10)C10—C15—H15119.5
C1—O1—P1122.7 (5)C14—C15—H15119.5
C4—O2—P2121.7 (4)O3—C16—H16A109.5
C13—O3—C16118.3 (6)O3—C16—H16B109.5
C23—O4—C26115.8 (6)H16A—C16—H16B109.5
O1—C1—C2112.6 (6)O3—C16—H16C109.5
O1—C1—H1A109.1H16A—C16—H16C109.5
C2—C1—H1A109.1H16B—C16—H16C109.5
O1—C1—H1B109.1C25—C20—C21120.1 (7)
C2—C1—H1B109.1C25—C20—P2118.2 (6)
H1A—C1—H1B107.8C21—C20—P2121.7 (5)
C1—C2—C3115.8 (6)C20—C21—C22119.8 (6)
C1—C2—H2A108.3C20—C21—H21120.1
C3—C2—H2A108.3C22—C21—H21120.1
C1—C2—H2B108.3C21—C22—C23119.4 (6)
C3—C2—H2B108.3C21—C22—H22120.3
H2A—C2—H2B107.4C23—C22—H22120.3
C2—C3—C4115.5 (6)O4—C23—C24125.0 (6)
C2—C3—H3A108.4O4—C23—C22114.6 (6)
C4—C3—H3A108.4C24—C23—C22120.3 (6)
C2—C3—H3B108.4C23—C24—C25120.0 (6)
C4—C3—H3B108.4C23—C24—H24120
H3A—C3—H3B107.5C25—C24—H24120
O2—C4—C3104.8 (6)C20—C25—C24120.4 (7)
O2—C4—H4A110.8C20—C25—H25119.8
C3—C4—H4A110.8C24—C25—H25119.8
O2—C4—H4B110.8O4—C26—H26A109.5
C3—C4—H4B110.8O4—C26—H26B109.5
H4A—C4—H4B108.9H26A—C26—H26B109.5
C15—C10—C11119.8 (7)O4—C26—H26C109.5
C15—C10—P1118.9 (5)H26A—C26—H26C109.5
C11—C10—P1121.2 (5)H26B—C26—H26C109.5
C10—P1—O1—C1156.0 (5)O3—C13—C14—C15179.6 (6)
S3—P1—O1—C124.8 (6)C12—C13—C14—C150.7 (10)
S1—P1—O1—C193.6 (5)C11—C10—C15—C140.2 (10)
C20—P2—O2—C4173.9 (5)P1—C10—C15—C14176.4 (5)
S4—P2—O2—C445.6 (6)C13—C14—C15—C100.2 (11)
S2—P2—O2—C471.7 (5)O2—P2—C20—C25163.4 (6)
P1—O1—C1—C295.9 (7)S4—P2—C20—C2533.1 (7)
O1—C1—C2—C371.3 (8)S2—P2—C20—C2583.2 (6)
C1—C2—C3—C472.0 (9)O2—P2—C20—C2113.4 (6)
P2—O2—C4—C3168.1 (5)S4—P2—C20—C21143.7 (5)
C2—C3—C4—O265.1 (8)S2—P2—C20—C21100.0 (6)
O1—P1—C10—C15161.1 (5)C25—C20—C21—C221.5 (11)
S3—P1—C10—C1529.9 (6)P2—C20—C21—C22175.3 (6)
S1—P1—C10—C1586.0 (6)C20—C21—C22—C231.1 (11)
O1—P1—C10—C1122.4 (6)C26—O4—C23—C242.2 (11)
S3—P1—C10—C11153.5 (5)C26—O4—C23—C22177.7 (8)
S1—P1—C10—C1190.6 (5)C21—C22—C23—O4179.7 (6)
C15—C10—C11—C120.8 (10)C21—C22—C23—C240.2 (11)
P1—C10—C11—C12175.8 (5)O4—C23—C24—C25178.9 (7)
C10—C11—C12—C131.3 (10)C22—C23—C24—C251.0 (11)
C16—O3—C13—C147.2 (9)C21—C20—C25—C240.6 (12)
C16—O3—C13—C12173.8 (6)P2—C20—C25—C24176.2 (6)
C11—C12—C13—O3179.7 (6)C23—C24—C25—C200.6 (12)
C11—C12—C13—C141.3 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···S30.992.813.3883 (2)118
C4—H4B···O10.992.483.1308 (2)123
C4—H4B···O4i0.992.563.2708 (2)128
C11—H11···O4i0.952.623.4951 (3)154
C24—H24···O3ii0.952.513.4240 (3)162
C16—H16A···Cgiii0.982.623.454 (8)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y+1/2, z+1/2.
 

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Conflict of inter­ests: none.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForeman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653–3657.  CSD CrossRef Web of Science Google Scholar
First citationGray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). New J. Chem. 28, 1383–1389.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHua, G., Davidson, K., Cordes, D. B., Du, J., Slavin, A. M. Z. & Woollins, J. D. (2017). Molecules, 22, 1687–1700.  Google Scholar
First citationJesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929–1958.  Web of Science CrossRef Google Scholar
First citationKnopik, P., Łuczak, L., Potrzebowski, M. J., Michalski, J., Błaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749–2757.  CSD CrossRef Google Scholar
First citationŁopusiński, A., Łuczak, L., Michalski, J., Kozioł, A. E. & Gdaniec, M. (1991). Chem. Commun. pp. 889–890.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPillay, M. N., van der Walt, H., Staples, R. J. & van Zyl, W. E. (2015). J. Organomet. Chem. 794, 33–39.  CSD CrossRef CAS Google Scholar
First citationPrzychodzeń, W. (2004). Phosphorus Sulfur Silicon, 179, 1621–1633.  Google Scholar
First citationPrzychodzeń, W. & Chojnacki, J. (2008). Heteroat. Chem. 19, 271–282.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiberg, K. B. (2003). J. Org. Chem. 68, 9322–9329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZyl, W. E. van & Woollins, J. D. (2013). Coord. Chem. Rev. 257, 718–731.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds