research communications
Crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes and comparison with their P-ferrocenyl analogues
aDepartment of Organic Chemistry, Gdańsk University of Technology, G.Narutowicza 11/12, 80233-PL, Gdańsk, Poland, and bDepartment of Inorganic Chemistry, Gdańsk University of Technology, G.Narutowicza 11/12, 80233-PL, Gdańsk, Poland
*Correspondence e-mail: jaroslaw.chojnacki@pg.edu.pl
Two new crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes, namely 2,5-bis(4-methoxyphenyl)-1,6,3,4,2λ5,5λ5-dioxadithiadiphosphocane-2,5-dithione, C16H18O4P2S4, and 2,5-bis(4-methoxyphenyl)-1,6,3,4,2λ5,5λ5-dioxadithiadiphosphecane-2,5-dithione, C18H22O4P2S4, have been determined and compared to structures of the ferrocenyl analogues. The eight-membered rings have similar conformations (TBC) but the ten-membered macrocycles are differently puckered. Structural parameters of the relevant SPSSPS motif have been analysed and are discussed in detail. Compound 1 was refined as an and 2 was refined as a two-component rotational twin.
1. Chemical context
The most widely used sulfur-transfer agents for thionation of μ-S)S]2 and the 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimer [FcP(μ-S)S]2, i.e. Lawesson reagent LR (Jesberger et al., 2003) and ferrocenyl Lawesson reagent fLR (Foreman et al., 1996). However, thiophosphine oxides (AnPSO or FcPSO) separating as cyclic trimers during thionation reactions are usually unwanted side-products. On the other hand, the corresponding alkoxyphosphinodithioic acids, i.e. An(RO)P(S)SH and Fc(RO)P(S)SH, obtained in a simple reaction between LR or fLR and are of considerable interest because they form a plethora of structurally interesting chelate complexes with metal ions (van Zyl & Woollins, 2013).
are the four-membered 2,4-dianisyl-1,3-dithiadiphosphetane disulfide dimer [AnP(The reactions between Lawesson's reagent and diols/diphenols have been successfully involved in the preparation of bis(anisylphosphonodithioic) acid derivatives and among them the unique eight-, nine- and ten-membered cyclic bisanisylphosphonothioyl disulfanes (Przychodzeń, 2004). A high-yielding formation of these medium-sized cyclic disulfanes upon oxidation of bis(anisylphosphonodithtioic) acid salts by iodine proceeding without oligomeric by-products may be attributed to their fixed structure, containing the most preferred a zigzag motif of the SPSSPS unit. Slightly modified procedures with respect to the original method have recently been applied for the synthesis of related cyclic bis(ferrocenylphosphonothioyl)disulfanes, e.g. eight-membered 1a (Pillay et al., 2015) and ten-membered 2a (Hua et al., 2017) and their crystal structures have been determined. Here we report crystal structures compounds 1 and 2, containing anisyl groups instead of the ferrocenyl moiety.
2. Structural commentary
Views of molecular structures and atom-labeling scheme for 1 and 2 are given in Figs. 1 and 2, respectively. Compound 1 crystallizes in the P43212 with a half-molecule in the It follows that the molecule obeys symmetry described by Schoenflies symbol C2 (or symbol 2 in international notation). The related ferrocenyl compound 1a crystallizes in C2/c with non-typical three and half independent molecules in the (Z = 28), which complicates comparisons.
Compound 2 forms a monoclinic crystalline phase obeying P21/c space-group symmetry with one molecule in the and Z = 4. The related ferrocenyl structure 2a crystallizes in P with one molecule in the asymmetric unit.
The anisyl groups as well as the ferrocenyl groups on the two phosphorus atoms are positioned in a trans arrangement, i.e. above and below the macrocycle ring plane for all compounds 1–2a, which is also typical for all open-chain bisphosphorothioyl disulfanes studied previously (Gray et al., 2004).
The S—S bond lengths have values of 2.068 (2) Å for 1; 2.0697 (10), 2.0704 (10), 2.0685 (10), 2.0711 (15) Å for 1a; 2.074 (3) Å for 2 and 2.0788 (9) Å for 2a. They are longer than the typical S—S bond lengths for known diorganyl disulfanes RSSR [2.05 (3) Å]. The observed S—S bond elongation in 1–2a may be correlated with the PSSP torsion angles (Knopik et al., 1993). As expected, exocyclic P=S bond lengths (ca 1.92 Å) are shorter than the endocyclic P—S bonds (ca 2.10 Å).
All phosphorus atoms in 1–2a adopt a distorted tetrahedral geometry, where the C—P=S angles deviated the most (116.1–118.5°) from the ideal tetrahedral angle. This is obviously due to the steric effects of the anisyl and ferrocenyl substituents. On the other hand, it is worthy to note that the O—P–S bond angles in 1–2a (107–108°) are not distorted, probably due to minimal conformational strain present in those medium-sized heterocycles. Moreover, both the P=S and aromatic anisyl groups in 1 are almost perfectly coplanar (unlike P=S and the cyclopentadienyl ring in 1a), which provides energetically favorable conjugation [torsion angle S2—P1—C10—C15 = −3.8 (4)° in 1 vs 35.75 (3)° for the equivalent angle in a selected representative molecule with Fe7 in 1a]. The other related independent torsion angles in 1a are −31. (3), −33.9 (3), −27.0 (3), −28.7 (3), 34.8 (3), 35.7 (3)°, for Fe1–Fe6, respectively.
It is well recognised that PSSP torsion is a characteristic feature of all disulfanes as a class of organic compounds. The structure of 1 is the most symmetric with the lowest PSSP torsion [−93.68 (8)°] and shows only a moderate deviation from a right angle. The PSSP torsion angles in 1a [−101.19 (4), −100.06 (4), −101.47 (4) and 99.89 (4)°] are 6–8° wider than in 1. Notably, ten-membered disulfanes have even wider PSSP torsion angles and the difference between them is smaller, −112.89 (11) and 114.9 (4)°, for 2 and 2a, respectively.
Only non-classical hydrogen-bonding interactions of the type C—H⋯X (X = O or S) can be found in the structures of 1 and 2 (Tables 1 and 2).
|
The transannular P⋯P distances are very similar within the same ring size and increase, from 4.3331 (17) Å in 1 and 4.2625 (9), 4.2670 (9), 4.2652 (9) or 4.261 (1) Å (for different independent molecules in 1a) for eight-membered rings, to 4.614 (2) in 2 and 4.604 (1) Å in 2a for the ten-membered rings.
The conformation of the eight-membered macrocycles in 1 and 1a was recognised by PLATON (Spek, 2009) as being closest to the TBC form (twist–boat chair; Evans & Boeyens, 1989; Wiberg, 2003), which is consistent with C2 Fig. 3 shows the overlay of the two structures based on the best fit of the PSSP fragment. The conformation of 2 was not assigned to any border type by PLATON, but Fig. 4 shows the puckering in 2 and 2a is distinctively different.
It is probably important to note that the intramolecular C4—H4B⋯O1 hydrogen bond (Table 2) stabilizes the ten-membered ring of 2.
3. Supramolecular features
The strongest intermolecular hydrogen-bonding interaction in 1 is between the anisyl ortho-hydrogen and macrocyclic O1 atoms and links the molecules into a diamondoid network. There are no ring-stacking interactions since the shortest centroid–centroid distance is 5.0965 (3) Å. The anisyl substituents may have inhibited this kind of interaction.
Intermolecular interactions in 2 are mainly based on the anisyl methoxyl CH3O oxygen atoms O3 and O4 and the P=S sulfur atom S3 as acceptors. Hydrogen-bond donors are the anisyl ortho-hydrogen atoms or methylene hydrogen atoms. Moreover, some C—H..π. interactions may play some role in the system, e.g. C16—H16A⋯ring(C20–C25), see Fig. 5. Again, the stacking interactions are weak since the closest intercentroid distance is equal to 4.9213 (4) Å.
4. Database survey
Bisphosphonothioyl disulfanes represent a rather rare class of compounds (CSD Version 5.28, updated to Nov. 2016; Groom et al., 2016). Only three structures of cyclic bisphosphonothioyl disulfanes can be found in the database, HUGXAK, HUXEO and HUGXIS (ferrocenyl derivatives; Pillay et al., 2015) and four more will be available there soon (Hua et al., 2017). For structures of acyclic bisphosphonothioyl disulfanes see: FATTEA, FATTIE, FATVEC (Gray et al., 2004), YESDIY (Łopusiński et al., 1991), SIZHUF (Przychodzeń & Chojnacki, 2008) and WAYMEO (Knopik et al., 1993).
5. Synthesis and crystallization
Eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes 1 and 2 were prepared using previously reported procedure (Przychodzeń, 2004). Compound 1 was fully spectroscopically characterized in that paper. Disulfane 2 is quite new, so all available spectroscopic data are given below. Both 1 and 2 gave good quality colourless crystals after crystallization from ethyl acetate–cyclohexane (1:2 v/v) solvent system.
2,5-Bis(4-methoxyphenyl)-1,6,3,4,2,5-dioxadithiadiphosphocane 2,5-dithione, 1
M.p. 441-443 K.
2,5-Bis(4-methoxyphenyl)-1,6,3,4,2,5-dioxadithiadiphosphecane 2,5-dithione, 2
Yield: 65%, m.p. 415–417 K.
1H NMR (CDCl3): 2.20 (m, 2H, OCH2CH2), 2.25 (m, 2H, OCH2CH2), 3.89 (s, 6H, OCH3), 4.37 (dddd, 3JHH = 11.6 Hz, 2JHH = 10.4 Hz, 3JHP = 5.4 Hz, 3JHH = 2.2 Hz, 2H, OCHAHB), 4.89 (ddt, 2JHH = 10.4 Hz, 3JHP = 9.3 Hz, 3JHH = 3.5 Hz, 2H, OCHAHB), 7.01 (dd, 3JHH = 8.8 Hz, 4JHP = 3.9 Hz, 4H, Hmeta), 7.87 (dd, 3JHP = 14.2 Hz, 3JHH = 8.8 Hz, 4H, Hortho).
13C NMR: 27.21 (d, J = 6.9 Hz), 55.46 (s), 67.08 (d, J = 6.3 Hz), 114.03 (d, J = 17.5 Hz), 125.41 (d, J = 134 Hz), 132.89 (d, J = 14.5 Hz), 163.09 (s).
31P{1H} NMR (CDCl3): 89.19 (3JPP = 4 Hz)
MS calculated for C18H22O4P2S4: 492.0. Found: 492.9 [M+H]+.
6. Refinement
Crystal data, data collection and structure . Structure 1 was refined as an with contribution of the second domain equal to 0.45 (17). This explains the ambiguous and is not surprising since we started from achiral substrates. Structure 2 was refined as a two-component rotational twin with { 0 0, 0 0, 0 0 1} and BASF = 0.767 (3). Relatively high residual electron-density peaks in 2 (Q1–Q3 ca 2e Å3), which are close to sulfur atoms (0.58 Å from S4, 0.49 Å from S2, 0.49 Å from S1), may stem from conformational flexibility of the ring. Note: the structure of 1 was determined at room temperature (due to a failure of our CryoStream unit) not at 120 K as for 2 but we believe it did not influence the qualitative conclusions drawn from the results.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018001068/zp2026sup1.cif
contains datablocks 2, global, 1. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018001068/zp20261sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018001068/zp20262sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001068/zp20261sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001068/zp20262sup5.cml
For both structures, data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008). Software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010) for (1); WinGX (Farrugia, 2012) for (2).C16H18O4P2S4 | Dx = 1.489 Mg m−3 |
Mr = 464.48 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43212 | Cell parameters from 6759 reflections |
Hall symbol: P 4nw 2abw | θ = 2.1–32.4° |
a = 7.2415 (3) Å | µ = 0.63 mm−1 |
c = 39.516 (2) Å | T = 296 K |
V = 2072.2 (2) Å3 | Plate, colourless |
Z = 4 | 0.44 × 0.42 × 0.03 mm |
F(000) = 960 |
Oxford Diffraction KM-4 CCD diffractometer | 1839 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.036 |
ω scans, 0.40 deg width | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −8→8 |
Tmin = 0.689, Tmax = 0.98 | k = −8→8 |
14211 measured reflections | l = −48→38 |
2019 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.5163P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2019 reflections | Δρmax = 0.33 e Å−3 |
120 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.45 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.93887 (12) | 0.21832 (13) | 0.04117 (2) | 0.0424 (2) | |
S1 | 0.84270 (13) | 0.04364 (17) | 0.00256 (2) | 0.0584 (3) | |
S2 | 0.79007 (17) | 0.43697 (17) | 0.03709 (3) | 0.0715 (4) | |
O1 | 1.1556 (3) | 0.2344 (3) | 0.03669 (5) | 0.0424 (6) | |
O2 | 0.8974 (4) | −0.1523 (4) | 0.17469 (6) | 0.0552 (7) | |
C1 | 1.2424 (5) | 0.3553 (5) | 0.01202 (8) | 0.0450 (8) | |
H1A | 1.3209 | 0.4439 | 0.0235 | 0.054* | |
H1B | 1.1485 | 0.4228 | −0.0004 | 0.054* | |
C10 | 0.9277 (5) | 0.1007 (5) | 0.08087 (8) | 0.0412 (7) | |
C11 | 1.0238 (5) | −0.0610 (6) | 0.08670 (9) | 0.0576 (10) | |
H11 | 1.0949 | −0.1113 | 0.0694 | 0.069* | |
C12 | 1.0170 (6) | −0.1496 (6) | 0.11749 (9) | 0.0584 (10) | |
H12 | 1.082 | −0.2589 | 0.1207 | 0.07* | |
C13 | 0.9144 (5) | −0.0768 (5) | 0.14352 (7) | 0.0434 (8) | |
C14 | 0.8206 (6) | 0.0864 (6) | 0.13813 (9) | 0.0555 (10) | |
H14 | 0.7529 | 0.1384 | 0.1557 | 0.067* | |
C15 | 0.8252 (6) | 0.1736 (5) | 0.10720 (9) | 0.0526 (9) | |
H15 | 0.759 | 0.2823 | 0.104 | 0.063* | |
C16 | 1.0028 (6) | −0.3130 (6) | 0.18232 (11) | 0.0672 (12) | |
H16A | 0.9613 | −0.4138 | 0.1685 | 0.101* | |
H16B | 0.9871 | −0.3442 | 0.2058 | 0.101* | |
H16C | 1.1309 | −0.2894 | 0.1779 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0373 (4) | 0.0559 (5) | 0.0340 (4) | 0.0025 (4) | 0.0018 (3) | 0.0025 (4) |
S1 | 0.0423 (5) | 0.0932 (8) | 0.0396 (5) | −0.0164 (5) | −0.0034 (4) | −0.0029 (5) |
S2 | 0.0711 (7) | 0.0755 (7) | 0.0678 (7) | 0.0285 (6) | 0.0106 (5) | 0.0156 (6) |
O1 | 0.0403 (12) | 0.0552 (14) | 0.0318 (11) | −0.0057 (11) | −0.0003 (9) | 0.0010 (10) |
O2 | 0.0598 (16) | 0.0694 (17) | 0.0363 (13) | 0.0070 (13) | 0.0086 (11) | 0.0069 (11) |
C1 | 0.054 (2) | 0.0427 (18) | 0.0381 (17) | −0.0144 (16) | 0.0004 (15) | −0.0036 (14) |
C10 | 0.0358 (16) | 0.054 (2) | 0.0336 (15) | 0.0004 (15) | 0.0034 (14) | 0.0006 (14) |
C11 | 0.056 (2) | 0.076 (3) | 0.0400 (18) | 0.026 (2) | 0.0145 (16) | 0.0035 (18) |
C12 | 0.062 (2) | 0.069 (2) | 0.0443 (19) | 0.0260 (19) | 0.0073 (17) | 0.0058 (17) |
C13 | 0.0363 (18) | 0.061 (2) | 0.0329 (15) | −0.0035 (15) | 0.0030 (13) | 0.0010 (15) |
C14 | 0.066 (3) | 0.061 (2) | 0.0402 (18) | 0.0157 (19) | 0.0169 (16) | −0.0040 (17) |
C15 | 0.065 (3) | 0.050 (2) | 0.0424 (19) | 0.0145 (18) | 0.0131 (17) | −0.0021 (16) |
C16 | 0.073 (3) | 0.078 (3) | 0.051 (2) | 0.011 (2) | 0.0064 (19) | 0.016 (2) |
P1—O1 | 1.584 (2) | C10—C15 | 1.383 (5) |
P1—C10 | 1.787 (3) | C11—C12 | 1.376 (5) |
P1—S2 | 1.9220 (14) | C11—H11 | 0.93 |
P1—S1 | 2.1006 (13) | C12—C13 | 1.374 (5) |
S1—S1i | 2.068 (2) | C12—H12 | 0.93 |
O1—C1 | 1.453 (4) | C13—C14 | 1.380 (5) |
O2—C13 | 1.353 (4) | C14—C15 | 1.376 (5) |
O2—C16 | 1.424 (5) | C14—H14 | 0.93 |
C1—C1i | 1.496 (7) | C15—H15 | 0.93 |
C1—H1A | 0.97 | C16—H16A | 0.96 |
C1—H1B | 0.97 | C16—H16B | 0.96 |
C10—C11 | 1.382 (5) | C16—H16C | 0.96 |
O1—P1—C10 | 100.26 (14) | C10—C11—H11 | 119.2 |
O1—P1—S2 | 119.05 (11) | C13—C12—C11 | 120.2 (4) |
C10—P1—S2 | 116.15 (13) | C13—C12—H12 | 119.9 |
O1—P1—S1 | 106.97 (9) | C11—C12—H12 | 119.9 |
C10—P1—S1 | 109.61 (12) | O2—C13—C12 | 125.1 (3) |
S2—P1—S1 | 104.44 (6) | O2—C13—C14 | 116.2 (3) |
S1i—S1—P1 | 105.17 (6) | C12—C13—C14 | 118.6 (3) |
C1—O1—P1 | 123.2 (2) | C15—C14—C13 | 121.2 (3) |
C13—O2—C16 | 118.3 (3) | C15—C14—H14 | 119.4 |
O1—C1—C1i | 109.5 (3) | C13—C14—H14 | 119.4 |
O1—C1—H1A | 109.8 | C14—C15—C10 | 120.4 (3) |
C1i—C1—H1A | 109.8 | C14—C15—H15 | 119.8 |
O1—C1—H1B | 109.8 | C10—C15—H15 | 119.8 |
C1i—C1—H1B | 109.8 | O2—C16—H16A | 109.5 |
H1A—C1—H1B | 108.2 | O2—C16—H16B | 109.5 |
C11—C10—C15 | 117.9 (3) | H16A—C16—H16B | 109.5 |
C11—C10—P1 | 121.8 (3) | O2—C16—H16C | 109.5 |
C15—C10—P1 | 120.2 (3) | H16A—C16—H16C | 109.5 |
C12—C11—C10 | 121.6 (3) | H16B—C16—H16C | 109.5 |
C12—C11—H11 | 119.2 | ||
C10—P1—O1—C1 | −165.8 (2) | P1—C10—C11—C12 | 179.0 (3) |
S2—P1—O1—C1 | −38.0 (3) | C10—C11—C12—C13 | −0.6 (7) |
S1—P1—O1—C1 | 79.8 (2) | C16—O2—C13—C12 | 4.4 (6) |
P1—O1—C1—C1i | −119.6 (3) | C16—O2—C13—C14 | −175.3 (4) |
O1—P1—C10—C11 | −52.2 (3) | C11—C12—C13—O2 | 179.8 (4) |
S2—P1—C10—C11 | 178.1 (3) | C11—C12—C13—C14 | −0.5 (6) |
S1—P1—C10—C11 | 60.1 (3) | O2—C13—C14—C15 | −178.8 (4) |
O1—P1—C10—C15 | 125.9 (3) | C12—C13—C14—C15 | 1.5 (6) |
S2—P1—C10—C15 | −3.8 (4) | C13—C14—C15—C10 | −1.2 (7) |
S1—P1—C10—C15 | −121.9 (3) | C11—C10—C15—C14 | 0.1 (6) |
C15—C10—C11—C12 | 0.9 (6) | P1—C10—C15—C14 | −178.1 (3) |
Symmetry code: (i) y+1, x−1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2ii | 0.97 | 2.60 | 3.4843 (2) | 151 |
C14—H14···O1iii | 0.93 | 2.55 | 3.4548 (2) | 163 |
Symmetry codes: (ii) x+1/2, −y+1/2, −z+1/4; (iii) x−1/2, −y+1/2, −z+1/4. |
C18H22O4P2S4 | F(000) = 1024 |
Mr = 492.53 | Dx = 1.458 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5521 reflections |
a = 9.4262 (6) Å | θ = 1.9–28.8° |
b = 13.3761 (8) Å | µ = 0.59 mm−1 |
c = 17.7998 (13) Å | T = 120 K |
β = 90.068 (7)° | Prism, colourless |
V = 2244.3 (3) Å3 | 0.21 × 0.20 × 0.14 mm |
Z = 4 |
Oxford Diffraction KM-4 CCD diffractometer | 4047 independent reflections |
Graphite monochromator | 3309 reflections with I > 2σ(I) |
Detector resolution: 8.19 pixels mm-1 | Rint = 0.051 |
ω scans | θmax = 25.5°, θmin = 1.9° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)] | h = −6→11 |
Tmin = 0.893, Tmax = 0.929 | k = −13→16 |
9496 measured reflections | l = −21→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.082 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.241 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1828P)2 + 0.8642P] where P = (Fo2 + 2Fc2)/3 |
4047 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 2.27 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.34560 (19) | 0.44281 (13) | 0.17369 (10) | 0.0294 (4) | |
P2 | 0.74857 (19) | 0.25294 (12) | 0.13780 (10) | 0.0288 (4) | |
S1 | 0.40975 (19) | 0.31382 (12) | 0.11377 (10) | 0.0318 (4) | |
S2 | 0.5483 (2) | 0.24408 (12) | 0.18767 (10) | 0.0325 (4) | |
S3 | 0.1939 (2) | 0.49814 (14) | 0.11372 (11) | 0.0384 (5) | |
S4 | 0.8724 (2) | 0.19798 (14) | 0.21394 (12) | 0.0413 (5) | |
O1 | 0.4806 (6) | 0.5097 (3) | 0.1892 (3) | 0.0342 (11) | |
O2 | 0.7721 (6) | 0.3641 (3) | 0.1101 (3) | 0.0348 (11) | |
O3 | 0.2227 (5) | 0.2847 (4) | 0.4774 (3) | 0.0344 (11) | |
O4 | 0.7677 (6) | 0.0419 (4) | −0.1545 (3) | 0.0377 (12) | |
C1 | 0.5242 (8) | 0.5920 (5) | 0.1389 (4) | 0.0356 (16) | |
H1A | 0.5618 | 0.6477 | 0.1696 | 0.043* | |
H1B | 0.4399 | 0.6169 | 0.1114 | 0.043* | |
C2 | 0.6350 (8) | 0.5604 (5) | 0.0833 (4) | 0.0357 (16) | |
H2A | 0.6429 | 0.613 | 0.0444 | 0.043* | |
H2B | 0.6019 | 0.4987 | 0.0581 | 0.043* | |
C3 | 0.7811 (9) | 0.5412 (5) | 0.1152 (5) | 0.0392 (17) | |
H3A | 0.8083 | 0.5991 | 0.1467 | 0.047* | |
H3B | 0.8493 | 0.5376 | 0.073 | 0.047* | |
C4 | 0.7962 (8) | 0.4456 (5) | 0.1626 (4) | 0.0335 (15) | |
H4A | 0.8923 | 0.441 | 0.1849 | 0.04* | |
H4B | 0.7252 | 0.4443 | 0.2035 | 0.04* | |
C10 | 0.3054 (7) | 0.3994 (5) | 0.2668 (4) | 0.0303 (15) | |
C11 | 0.4091 (7) | 0.3973 (5) | 0.3230 (4) | 0.0288 (14) | |
H11 | 0.501 | 0.4233 | 0.3132 | 0.035* | |
C12 | 0.3784 (7) | 0.3576 (5) | 0.3929 (4) | 0.0311 (15) | |
H12 | 0.4494 | 0.3549 | 0.4307 | 0.037* | |
C13 | 0.2422 (8) | 0.3216 (5) | 0.4072 (4) | 0.0302 (15) | |
C14 | 0.1390 (8) | 0.3237 (5) | 0.3512 (4) | 0.0343 (16) | |
H14 | 0.0465 | 0.2985 | 0.3607 | 0.041* | |
C15 | 0.1728 (8) | 0.3631 (5) | 0.2814 (4) | 0.0341 (15) | |
H15 | 0.1026 | 0.3649 | 0.2431 | 0.041* | |
C16 | 0.0843 (8) | 0.2559 (5) | 0.4988 (5) | 0.0377 (17) | |
H16A | 0.0202 | 0.3133 | 0.4942 | 0.057* | |
H16B | 0.0854 | 0.2327 | 0.5511 | 0.057* | |
H16C | 0.0513 | 0.2017 | 0.4661 | 0.057* | |
C20 | 0.7453 (7) | 0.1893 (5) | 0.0491 (4) | 0.0291 (14) | |
C21 | 0.7321 (8) | 0.2409 (5) | −0.0182 (4) | 0.0302 (15) | |
H21 | 0.7173 | 0.3112 | −0.018 | 0.036* | |
C22 | 0.7406 (8) | 0.1894 (5) | −0.0860 (4) | 0.0320 (15) | |
H22 | 0.7333 | 0.2242 | −0.1323 | 0.038* | |
C23 | 0.7602 (7) | 0.0850 (5) | −0.0852 (4) | 0.0302 (14) | |
C24 | 0.7703 (9) | 0.0347 (5) | −0.0185 (4) | 0.0372 (17) | |
H24 | 0.7819 | −0.0359 | −0.0183 | 0.045* | |
C25 | 0.7636 (9) | 0.0867 (5) | 0.0488 (4) | 0.0368 (16) | |
H25 | 0.7716 | 0.0517 | 0.0951 | 0.044* | |
C26 | 0.7930 (13) | −0.0639 (6) | −0.1555 (5) | 0.058 (3) | |
H26A | 0.8789 | −0.0789 | −0.1266 | 0.087* | |
H26B | 0.8055 | −0.0863 | −0.2075 | 0.087* | |
H26C | 0.7119 | −0.0986 | −0.1331 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0321 (9) | 0.0271 (9) | 0.0289 (9) | 0.0023 (7) | 0.0031 (7) | 0.0019 (7) |
P2 | 0.0358 (9) | 0.0216 (8) | 0.0292 (10) | 0.0003 (7) | 0.0061 (8) | −0.0005 (6) |
S1 | 0.0380 (9) | 0.0291 (8) | 0.0285 (9) | −0.0009 (7) | 0.0034 (8) | −0.0020 (7) |
S2 | 0.0407 (9) | 0.0271 (8) | 0.0299 (9) | 0.0032 (7) | 0.0086 (8) | 0.0039 (7) |
S3 | 0.0399 (9) | 0.0405 (10) | 0.0348 (10) | 0.0079 (7) | 0.0008 (8) | 0.0061 (8) |
S4 | 0.0486 (11) | 0.0347 (10) | 0.0404 (11) | 0.0097 (8) | −0.0055 (9) | −0.0018 (8) |
O1 | 0.047 (3) | 0.025 (2) | 0.030 (3) | −0.001 (2) | 0.007 (2) | 0.005 (2) |
O2 | 0.051 (3) | 0.021 (2) | 0.033 (3) | −0.005 (2) | 0.005 (2) | −0.002 (2) |
O3 | 0.040 (3) | 0.031 (2) | 0.032 (3) | 0.004 (2) | 0.008 (2) | 0.007 (2) |
O4 | 0.051 (3) | 0.030 (3) | 0.032 (3) | 0.008 (2) | 0.000 (2) | −0.003 (2) |
C1 | 0.043 (4) | 0.021 (3) | 0.043 (4) | −0.001 (3) | 0.010 (3) | 0.008 (3) |
C2 | 0.047 (4) | 0.026 (3) | 0.034 (4) | −0.007 (3) | 0.002 (3) | 0.006 (3) |
C3 | 0.052 (4) | 0.023 (3) | 0.042 (4) | −0.007 (3) | 0.001 (4) | 0.000 (3) |
C4 | 0.040 (4) | 0.025 (3) | 0.035 (4) | −0.001 (3) | 0.001 (3) | −0.002 (3) |
C10 | 0.036 (3) | 0.022 (3) | 0.032 (4) | 0.006 (3) | −0.003 (3) | 0.001 (3) |
C11 | 0.025 (3) | 0.027 (3) | 0.035 (4) | 0.003 (2) | 0.008 (3) | 0.000 (3) |
C12 | 0.033 (4) | 0.029 (3) | 0.031 (4) | 0.003 (3) | 0.001 (3) | −0.003 (3) |
C13 | 0.040 (4) | 0.020 (3) | 0.030 (4) | 0.008 (3) | 0.007 (3) | −0.003 (3) |
C14 | 0.038 (4) | 0.027 (3) | 0.038 (4) | −0.004 (3) | 0.005 (3) | 0.004 (3) |
C15 | 0.034 (4) | 0.037 (4) | 0.032 (4) | 0.003 (3) | 0.002 (3) | −0.001 (3) |
C16 | 0.042 (4) | 0.033 (4) | 0.038 (4) | 0.006 (3) | 0.010 (3) | 0.001 (3) |
C20 | 0.030 (3) | 0.026 (3) | 0.031 (4) | −0.002 (3) | 0.009 (3) | −0.002 (3) |
C21 | 0.037 (4) | 0.024 (3) | 0.030 (4) | 0.001 (3) | 0.001 (3) | 0.000 (3) |
C22 | 0.035 (4) | 0.028 (3) | 0.033 (4) | 0.000 (3) | −0.001 (3) | 0.001 (3) |
C23 | 0.028 (3) | 0.029 (3) | 0.034 (4) | 0.003 (3) | 0.003 (3) | −0.005 (3) |
C24 | 0.057 (5) | 0.020 (3) | 0.035 (4) | −0.005 (3) | 0.009 (4) | −0.003 (3) |
C25 | 0.051 (4) | 0.029 (4) | 0.031 (4) | −0.003 (3) | 0.009 (3) | 0.004 (3) |
C26 | 0.106 (8) | 0.030 (4) | 0.037 (5) | 0.024 (5) | 0.000 (5) | −0.010 (3) |
P1—O1 | 1.580 (5) | C10—C15 | 1.366 (10) |
P1—C10 | 1.798 (7) | C10—C11 | 1.398 (9) |
P1—S3 | 1.931 (3) | C11—C12 | 1.383 (10) |
P1—S1 | 2.117 (2) | C11—H11 | 0.95 |
P2—O2 | 1.582 (5) | C12—C13 | 1.395 (10) |
P2—C20 | 1.794 (7) | C12—H12 | 0.95 |
P2—S4 | 1.933 (3) | C13—C14 | 1.393 (10) |
P2—S2 | 2.091 (3) | C14—C15 | 1.387 (10) |
S1—S2 | 2.074 (3) | C14—H14 | 0.95 |
O1—C1 | 1.477 (8) | C15—H15 | 0.95 |
O2—C4 | 1.453 (8) | C16—H16A | 0.98 |
O3—C13 | 1.357 (8) | C16—H16B | 0.98 |
O3—C16 | 1.413 (9) | C16—H16C | 0.98 |
O4—C23 | 1.364 (8) | C20—C25 | 1.383 (10) |
O4—C26 | 1.435 (9) | C20—C21 | 1.389 (10) |
C1—C2 | 1.501 (11) | C21—C22 | 1.391 (10) |
C1—H1A | 0.99 | C21—H21 | 0.95 |
C1—H1B | 0.99 | C22—C23 | 1.408 (10) |
C2—C3 | 1.511 (11) | C22—H22 | 0.95 |
C2—H2A | 0.99 | C23—C24 | 1.368 (10) |
C2—H2B | 0.99 | C24—C25 | 1.388 (10) |
C3—C4 | 1.539 (10) | C24—H24 | 0.95 |
C3—H3A | 0.99 | C25—H25 | 0.95 |
C3—H3B | 0.99 | C26—H26A | 0.98 |
C4—H4A | 0.99 | C26—H26B | 0.98 |
C4—H4B | 0.99 | C26—H26C | 0.98 |
O1—P1—C10 | 101.1 (3) | C12—C11—C10 | 120.3 (6) |
O1—P1—S3 | 118.4 (2) | C12—C11—H11 | 119.9 |
C10—P1—S3 | 118.5 (2) | C10—C11—H11 | 119.9 |
O1—P1—S1 | 108.6 (2) | C11—C12—C13 | 119.4 (6) |
C10—P1—S1 | 105.2 (2) | C11—C12—H12 | 120.3 |
S3—P1—S1 | 104.22 (11) | C13—C12—H12 | 120.3 |
O2—P2—C20 | 100.0 (3) | O3—C13—C14 | 124.9 (7) |
O2—P2—S4 | 119.4 (2) | O3—C13—C12 | 114.8 (6) |
C20—P2—S4 | 116.5 (2) | C14—C13—C12 | 120.3 (7) |
O2—P2—S2 | 108.2 (2) | C15—C14—C13 | 119.2 (7) |
C20—P2—S2 | 109.4 (2) | C15—C14—H14 | 120.4 |
S4—P2—S2 | 103.04 (11) | C13—C14—H14 | 120.4 |
S2—S1—P1 | 103.13 (10) | C10—C15—C14 | 121.1 (7) |
S1—S2—P2 | 105.87 (10) | C10—C15—H15 | 119.5 |
C1—O1—P1 | 122.7 (5) | C14—C15—H15 | 119.5 |
C4—O2—P2 | 121.7 (4) | O3—C16—H16A | 109.5 |
C13—O3—C16 | 118.3 (6) | O3—C16—H16B | 109.5 |
C23—O4—C26 | 115.8 (6) | H16A—C16—H16B | 109.5 |
O1—C1—C2 | 112.6 (6) | O3—C16—H16C | 109.5 |
O1—C1—H1A | 109.1 | H16A—C16—H16C | 109.5 |
C2—C1—H1A | 109.1 | H16B—C16—H16C | 109.5 |
O1—C1—H1B | 109.1 | C25—C20—C21 | 120.1 (7) |
C2—C1—H1B | 109.1 | C25—C20—P2 | 118.2 (6) |
H1A—C1—H1B | 107.8 | C21—C20—P2 | 121.7 (5) |
C1—C2—C3 | 115.8 (6) | C20—C21—C22 | 119.8 (6) |
C1—C2—H2A | 108.3 | C20—C21—H21 | 120.1 |
C3—C2—H2A | 108.3 | C22—C21—H21 | 120.1 |
C1—C2—H2B | 108.3 | C21—C22—C23 | 119.4 (6) |
C3—C2—H2B | 108.3 | C21—C22—H22 | 120.3 |
H2A—C2—H2B | 107.4 | C23—C22—H22 | 120.3 |
C2—C3—C4 | 115.5 (6) | O4—C23—C24 | 125.0 (6) |
C2—C3—H3A | 108.4 | O4—C23—C22 | 114.6 (6) |
C4—C3—H3A | 108.4 | C24—C23—C22 | 120.3 (6) |
C2—C3—H3B | 108.4 | C23—C24—C25 | 120.0 (6) |
C4—C3—H3B | 108.4 | C23—C24—H24 | 120 |
H3A—C3—H3B | 107.5 | C25—C24—H24 | 120 |
O2—C4—C3 | 104.8 (6) | C20—C25—C24 | 120.4 (7) |
O2—C4—H4A | 110.8 | C20—C25—H25 | 119.8 |
C3—C4—H4A | 110.8 | C24—C25—H25 | 119.8 |
O2—C4—H4B | 110.8 | O4—C26—H26A | 109.5 |
C3—C4—H4B | 110.8 | O4—C26—H26B | 109.5 |
H4A—C4—H4B | 108.9 | H26A—C26—H26B | 109.5 |
C15—C10—C11 | 119.8 (7) | O4—C26—H26C | 109.5 |
C15—C10—P1 | 118.9 (5) | H26A—C26—H26C | 109.5 |
C11—C10—P1 | 121.2 (5) | H26B—C26—H26C | 109.5 |
C10—P1—O1—C1 | −156.0 (5) | O3—C13—C14—C15 | −179.6 (6) |
S3—P1—O1—C1 | −24.8 (6) | C12—C13—C14—C15 | −0.7 (10) |
S1—P1—O1—C1 | 93.6 (5) | C11—C10—C15—C14 | −0.2 (10) |
C20—P2—O2—C4 | −173.9 (5) | P1—C10—C15—C14 | 176.4 (5) |
S4—P2—O2—C4 | −45.6 (6) | C13—C14—C15—C10 | 0.2 (11) |
S2—P2—O2—C4 | 71.7 (5) | O2—P2—C20—C25 | 163.4 (6) |
P1—O1—C1—C2 | −95.9 (7) | S4—P2—C20—C25 | 33.1 (7) |
O1—C1—C2—C3 | −71.3 (8) | S2—P2—C20—C25 | −83.2 (6) |
C1—C2—C3—C4 | 72.0 (9) | O2—P2—C20—C21 | −13.4 (6) |
P2—O2—C4—C3 | −168.1 (5) | S4—P2—C20—C21 | −143.7 (5) |
C2—C3—C4—O2 | 65.1 (8) | S2—P2—C20—C21 | 100.0 (6) |
O1—P1—C10—C15 | 161.1 (5) | C25—C20—C21—C22 | −1.5 (11) |
S3—P1—C10—C15 | 29.9 (6) | P2—C20—C21—C22 | 175.3 (6) |
S1—P1—C10—C15 | −86.0 (6) | C20—C21—C22—C23 | 1.1 (11) |
O1—P1—C10—C11 | −22.4 (6) | C26—O4—C23—C24 | −2.2 (11) |
S3—P1—C10—C11 | −153.5 (5) | C26—O4—C23—C22 | 177.7 (8) |
S1—P1—C10—C11 | 90.6 (5) | C21—C22—C23—O4 | −179.7 (6) |
C15—C10—C11—C12 | 0.8 (10) | C21—C22—C23—C24 | 0.2 (11) |
P1—C10—C11—C12 | −175.8 (5) | O4—C23—C24—C25 | 178.9 (7) |
C10—C11—C12—C13 | −1.3 (10) | C22—C23—C24—C25 | −1.0 (11) |
C16—O3—C13—C14 | −7.2 (9) | C21—C20—C25—C24 | 0.6 (12) |
C16—O3—C13—C12 | 173.8 (6) | P2—C20—C25—C24 | −176.2 (6) |
C11—C12—C13—O3 | −179.7 (6) | C23—C24—C25—C20 | 0.6 (12) |
C11—C12—C13—C14 | 1.3 (10) |
Cg is the centroid of the C20–C25 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···S3 | 0.99 | 2.81 | 3.3883 (2) | 118 |
C4—H4B···O1 | 0.99 | 2.48 | 3.1308 (2) | 123 |
C4—H4B···O4i | 0.99 | 2.56 | 3.2708 (2) | 128 |
C11—H11···O4i | 0.95 | 2.62 | 3.4951 (3) | 154 |
C24—H24···O3ii | 0.95 | 2.51 | 3.4240 (3) | 162 |
C16—H16A···Cgiii | 0.98 | 2.62 | 3.454 (8) | 143 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, −y+1/2, z+1/2. |
Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Conflict of interests: none.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foreman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653–3657. CSD CrossRef Web of Science Google Scholar
Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). New J. Chem. 28, 1383–1389. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hua, G., Davidson, K., Cordes, D. B., Du, J., Slavin, A. M. Z. & Woollins, J. D. (2017). Molecules, 22, 1687–1700. Google Scholar
Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929–1958. Web of Science CrossRef Google Scholar
Knopik, P., Łuczak, L., Potrzebowski, M. J., Michalski, J., Błaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749–2757. CSD CrossRef Google Scholar
Łopusiński, A., Łuczak, L., Michalski, J., Kozioł, A. E. & Gdaniec, M. (1991). Chem. Commun. pp. 889–890. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pillay, M. N., van der Walt, H., Staples, R. J. & van Zyl, W. E. (2015). J. Organomet. Chem. 794, 33–39. CSD CrossRef CAS Google Scholar
Przychodzeń, W. (2004). Phosphorus Sulfur Silicon, 179, 1621–1633. Google Scholar
Przychodzeń, W. & Chojnacki, J. (2008). Heteroat. Chem. 19, 271–282. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wiberg, K. B. (2003). J. Org. Chem. 68, 9322–9329. Web of Science CrossRef PubMed CAS Google Scholar
Zyl, W. E. van & Woollins, J. D. (2013). Coord. Chem. Rev. 257, 718–731. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.