research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-methyl-5,10-dioxo-4-phenyl-5,10-di­hydro-4H-11-thia-1,4a-di­aza­benzo[b]fluorene-3-carb­­oxy­late

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, V. N. Karazin Kharkiv National University, 4, Svobody sq., Kharkiv 61077, Ukraine, bDepartment of Chemical Technology and Food Safety, Kherson National Technical, University, Berislavs'ke Highway 24, Kherson 73008, Ukraine, and cDepartment of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta 30912, USA
*Correspondence e-mail: yartsev.yegor@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 17 December 2017; accepted 2 January 2018; online 9 January 2018)

The title compound, C24H18N2O4S, crystallizes in the ortho­rhom­bic P212121 space group, indicating the existence of only one enanti­omer with an S configuration of the chiral center in the crystal phase. The di­hydro­pyrimidine ring adopts a twist-boat conformation while the quinone ring is slightly non-planar. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds and C—H⋯π inter­actions. In addition, a short inter­molecular S⋯N contact of 3.250 (3) Å indicates an inter­action between the S atom and the π-system of the thia­zole ring.

1. Chemical context

The three-component Biginelli reaction allows the assembly of a wide variety of di­hydro­pyrimidine (DHPM) compounds that can be modified easily depending on the starting materials used during the reaction (Nagarajaiah et al., 2016[Nagarajaiah, H., Mukhopadhyay, A. & Moorthy, J. N. (2016). Tetrahedron Lett. 57, 5135-5149.]). DHPMs exhibit anti­bacterial (Wani et al., 2017[Wani, M. Y., Ahmad, A., Kumar, S. & Sobral, A. J. F. N. (2017). Microb. Pathog. 105, 57-62.]) and anti­fungal properties (Akhaja & Raval, 2012[Akhaja, T. N. & Raval, J. P. (2012). Chin. Chem. Lett. 23, 446-449.]) and their thio­analogues such as monastrol are being used as inhibitors of mitotic kinesin Eg5 in the treatment of breast and ovarian tumors (Bobylev et al., 2017[Bobylev, I., Peters, D., Vyas, M., Barham, M., Klein, I., von Strandmann, E. P., Neiss, W. F. & Lehmann, H. C. (2017). Neurotox. Res. 32, 555-562.]; Duan et al., 2015[Duan, L., Wang, T.-Q., Bian, W., Liu, W., Sun, Y. & Yang, B.-S. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 1086-1091.]). In this work we investigated reactivity of thioDHPMs 1 in their reaction with the di-halogen-substituted nucleophile 2. It was expected that the reaction would proceed with substitution of one or both chlorine atoms and the formation of a thia­zole ring in the product 3 (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 3.

2. Structural commentary

Compound 3 crystallizes in the non-centrosymmetric chiral space group P212121. This indicates the existence of only one enanti­omer in the crystal with an S-configuration of the C12 chiral center according to the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The quinone ring is slightly non-planar (Fig. 2[link]). Its conformation can be described as a flattened asymmetric screw-boat with the C7 and C10 atoms deviating by 0.053 (3) and 0.082 (3) Å from the mean plane through the remaining ring atoms. This non-planarity may be caused by the formation of the weak intra­molecular C12—H12⋯O2 hydrogen bond. Taking into account high conformational flexibility of the quinone ring (Shishkin, 1997[Shishkin, O. V. (1997). J. Mol. Struct. 412, 115-120.]; Kovalevsky et al., 1998[Kovalevsky, A. Yu., Shishkin, O. V. & Dekaprilevich, M. O. (1998). Russ. Chem. Bull. 47, 372-374.]), it could be suggested that the out-of plane deformation of the ring represents the easiest way for relaxation of its structure because of steric clashes.

[Figure 2]
Figure 2
The mol­ecular structure of compound 3 with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The di­hydro­pyrimidine ring adopts a twist-boat conformation with puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) S = 0.34, Θ = 61.5° and ψ = 12.5°. The deviations of the C11 and N1 atoms from the mean plane through the remaining ring atoms are 0.307 (2) and 0.458 (2) Å, respectively. Such a conformation is common for 1,6-di­hydro­aromatic heterocycles (Shishkin, 1998[Shishkin, O. V. (1998). J. Mol. Struct. 447, 217-222.]). However, the presence of three vicinal substituents results in some twisting of the N2—C11 and C13—C14 endocyclic double bonds [the C14—N2—C11—N1 and C12—C13—C14—N2 torsion angles are −7.6 (4) and 4.5 (4)°] because of steric repulsion [the intra­molecular O4⋯C24 contact is 2.739 (4) Å, shorter than the sum of the van der Waals radii (2.87 Å; Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958 (in Russian).]). The phenyl substituent has an axial orientation with respect to the di­hydro­pyrimidine ring [C11—N1—C12—C15 = −98.7 (3)°] and is almost coplanar with the C12—H12 bond (C20—C15—C12—H12 = −8°) despite the shorten intra­molecular H12⋯H20 contact of 2.30 Å (sum of van der Waals radii = 2.32 Å). The carbonyl group of the ester substituent is rotated slightly with respect to the C13—C14 bond [C14—C13—C21—O3 = 167.2 (2)°] probably as a result of the formation of the O3⋯H12 attractive intra­molecular inter­action (2.34 Å compared to the van der Waals radii sum of 2.45 Å). The ethoxyl group has an apap conformation [C13—C21—O4—C22 and C21—O4—C22—C23 torsion angles are 175.1 (2) and −160.5 (3)°, respectively].

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C19—H19⋯O3 and C16—H16⋯S1 hydrogen bonds and C—H⋯π inter­actions (C3—H3⋯C16 and C22—H22A⋯C2 (see Table 1[link]). In addition, a short inter­molecular S1⋯N1(−[{1\over 2}] + x, [{3\over 2}] − y, 2 − z) contact of 3.250 (3) Å (van der Waals radii sum is 3.32 Å) indicates an inter­action between the S atom and the π-system of the thia­zole ring (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.98 2.36 2.926 (4) 116
C19—H19⋯O3i 0.93 2.50 3.219 (5) 134
C16—H16⋯S1ii 0.93 3.07 3.810 (4) 138
C3—H3⋯C16iii 0.93 2.84 3.542 (5) 133
C22—H22A⋯C2iv 0.97 2.88 3.718 (5) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iv) [-x+{\script{5\over 2}}, -y+2, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The view of the S⋯N inter­molecular inter­action.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not reveal any compounds with a similar polycyclic fragment.

5. Synthesis and crystallization

Ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetra­hydro­pyrim­id­ine-5-carboxyl­ate 1 (0.28 g, 1 mmol) was added to a solution of 2,3-di­chloro­naphthalene-1,4-dione (0.25 g, 1.1 mmol) in DMF (20 mL) and the mixture was kept under reflux for 3 h. After that, the reaction mixture was cooled, and the precipitated solid product was filtered off and purified via recrystallization from MeOH:DMF:H2O (2:2:1) to give product 3 in the form of dark-red crystals in 78% yield (0.35 g), m.p. 520.3– 522.0 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference-Fourier maps and treated as riding (C—H = 0.93–0.97 Å) with Uiso(H) = nUeq(C) (n = 1.5 for CH3 and n = 1.2 for all other H atoms).

Table 2
Experimental details

Crystal data
Chemical formula C24H18N2O4S
Mr 430.46
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 8.1038 (3), 13.3915 (6), 18.7377 (9)
V3) 2033.44 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.14 × 0.14 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]
Tmin, Tmax 0.991, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6202, 3574, 3160
Rint 0.017
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.03
No. of reflections 3574
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.14
Absolute structure Flack x determined using 1207 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.00 (4)
Computer programs: (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.], SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: (CrysAlis PRO; Oxford Diffraction, 2010; cell refinement: (CrysAlis PRO; Oxford Diffraction, 2010; data reduction: (CrysAlis PRO; Oxford Diffraction, 2010; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 2-methyl-5,10-dioxo-4-phenyl-5,10-dihydro-4H-11-thia-1,4a-\ diazabenzo[b]fluorene-3-carboxylate top
Crystal data top
C24H18N2O4SDx = 1.406 Mg m3
Mr = 430.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3614 reflections
a = 8.1038 (3) Åθ = 3.0–29.0°
b = 13.3915 (6) ŵ = 0.19 mm1
c = 18.7377 (9) ÅT = 293 K
V = 2033.44 (15) Å3Block, red
Z = 40.14 × 0.14 × 0.12 mm
F(000) = 896
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3574 independent reflections
Radiation source: Enhance (Mo) X-ray Source3160 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.017
ω–scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2010
h = 99
Tmin = 0.991, Tmax = 1.000k = 1315
6202 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.1932P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3574 reflectionsΔρmax = 0.13 e Å3
282 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack x determined using 1207 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70278 (10)0.68425 (6)0.96988 (5)0.0577 (2)
O10.7487 (4)0.6165 (2)0.81545 (17)0.0925 (9)
O21.0119 (3)0.97193 (18)0.87923 (13)0.0727 (7)
O31.0162 (4)1.08986 (18)1.09805 (13)0.0801 (8)
O40.9283 (2)1.03242 (17)1.20226 (11)0.0561 (6)
N10.8225 (3)0.86059 (16)0.98532 (12)0.0414 (5)
N20.7164 (3)0.78761 (17)1.09161 (14)0.0499 (6)
C10.9415 (4)0.8572 (3)0.78826 (16)0.0527 (8)
C21.0157 (4)0.9143 (3)0.73617 (18)0.0670 (10)
H21.06380.97520.74780.080*
C31.0179 (5)0.8804 (4)0.6664 (2)0.0827 (12)
H31.06730.91910.63110.099*
C40.9489 (5)0.7914 (4)0.6487 (2)0.0890 (14)
H40.94930.77040.60140.107*
C50.8785 (5)0.7318 (4)0.7004 (2)0.0766 (11)
H50.83380.67010.68810.092*
C60.8745 (4)0.7644 (3)0.77107 (18)0.0589 (9)
C70.8000 (4)0.7003 (3)0.82700 (19)0.0604 (8)
C80.7887 (4)0.7446 (2)0.89746 (17)0.0497 (7)
C90.8483 (3)0.8355 (2)0.91469 (16)0.0428 (7)
C100.9400 (4)0.8963 (2)0.86233 (17)0.0499 (7)
C110.7472 (3)0.7863 (2)1.02436 (18)0.0450 (7)
C120.8429 (3)0.96026 (19)1.01698 (15)0.0415 (6)
H120.94940.98721.00140.050*
C130.8477 (3)0.9481 (2)1.09764 (15)0.0415 (6)
C140.7823 (3)0.8678 (2)1.13005 (16)0.0446 (7)
C150.7081 (4)1.0300 (2)0.99115 (14)0.0438 (6)
C160.5438 (4)1.0063 (3)0.99771 (17)0.0565 (8)
H160.51330.94561.01790.068*
C170.4239 (5)1.0717 (3)0.9747 (2)0.0722 (10)
H170.31311.05480.97920.087*
C180.4674 (6)1.1617 (3)0.9451 (2)0.0774 (11)
H180.38641.20600.92980.093*
C190.6310 (6)1.1857 (3)0.9383 (2)0.0832 (12)
H190.66111.24660.91830.100*
C200.7504 (5)1.1206 (2)0.9608 (2)0.0660 (9)
H200.86111.13740.95560.079*
C210.9387 (4)1.0299 (2)1.13135 (16)0.0471 (7)
C221.0268 (4)1.1067 (3)1.23806 (18)0.0609 (9)
H22B0.97351.17141.23550.073*
H22A1.13461.11171.21580.073*
C231.0436 (5)1.0742 (3)1.3141 (2)0.0815 (12)
H23B0.93591.06651.33480.122*
H23C1.10431.12361.34030.122*
H23A1.10121.01161.31600.122*
C240.7765 (4)0.8499 (2)1.20923 (17)0.0594 (8)
H24C0.88580.85541.22870.089*
H24A0.73410.78421.21840.089*
H24B0.70610.89861.23120.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0570 (4)0.0437 (4)0.0725 (5)0.0110 (4)0.0073 (4)0.0060 (4)
O10.105 (2)0.0743 (17)0.098 (2)0.0213 (16)0.0155 (17)0.0383 (17)
O20.0955 (17)0.0606 (14)0.0620 (14)0.0237 (14)0.0224 (14)0.0034 (13)
O30.121 (2)0.0638 (14)0.0554 (13)0.0474 (16)0.0102 (15)0.0097 (13)
O40.0569 (13)0.0627 (13)0.0486 (11)0.0122 (11)0.0002 (10)0.0033 (11)
N10.0428 (12)0.0360 (12)0.0452 (13)0.0025 (10)0.0018 (11)0.0033 (11)
N20.0532 (14)0.0423 (13)0.0542 (15)0.0095 (12)0.0019 (13)0.0078 (12)
C10.0458 (16)0.064 (2)0.0482 (17)0.0134 (15)0.0009 (14)0.0004 (16)
C20.065 (2)0.082 (3)0.0540 (19)0.0140 (19)0.0023 (18)0.007 (2)
C30.082 (3)0.115 (4)0.051 (2)0.020 (3)0.001 (2)0.009 (2)
C40.080 (3)0.140 (4)0.047 (2)0.022 (3)0.003 (2)0.012 (3)
C50.069 (2)0.096 (3)0.065 (2)0.015 (2)0.008 (2)0.024 (2)
C60.0482 (17)0.073 (2)0.0555 (19)0.0138 (16)0.0033 (16)0.0110 (18)
C70.0503 (16)0.060 (2)0.071 (2)0.0030 (17)0.0007 (17)0.0185 (18)
C80.0419 (15)0.0473 (16)0.0598 (18)0.0009 (14)0.0013 (15)0.0053 (15)
C90.0374 (13)0.0410 (16)0.0501 (16)0.0042 (11)0.0016 (12)0.0006 (14)
C100.0487 (17)0.0497 (18)0.0514 (17)0.0037 (15)0.0036 (14)0.0034 (15)
C110.0373 (14)0.0371 (15)0.0605 (19)0.0037 (11)0.0011 (13)0.0068 (15)
C120.0478 (15)0.0309 (13)0.0458 (15)0.0033 (11)0.0024 (12)0.0032 (13)
C130.0421 (14)0.0383 (14)0.0441 (15)0.0003 (12)0.0025 (12)0.0044 (13)
C140.0417 (14)0.0446 (15)0.0475 (16)0.0003 (13)0.0005 (14)0.0079 (14)
C150.0537 (16)0.0373 (15)0.0405 (14)0.0042 (13)0.0029 (13)0.0013 (12)
C160.0561 (18)0.0533 (17)0.0600 (18)0.0068 (15)0.0048 (15)0.0014 (16)
C170.063 (2)0.081 (3)0.072 (2)0.0174 (19)0.014 (2)0.007 (2)
C180.099 (3)0.068 (2)0.065 (2)0.037 (2)0.022 (2)0.001 (2)
C190.107 (3)0.056 (2)0.087 (3)0.019 (2)0.009 (3)0.020 (2)
C200.074 (2)0.0463 (18)0.078 (2)0.0044 (15)0.0003 (19)0.0149 (18)
C210.0526 (16)0.0405 (16)0.0482 (16)0.0021 (14)0.0042 (14)0.0065 (15)
C220.062 (2)0.062 (2)0.0587 (19)0.0050 (17)0.0081 (17)0.0109 (17)
C230.085 (3)0.101 (3)0.058 (2)0.009 (2)0.004 (2)0.010 (2)
C240.071 (2)0.0556 (18)0.0518 (18)0.0078 (16)0.0021 (17)0.0139 (16)
Geometric parameters (Å, º) top
S1—C81.726 (3)C12—C151.517 (4)
S1—C111.743 (3)C12—C131.521 (4)
O1—C71.216 (4)C12—H120.9800
O2—C101.211 (4)C13—C141.344 (4)
O3—C211.195 (3)C13—C211.463 (4)
O4—C211.332 (4)C14—C241.504 (4)
O4—C221.441 (4)C15—C161.374 (4)
N1—C111.378 (3)C15—C201.383 (4)
N1—C91.381 (4)C16—C171.377 (4)
N1—C121.470 (4)C16—H160.9300
N2—C111.285 (4)C17—C181.373 (6)
N2—C141.399 (4)C17—H170.9300
C1—C21.378 (5)C18—C191.371 (6)
C1—C61.394 (5)C18—H180.9300
C1—C101.484 (4)C19—C201.369 (5)
C2—C31.384 (5)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.358 (6)C22—C231.497 (5)
C3—H30.9300C22—H22B0.9700
C4—C51.378 (6)C22—H22A0.9700
C4—H40.9300C23—H23B0.9600
C5—C61.395 (5)C23—H23C0.9600
C5—H50.9300C23—H23A0.9600
C6—C71.483 (5)C24—H24C0.9600
C7—C81.451 (5)C24—H24A0.9600
C8—C91.348 (4)C24—H24B0.9600
C9—C101.476 (4)
C8—S1—C1190.57 (14)C14—C13—C21127.1 (3)
C21—O4—C22116.5 (2)C14—C13—C12121.6 (3)
C11—N1—C9113.6 (2)C21—C13—C12111.2 (2)
C11—N1—C12119.4 (2)C13—C14—N2122.2 (3)
C9—N1—C12126.2 (2)C13—C14—C24125.9 (3)
C11—N2—C14116.2 (2)N2—C14—C24111.9 (3)
C2—C1—C6120.1 (3)C16—C15—C20118.7 (3)
C2—C1—C10118.0 (3)C16—C15—C12121.8 (3)
C6—C1—C10121.9 (3)C20—C15—C12119.5 (3)
C1—C2—C3119.5 (4)C15—C16—C17120.6 (3)
C1—C2—H2120.3C15—C16—H16119.7
C3—C2—H2120.3C17—C16—H16119.7
C4—C3—C2120.8 (4)C18—C17—C16120.2 (4)
C4—C3—H3119.6C18—C17—H17119.9
C2—C3—H3119.6C16—C17—H17119.9
C3—C4—C5120.5 (4)C19—C18—C17119.5 (3)
C3—C4—H4119.7C19—C18—H18120.3
C5—C4—H4119.7C17—C18—H18120.3
C4—C5—C6119.7 (4)C20—C19—C18120.4 (4)
C4—C5—H5120.2C20—C19—H19119.8
C6—C5—H5120.2C18—C19—H19119.8
C1—C6—C5119.3 (4)C19—C20—C15120.7 (4)
C1—C6—C7120.7 (3)C19—C20—H20119.7
C5—C6—C7120.0 (4)C15—C20—H20119.7
O1—C7—C8121.2 (3)O3—C21—O4122.5 (3)
O1—C7—C6123.2 (3)O3—C21—C13122.8 (3)
C8—C7—C6115.6 (3)O4—C21—C13114.7 (3)
C9—C8—C7124.4 (3)O4—C22—C23107.0 (3)
C9—C8—S1112.3 (2)O4—C22—H22B110.3
C7—C8—S1123.3 (2)C23—C22—H22B110.3
C8—C9—N1113.3 (3)O4—C22—H22A110.3
C8—C9—C10121.3 (3)C23—C22—H22A110.3
N1—C9—C10125.4 (3)H22B—C22—H22A108.6
O2—C10—C9122.0 (3)C22—C23—H23B109.5
O2—C10—C1122.4 (3)C22—C23—H23C109.5
C9—C10—C1115.5 (3)H23B—C23—H23C109.5
N2—C11—N1126.6 (3)C22—C23—H23A109.5
N2—C11—S1123.1 (2)H23B—C23—H23A109.5
N1—C11—S1110.3 (2)H23C—C23—H23A109.5
N1—C12—C15110.4 (2)C14—C24—H24C109.5
N1—C12—C13107.9 (2)C14—C24—H24A109.5
C15—C12—C13113.7 (2)H24C—C24—H24A109.5
N1—C12—H12108.2C14—C24—H24B109.5
C15—C12—H12108.2H24C—C24—H24B109.5
C13—C12—H12108.2H24A—C24—H24B109.5
C6—C1—C2—C32.3 (5)C9—N1—C11—N2176.2 (3)
C10—C1—C2—C3179.4 (3)C12—N1—C11—N213.3 (4)
C1—C2—C3—C40.4 (6)C9—N1—C11—S11.8 (3)
C2—C3—C4—C51.5 (6)C12—N1—C11—S1168.65 (19)
C3—C4—C5—C61.6 (6)C8—S1—C11—N2177.5 (3)
C2—C1—C6—C52.2 (5)C8—S1—C11—N10.6 (2)
C10—C1—C6—C5179.6 (3)C11—N1—C12—C1598.7 (3)
C2—C1—C6—C7177.6 (3)C9—N1—C12—C1570.4 (3)
C10—C1—C6—C70.6 (4)C11—N1—C12—C1326.1 (3)
C4—C5—C6—C10.3 (5)C9—N1—C12—C13164.8 (2)
C4—C5—C6—C7179.5 (3)N1—C12—C13—C1422.3 (4)
C1—C6—C7—O1175.6 (3)C15—C12—C13—C14100.5 (3)
C5—C6—C7—O14.2 (5)N1—C12—C13—C21154.3 (2)
C1—C6—C7—C85.5 (4)C15—C12—C13—C2182.9 (3)
C5—C6—C7—C8174.7 (3)C21—C13—C14—N2171.5 (3)
O1—C7—C8—C9177.5 (3)C12—C13—C14—N24.5 (4)
C6—C7—C8—C93.6 (5)C21—C13—C14—C245.7 (5)
O1—C7—C8—S10.2 (5)C12—C13—C14—C24178.3 (3)
C6—C7—C8—S1178.7 (2)C11—N2—C14—C1311.8 (4)
C11—S1—C8—C90.7 (2)C11—N2—C14—C24165.7 (3)
C11—S1—C8—C7178.6 (3)N1—C12—C15—C1654.1 (4)
C7—C8—C9—N1179.8 (3)C13—C12—C15—C1667.3 (4)
S1—C8—C9—N11.9 (3)N1—C12—C15—C20126.6 (3)
C7—C8—C9—C103.3 (4)C13—C12—C15—C20112.0 (3)
S1—C8—C9—C10174.6 (2)C20—C15—C16—C170.2 (5)
C11—N1—C9—C82.4 (3)C12—C15—C16—C17179.1 (3)
C12—N1—C9—C8167.3 (3)C15—C16—C17—C180.2 (5)
C11—N1—C9—C10173.9 (2)C16—C17—C18—C190.4 (6)
C12—N1—C9—C1016.4 (4)C17—C18—C19—C200.0 (7)
C8—C9—C10—O2170.5 (3)C18—C19—C20—C150.4 (6)
N1—C9—C10—O25.5 (5)C16—C15—C20—C190.5 (5)
C8—C9—C10—C18.0 (4)C12—C15—C20—C19178.8 (3)
N1—C9—C10—C1175.9 (3)C22—O4—C21—O35.1 (5)
C2—C1—C10—O25.8 (5)C22—O4—C21—C13175.1 (2)
C6—C1—C10—O2172.5 (3)C14—C13—C21—O3167.2 (3)
C2—C1—C10—C9175.7 (3)C12—C13—C21—O39.1 (4)
C6—C1—C10—C96.1 (4)C14—C13—C21—O412.9 (4)
C14—N2—C11—N17.6 (4)C12—C13—C21—O4170.8 (2)
C14—N2—C11—S1170.2 (2)C21—O4—C22—C23160.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.982.362.926 (4)116
C19—H19···O3i0.932.503.219 (5)134
C16—H16···S1ii0.933.073.810 (4)138
C3—H3···C16iii0.932.843.542 (5)133
C22—H22A···C2iv0.972.883.718 (5)145
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x1/2, y+3/2, z+2; (iii) x+3/2, y+2, z1/2; (iv) x+5/2, y+2, z+1/2.
 

Acknowledgements

The authors are thankful to the "Institute for Single Crystals", NAS of Ukraine, for providing equipment to conduct this work.

References

First citationAkhaja, T. N. & Raval, J. P. (2012). Chin. Chem. Lett. 23, 446–449.  Web of Science CrossRef CAS Google Scholar
First citationBobylev, I., Peters, D., Vyas, M., Barham, M., Klein, I., von Strandmann, E. P., Neiss, W. F. & Lehmann, H. C. (2017). Neurotox. Res. 32, 555–562.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDuan, L., Wang, T.-Q., Bian, W., Liu, W., Sun, Y. & Yang, B.-S. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 1086–1091.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovalevsky, A. Yu., Shishkin, O. V. & Dekaprilevich, M. O. (1998). Russ. Chem. Bull. 47, 372–374.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNagarajaiah, H., Mukhopadhyay, A. & Moorthy, J. N. (2016). Tetrahedron Lett. 57, 5135–5149.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkin, O. V. (1997). J. Mol. Struct. 412, 115–120.  CrossRef CAS Web of Science Google Scholar
First citationShishkin, O. V. (1998). J. Mol. Struct. 447, 217–222.  Web of Science CrossRef CAS Google Scholar
First citationWani, M. Y., Ahmad, A., Kumar, S. & Sobral, A. J. F. N. (2017). Microb. Pathog. 105, 57–62.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958 (in Russian).  CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds