research communications
E)-1,2-bis(6-bromo-9-hexyl-9H-carbazol-3-yl)ethene
of (aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
*Correspondence e-mail: lz@sdu.edu.cn
The title compound, C38H40Br2N2, crystallizes in the triclinic P-1 with two molecules in a The two carbazole groups are nearly coplanar, making a dihedral angle of 16.90 (5)°, and are bridged by vinyl. The features π–π and C—H⋯π interactions and C—H⋯Br short contacts.
Keywords: π-conjugated; carbazole derivative; π–π and C—H⋯π intermolecular interactions; C—H⋯Br short contacts.; crystal structure.
CCDC reference: 1821846
1. Chemical context
To date, π-conjugated organic molecules have attracted considerable attention because of their applications in many fields, such as non-linear optics (Kim et al., 2016; Percino et al., 2016; Xue et al., 2014) and optoeletronic devices (Shi et al., 2016; Zhang et al., 2015). Carbazole-based π-conjugated compounds have been utilized as the light-emitting layers in OLEDs (Liu et al., 2006, 2014). The design of the title molecule combines the advantages of several factors. Firstly, vinyl has been introduced to bridge molecules; this is of importance for extension of the π-conjugated system, which is beneficial for carrier mobility (Wang et al., 2012). Secondly, introducing long alkyl substituents to carbazole cores is an effective method to solve poor solubility (Teetsov & Fox, 1999) and fluorescence quenching in the solid state (Hua et al., 2015). In addition, introduction of Br into the structure of vinyl-bridged carbazoles can enhance intermolecular interactions by forming non-classical hydrogen bonds. Br-substituted molecules are excellent intermediate products since the bonding energy of the C—Br bond is weaker than that of C—H, and Br substituents are easily replaced by other substituents.
2. Structural commentary
The title compound crystallizes in the Pī with one molecule in the as shown in Fig. 1. The molecule is an (E) isomer and has approximate Cs symmetry. The mean deviation from the plane of the cabazole unit including N1 is 0.0272 Å, with deviations of 0.159 (2) Å for C11 and 0.059 (2) Å for Br1, while the mean of the cabazole unit including N2 is 0.0224 Å with deviations of 0.052 (2) Å for C12 and 0.084 (2) Å for Br2. Note that there is a double bond between carbon atoms C11 and C12. Each carbazole group is planar, excluding hexyl groups, and its respective peripheral atoms such as bromine and the double-bonded carbon atoms were accommodated in a planar geometry, as shown by the C6—N1—N2—C17 torsion angle of −147.5 (2)° and the Br1—C25—C32—Br2 torsion angle of −167.70 (3)°. The two carbazole groups are almost in the same plane, making a dihedral angle of 16.9 (5)°. The angles between the least-squares planes of neighboring rings are in the range of 1.00–1.42°. Furthermore, they are trans to the C=C double bond, as indicated by the C10—C11—C12—C13 torsion angle of 176.1 (2)°. The intramolecular Br1⋯Br2 distance of 16.710 (5) Å is much longer than the sum of the van der Waals radii (3.7 Å) and the angle between C—Br bonds is 169.4°, indicating that the title molecule forms an extended, conjugated π-system.
3. Supramolecular features
In the crystal, the molecules stack in a face-to-face manner along the b axis (see Fig. 2). Adjacent molecules are staggered and interlocked through their aromatic units, which assume face-to-face orientations. The distances and angles between them indicate the presence of well-defined intermolecular π–π interactions (Hunter et al., 1990) [Cg1⋯Cg5(1 − x, 2 − y, 1 − z) = 3.6898 (13) and Cg2⋯Cg6(−x, 1 − y, 2 − z) = 3.5000 (13) Å; Cg1, Cg2, Cg5 and Cg6 are the centroids of the N1/C7/C8/C23/C28, N2/C16/C15/C34/C29, C23–C28 and C29–C34 rings, respectively]. There are C—H⋯π interactions (Table 1) between neighboring molecules along the a axis while weak C—H⋯Br short contacts link the molecules into a chain-like arrangement in the ac plane (Table 1).
4. Database survey
A search of the Cambridge Crystallographic Database (WebCSD, Version 1.1.2, last update November 2016; Groom et al., 2016) for (E)-1,2-di(9H-carbazol-3-yl)ethene, reveals six structures. The structure of (E)-1,2-bis(9-hexyl-9H-carbazol-3-yl)ethene was determined successfully by our research group (Shi, Liu, Dong et al., 2012; Shi, Liu, Guo et al., 2012) and we have also investigated the propeller-shaped structures of two ethene derivatives substituted by carbazole, phenyl and dimesitylboron (Shi et al., 2016). The single of the ethene substituted by two cabazole groups and two phenyl rings has been reported (Liu et al., 2014) as well as structures where the two carbazole groups are linked via several organic groups, including vinyl (Kumar et al., 2006; Song et al., 2008).
5. Synthesis and crystallization
All reactants and solvents were purchased and used without further purification. THF was dried by using Na in the presence of benzophenone and DMF was dried by using molecular sieves. 9-Hexyl-9H-carbazole (4), 9-hexyl-9-carbazole-3-carbaldehyde (3) and 9-hexyl-9-carbazole-3-Br-6-carbaldehyde (2) were synthesized according to methods reported by our research group (Chen et al., 2017; Shi, Liu et al., 2012; Shi, Xin et al., 2012).
The title compound 1 was synthesized through a McMurry reaction (see Fig. 3). (E)-1,2-Bis(6-bromo-9-hexyl-9H-carbazol-3-yl)ethene (1): Zn power (5.840 g, 80.0 mmol) was mixed with THF (200.0 mL) and stirred sharply on the flask under Ar. Pure dichloromethane (30.0 mL) was poured into a constant pressure funnel and then TiCl4 (4.42 mL, 40.0 mmol) was injected into the dichloromethane. The mixture was added dropwise to the flask. The reaction system was heated at 353 K and stirred for 3 h. After cooling to room temperature, compound 2 was dissolved in THF (100.0 mL), added dropwise to the flask for 2 h at 273 K, then heated to 353 K and stirred for 24 h. Finally, the mixture was poured into saturated NaHCO3 solution and stirred sharply for 3 h. The reaction solution was extracted with dichloromethane. The solvent was washed with deionized water and saturated brine three times, then dried with anhydrous magnesium sulfate. After the solvent had been removed under reduced pressure, the residue was purified by flash on silica gel using dichloromethane–petroleum ether (1: 4 v:v) as to achieve a yellow solid. Pale-yellow block-shaped crystals were obtained by recrystallization from the mixed solvent n-hexane/methylene chloride (0.878 g). Yield: 64.3%.
1H NMR (300 MHz, CDCl3, 298 K, TMS): δ = 8.24 (d, J = 1.8 Hz, 2H; Ar-H), 8.19 (d, J = 1.5 Hz, 2H; Ar-H), 7.74 (d, J = 1.8 Hz, 2H; Ar-H), 7.71 (d, J = 1.5 Hz, 2H; Ar-H), 7.55 (dd, J = 1.8 Hz, 2H; Ar-H), 7.52 (d, J = 2.4 Hz, 2H; Ar-H), 7.40 (s, 1H; Ar-H), 7.38 (s, 1H; Ar-H), 4.27 (t, J = 7.5 Hz 4H; hexyl-H), 1.91–1.81 (m, 4H, hexyl-H), 1.42–1.45 (m, 12H; hexyl-H), 0.87 ppm (t, J = 7.0 Hz, 6H; hexyl-H); 13C NMR (75 MHz, CDCl3, 298 K, TMS): δ = 139.73, 138.97, 129.01, 127.85, 126.61, 124.46, 124.12, 122.68, 121.73, 117.87, 111.18, 109.78, 108.67, 42.85, 31.05, 28.44, 26.44, 22.04, 13.51 ppm; FTIR: 3030, 2955, 2944, 2926, 2864, 1839, 1736, 1628, 1596, 1488, 1465, 1450, 1383, 1349, 1302, 1286, 1244, 1220, 1194, 1152, 1134, 1053, 1019, 896, 867, 804, 790, 746, 730 cm−1; HRMS (MALDI–TOF): m/z: calculated for C38H40Br2N2: 682.2; found: 683.7.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1821846
https://doi.org/10.1107/S2056989018002098/ex2004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002098/ex2004Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002098/ex2004Isup3.cml
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).C38H40Br2N2 | Z = 2 |
Mr = 684.54 | F(000) = 704 |
Triclinic, P1 | Dx = 1.446 Mg m−3 |
a = 8.5553 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4379 (16) Å | Cell parameters from 7151 reflections |
c = 17.333 (2) Å | θ = 2.5–27.4° |
α = 101.247 (2)° | µ = 2.61 mm−1 |
β = 98.392 (1)° | T = 296 K |
γ = 104.990 (2)° | Block, pale yellow |
V = 1572.0 (4) Å3 | 0.50 × 0.24 × 0.16 mm |
Bruker APEXII CCD diffractometer | 7063 independent reflections |
Radiation source: fine-focus sealed tube | 5602 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
φ and ω scans | θmax = 27.5°, θmin = 1.2° |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | h = −11→11 |
Tmin = 0.477, Tmax = 0.659 | k = −14→14 |
18097 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.77 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
7063 reflections | (Δ/σ)max = 0.033 |
381 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.07518 (3) | 1.08100 (2) | 0.368357 (13) | 0.03674 (9) | |
Br2 | 0.48276 (3) | 0.47768 (2) | 1.151520 (13) | 0.03649 (9) | |
N1 | 0.4919 (2) | 0.74884 (16) | 0.43613 (10) | 0.0292 (4) | |
N2 | −0.0392 (2) | 0.70603 (16) | 1.03984 (10) | 0.0290 (4) | |
C1 | 1.1045 (3) | 0.4685 (2) | 0.39475 (17) | 0.0485 (6) | |
H1A | 1.1716 | 0.5189 | 0.4456 | 0.073* | |
H1B | 1.1708 | 0.4298 | 0.3643 | 0.073* | |
H1C | 1.0153 | 0.4052 | 0.4035 | 0.073* | |
C2 | 1.0354 (3) | 0.5495 (2) | 0.34896 (14) | 0.0357 (5) | |
H2A | 0.9748 | 0.4989 | 0.2961 | 0.043* | |
H2B | 1.1265 | 0.6142 | 0.3415 | 0.043* | |
C3 | 0.9216 (3) | 0.6105 (2) | 0.39002 (13) | 0.0316 (5) | |
H3A | 0.9814 | 0.6600 | 0.4432 | 0.038* | |
H3B | 0.8292 | 0.5459 | 0.3966 | 0.038* | |
C4 | 0.8552 (3) | 0.6937 (2) | 0.34368 (13) | 0.0311 (4) | |
H4A | 0.7862 | 0.6423 | 0.2927 | 0.037* | |
H4B | 0.9476 | 0.7526 | 0.3322 | 0.037* | |
C5 | 0.7551 (3) | 0.7660 (2) | 0.38762 (13) | 0.0320 (5) | |
H5A | 0.7431 | 0.8322 | 0.3619 | 0.038* | |
H5B | 0.8151 | 0.8044 | 0.4426 | 0.038* | |
C6 | 0.5841 (3) | 0.68408 (19) | 0.38851 (13) | 0.0319 (5) | |
H6A | 0.5210 | 0.6516 | 0.3337 | 0.038* | |
H6B | 0.5961 | 0.6136 | 0.4096 | 0.038* | |
C7 | 0.4684 (2) | 0.73873 (18) | 0.51204 (12) | 0.0260 (4) | |
C8 | 0.3640 (2) | 0.80997 (17) | 0.53622 (12) | 0.0240 (4) | |
C9 | 0.3180 (2) | 0.81224 (17) | 0.61012 (11) | 0.0264 (4) | |
H9 | 0.2492 | 0.8592 | 0.6261 | 0.032* | |
C10 | 0.3754 (2) | 0.74392 (18) | 0.66009 (12) | 0.0274 (4) | |
C11 | 0.3229 (3) | 0.7348 (2) | 0.73609 (12) | 0.0298 (4) | |
H11 | 0.3830 | 0.7018 | 0.7707 | 0.036* | |
C12 | 0.1974 (3) | 0.76918 (19) | 0.76010 (12) | 0.0290 (4) | |
H12 | 0.1424 | 0.8068 | 0.7267 | 0.035* | |
C13 | 0.1359 (2) | 0.75442 (19) | 0.83351 (12) | 0.0283 (4) | |
C14 | 0.2124 (2) | 0.70651 (17) | 0.89176 (11) | 0.0267 (4) | |
H14 | 0.3077 | 0.6841 | 0.8855 | 0.032* | |
C15 | 0.1458 (2) | 0.69252 (18) | 0.95890 (12) | 0.0265 (4) | |
C16 | 0.0028 (2) | 0.72944 (19) | 0.96916 (12) | 0.0278 (4) | |
C17 | −0.1801 (2) | 0.7281 (2) | 1.07101 (13) | 0.0314 (5) | |
H17A | −0.2301 | 0.6583 | 1.0923 | 0.038* | |
H17B | −0.2617 | 0.7320 | 1.0272 | 0.038* | |
C18 | −0.1347 (3) | 0.8482 (2) | 1.13693 (14) | 0.0361 (5) | |
H18A | −0.0536 | 0.8443 | 1.1810 | 0.043* | |
H18B | −0.0844 | 0.9182 | 1.1158 | 0.043* | |
C19 | −0.2842 (3) | 0.8703 (2) | 1.16877 (13) | 0.0344 (5) | |
H19A | −0.3470 | 0.7934 | 1.1792 | 0.041* | |
H19B | −0.2453 | 0.9325 | 1.2196 | 0.041* | |
C20 | −0.3993 (3) | 0.9134 (2) | 1.11272 (12) | 0.0306 (4) | |
H20A | −0.3361 | 0.9880 | 1.0998 | 0.037* | |
H20B | −0.4442 | 0.8492 | 1.0630 | 0.037* | |
C21 | −0.5411 (3) | 0.9413 (2) | 1.14864 (13) | 0.0323 (5) | |
H21A | −0.4966 | 0.9951 | 1.2023 | 0.039* | |
H21B | −0.6138 | 0.8638 | 1.1537 | 0.039* | |
C22 | −0.6416 (3) | 1.0029 (2) | 1.10040 (16) | 0.0448 (6) | |
H22A | −0.5721 | 1.0817 | 1.0972 | 0.067* | |
H22B | −0.7299 | 1.0161 | 1.1261 | 0.067* | |
H22C | −0.6870 | 0.9502 | 1.0472 | 0.067* | |
C23 | 0.3243 (2) | 0.86664 (18) | 0.47177 (11) | 0.0241 (4) | |
C24 | 0.2259 (2) | 0.94360 (18) | 0.45978 (12) | 0.0244 (4) | |
H24 | 0.1709 | 0.9708 | 0.4989 | 0.029* | |
C25 | 0.2127 (2) | 0.97824 (19) | 0.38768 (12) | 0.0276 (4) | |
C26 | 0.2924 (3) | 0.9391 (2) | 0.32750 (13) | 0.0317 (5) | |
H26 | 0.2804 | 0.9650 | 0.2799 | 0.038* | |
C27 | 0.3894 (3) | 0.8616 (2) | 0.33856 (12) | 0.0314 (5) | |
H27 | 0.4425 | 0.8340 | 0.2987 | 0.038* | |
C28 | 0.4054 (2) | 0.82602 (19) | 0.41109 (12) | 0.0268 (4) | |
C29 | 0.0727 (2) | 0.65426 (19) | 1.07554 (12) | 0.0275 (4) | |
C30 | 0.0789 (3) | 0.6144 (2) | 1.14621 (13) | 0.0319 (5) | |
H30 | 0.0020 | 0.6224 | 1.1781 | 0.038* | |
C31 | 0.2025 (3) | 0.5627 (2) | 1.16787 (13) | 0.0326 (5) | |
H31 | 0.2091 | 0.5345 | 1.2147 | 0.039* | |
C32 | 0.3170 (3) | 0.55263 (19) | 1.11963 (12) | 0.0288 (4) | |
C33 | 0.3143 (2) | 0.59188 (18) | 1.04918 (11) | 0.0260 (4) | |
H33 | 0.3921 | 0.5835 | 1.0179 | 0.031* | |
C34 | 0.1905 (2) | 0.64437 (18) | 1.02687 (12) | 0.0250 (4) | |
C35 | −0.0731 (3) | 0.7797 (2) | 0.91302 (14) | 0.0330 (5) | |
H35 | −0.1658 | 0.8052 | 0.9203 | 0.040* | |
C36 | −0.0061 (3) | 0.7904 (2) | 0.84590 (13) | 0.0315 (4) | |
H36 | −0.0567 | 0.8226 | 0.8073 | 0.038* | |
C37 | 0.4842 (3) | 0.6770 (2) | 0.63531 (13) | 0.0309 (4) | |
H37 | 0.5258 | 0.6340 | 0.6696 | 0.037* | |
C38 | 0.5315 (3) | 0.6729 (2) | 0.56168 (13) | 0.0315 (5) | |
H38 | 0.6027 | 0.6278 | 0.5463 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03362 (13) | 0.04857 (15) | 0.03772 (14) | 0.02071 (10) | 0.00922 (10) | 0.01996 (10) |
Br2 | 0.03889 (14) | 0.04713 (15) | 0.03280 (14) | 0.02262 (11) | 0.01095 (10) | 0.01533 (10) |
N1 | 0.0315 (9) | 0.0318 (9) | 0.0308 (9) | 0.0152 (7) | 0.0158 (8) | 0.0076 (7) |
N2 | 0.0274 (9) | 0.0350 (9) | 0.0298 (9) | 0.0131 (7) | 0.0133 (7) | 0.0092 (7) |
C1 | 0.0410 (14) | 0.0496 (15) | 0.0563 (16) | 0.0221 (12) | 0.0036 (12) | 0.0093 (12) |
C2 | 0.0280 (10) | 0.0365 (12) | 0.0435 (13) | 0.0109 (9) | 0.0136 (10) | 0.0052 (10) |
C3 | 0.0285 (10) | 0.0356 (11) | 0.0324 (11) | 0.0096 (9) | 0.0136 (9) | 0.0063 (9) |
C4 | 0.0292 (10) | 0.0352 (11) | 0.0302 (11) | 0.0096 (9) | 0.0123 (9) | 0.0063 (8) |
C5 | 0.0341 (11) | 0.0317 (11) | 0.0347 (11) | 0.0126 (9) | 0.0154 (9) | 0.0081 (8) |
C6 | 0.0311 (11) | 0.0309 (11) | 0.0367 (11) | 0.0143 (8) | 0.0144 (9) | 0.0028 (9) |
C7 | 0.0254 (9) | 0.0256 (10) | 0.0281 (10) | 0.0076 (8) | 0.0099 (8) | 0.0058 (8) |
C8 | 0.0217 (9) | 0.0237 (9) | 0.0269 (10) | 0.0070 (7) | 0.0067 (8) | 0.0051 (7) |
C9 | 0.0257 (10) | 0.0277 (10) | 0.0290 (11) | 0.0105 (8) | 0.0109 (8) | 0.0069 (8) |
C10 | 0.0267 (10) | 0.0276 (10) | 0.0307 (11) | 0.0097 (8) | 0.0099 (8) | 0.0084 (8) |
C11 | 0.0321 (11) | 0.0343 (11) | 0.0289 (11) | 0.0134 (9) | 0.0090 (9) | 0.0147 (8) |
C12 | 0.0328 (11) | 0.0314 (11) | 0.0277 (11) | 0.0133 (9) | 0.0091 (9) | 0.0114 (8) |
C13 | 0.0304 (10) | 0.0278 (10) | 0.0295 (11) | 0.0104 (8) | 0.0110 (9) | 0.0077 (8) |
C14 | 0.0271 (10) | 0.0288 (11) | 0.0279 (11) | 0.0116 (8) | 0.0111 (8) | 0.0065 (8) |
C15 | 0.0267 (10) | 0.0265 (10) | 0.0268 (10) | 0.0092 (8) | 0.0088 (8) | 0.0034 (8) |
C16 | 0.0272 (10) | 0.0284 (10) | 0.0297 (10) | 0.0101 (8) | 0.0109 (8) | 0.0053 (8) |
C17 | 0.0252 (10) | 0.0363 (11) | 0.0356 (11) | 0.0128 (8) | 0.0137 (9) | 0.0050 (9) |
C18 | 0.0299 (11) | 0.0395 (12) | 0.0380 (12) | 0.0144 (9) | 0.0099 (9) | 0.0002 (9) |
C19 | 0.0351 (11) | 0.0414 (12) | 0.0303 (11) | 0.0193 (10) | 0.0107 (9) | 0.0034 (9) |
C20 | 0.0326 (11) | 0.0320 (11) | 0.0293 (11) | 0.0111 (9) | 0.0130 (9) | 0.0052 (8) |
C21 | 0.0311 (10) | 0.0329 (11) | 0.0344 (11) | 0.0113 (8) | 0.0129 (9) | 0.0046 (8) |
C22 | 0.0398 (13) | 0.0455 (14) | 0.0540 (15) | 0.0190 (11) | 0.0112 (11) | 0.0134 (11) |
C23 | 0.0242 (9) | 0.0247 (9) | 0.0227 (9) | 0.0057 (7) | 0.0069 (8) | 0.0044 (7) |
C24 | 0.0222 (9) | 0.0257 (10) | 0.0259 (10) | 0.0076 (7) | 0.0067 (8) | 0.0054 (7) |
C25 | 0.0242 (9) | 0.0309 (10) | 0.0287 (10) | 0.0080 (8) | 0.0068 (8) | 0.0088 (8) |
C26 | 0.0321 (11) | 0.0392 (12) | 0.0249 (10) | 0.0085 (9) | 0.0083 (9) | 0.0114 (8) |
C27 | 0.0328 (11) | 0.0363 (11) | 0.0261 (10) | 0.0099 (9) | 0.0125 (9) | 0.0059 (8) |
C28 | 0.0260 (10) | 0.0278 (10) | 0.0268 (10) | 0.0079 (8) | 0.0100 (8) | 0.0038 (8) |
C29 | 0.0269 (10) | 0.0272 (10) | 0.0282 (10) | 0.0084 (8) | 0.0103 (8) | 0.0024 (8) |
C30 | 0.0338 (11) | 0.0364 (11) | 0.0280 (11) | 0.0108 (9) | 0.0154 (9) | 0.0064 (8) |
C31 | 0.0386 (12) | 0.0363 (11) | 0.0262 (10) | 0.0124 (9) | 0.0120 (9) | 0.0096 (8) |
C32 | 0.0310 (10) | 0.0302 (11) | 0.0265 (10) | 0.0116 (8) | 0.0090 (8) | 0.0042 (8) |
C33 | 0.0274 (10) | 0.0272 (10) | 0.0244 (10) | 0.0096 (8) | 0.0094 (8) | 0.0036 (7) |
C34 | 0.0261 (10) | 0.0248 (10) | 0.0239 (10) | 0.0073 (8) | 0.0082 (8) | 0.0032 (7) |
C35 | 0.0298 (11) | 0.0345 (11) | 0.0415 (12) | 0.0163 (9) | 0.0138 (9) | 0.0112 (9) |
C36 | 0.0315 (11) | 0.0341 (11) | 0.0349 (11) | 0.0155 (9) | 0.0098 (9) | 0.0126 (9) |
C37 | 0.0307 (10) | 0.0323 (11) | 0.0360 (12) | 0.0148 (8) | 0.0099 (9) | 0.0133 (9) |
C38 | 0.0309 (10) | 0.0324 (11) | 0.0393 (12) | 0.0182 (9) | 0.0140 (9) | 0.0106 (9) |
Br1—C25 | 1.906 (2) | C16—C35 | 1.388 (3) |
Br2—C32 | 1.907 (2) | C17—C18 | 1.525 (3) |
N1—C7 | 1.382 (3) | C17—H17A | 0.9700 |
N1—C28 | 1.382 (3) | C17—H17B | 0.9700 |
N1—C6 | 1.451 (2) | C18—C19 | 1.524 (3) |
N2—C16 | 1.382 (3) | C18—H18A | 0.9700 |
N2—C29 | 1.383 (3) | C18—H18B | 0.9700 |
N2—C17 | 1.450 (2) | C19—C20 | 1.522 (3) |
C1—C2 | 1.507 (3) | C19—H19A | 0.9700 |
C1—H1A | 0.9600 | C19—H19B | 0.9700 |
C1—H1B | 0.9600 | C20—C21 | 1.518 (3) |
C1—H1C | 0.9600 | C20—H20A | 0.9700 |
C2—C3 | 1.517 (3) | C20—H20B | 0.9700 |
C2—H2A | 0.9700 | C21—C22 | 1.506 (3) |
C2—H2B | 0.9700 | C21—H21A | 0.9700 |
C3—C4 | 1.523 (3) | C21—H21B | 0.9700 |
C3—H3A | 0.9700 | C22—H22A | 0.9600 |
C3—H3B | 0.9700 | C22—H22B | 0.9600 |
C4—C5 | 1.519 (3) | C22—H22C | 0.9600 |
C4—H4A | 0.9700 | C23—C24 | 1.389 (3) |
C4—H4B | 0.9700 | C23—C28 | 1.412 (3) |
C5—C6 | 1.524 (3) | C24—C25 | 1.381 (3) |
C5—H5A | 0.9700 | C24—H24 | 0.9300 |
C5—H5B | 0.9700 | C25—C26 | 1.392 (3) |
C6—H6A | 0.9700 | C26—C27 | 1.383 (3) |
C6—H6B | 0.9700 | C26—H26 | 0.9300 |
C7—C38 | 1.388 (3) | C27—C28 | 1.394 (3) |
C7—C8 | 1.411 (3) | C27—H27 | 0.9300 |
C8—C9 | 1.391 (3) | C29—C30 | 1.386 (3) |
C8—C23 | 1.438 (3) | C29—C34 | 1.417 (3) |
C9—C10 | 1.393 (3) | C30—C31 | 1.380 (3) |
C9—H9 | 0.9300 | C30—H30 | 0.9300 |
C10—C37 | 1.412 (3) | C31—C32 | 1.390 (3) |
C10—C11 | 1.466 (3) | C31—H31 | 0.9300 |
C11—C12 | 1.329 (3) | C32—C33 | 1.380 (3) |
C11—H11 | 0.9300 | C33—C34 | 1.390 (3) |
C12—C13 | 1.469 (3) | C33—H33 | 0.9300 |
C12—H12 | 0.9300 | C35—C36 | 1.382 (3) |
C13—C14 | 1.399 (3) | C35—H35 | 0.9300 |
C13—C36 | 1.411 (3) | C36—H36 | 0.9300 |
C14—C15 | 1.387 (3) | C37—C38 | 1.390 (3) |
C14—H14 | 0.9300 | C37—H37 | 0.9300 |
C15—C16 | 1.417 (3) | C38—H38 | 0.9300 |
C15—C34 | 1.438 (3) | ||
C7—N1—C28 | 108.54 (16) | C19—C18—C17 | 112.46 (18) |
C7—N1—C6 | 125.99 (18) | C19—C18—H18A | 109.1 |
C28—N1—C6 | 125.38 (18) | C17—C18—H18A | 109.1 |
C16—N2—C29 | 108.88 (16) | C19—C18—H18B | 109.1 |
C16—N2—C17 | 126.08 (18) | C17—C18—H18B | 109.1 |
C29—N2—C17 | 125.02 (18) | H18A—C18—H18B | 107.8 |
C2—C1—H1A | 109.5 | C20—C19—C18 | 114.68 (18) |
C2—C1—H1B | 109.5 | C20—C19—H19A | 108.6 |
H1A—C1—H1B | 109.5 | C18—C19—H19A | 108.6 |
C2—C1—H1C | 109.5 | C20—C19—H19B | 108.6 |
H1A—C1—H1C | 109.5 | C18—C19—H19B | 108.6 |
H1B—C1—H1C | 109.5 | H19A—C19—H19B | 107.6 |
C1—C2—C3 | 113.9 (2) | C21—C20—C19 | 112.96 (17) |
C1—C2—H2A | 108.8 | C21—C20—H20A | 109.0 |
C3—C2—H2A | 108.8 | C19—C20—H20A | 109.0 |
C1—C2—H2B | 108.8 | C21—C20—H20B | 109.0 |
C3—C2—H2B | 108.8 | C19—C20—H20B | 109.0 |
H2A—C2—H2B | 107.7 | H20A—C20—H20B | 107.8 |
C2—C3—C4 | 113.19 (18) | C20—C21—C22 | 114.16 (19) |
C2—C3—H3A | 108.9 | C20—C21—H21A | 108.7 |
C4—C3—H3A | 108.9 | C22—C21—H21A | 108.7 |
C2—C3—H3B | 108.9 | C20—C21—H21B | 108.7 |
C4—C3—H3B | 108.9 | C22—C21—H21B | 108.7 |
H3A—C3—H3B | 107.8 | H21A—C21—H21B | 107.6 |
C3—C4—C5 | 114.11 (17) | C21—C22—H22A | 109.5 |
C3—C4—H4A | 108.7 | C21—C22—H22B | 109.5 |
C5—C4—H4A | 108.7 | H22A—C22—H22B | 109.5 |
C3—C4—H4B | 108.7 | C21—C22—H22C | 109.5 |
C5—C4—H4B | 108.7 | H22A—C22—H22C | 109.5 |
H4A—C4—H4B | 107.6 | H22B—C22—H22C | 109.5 |
C4—C5—C6 | 112.79 (17) | C24—C23—C28 | 119.99 (18) |
C4—C5—H5A | 109.0 | C24—C23—C8 | 133.57 (17) |
C6—C5—H5A | 109.0 | C28—C23—C8 | 106.41 (17) |
C4—C5—H5B | 109.0 | C25—C24—C23 | 117.61 (17) |
C6—C5—H5B | 109.0 | C25—C24—H24 | 121.2 |
H5A—C5—H5B | 107.8 | C23—C24—H24 | 121.2 |
N1—C6—C5 | 113.69 (17) | C24—C25—C26 | 122.94 (19) |
N1—C6—H6A | 108.8 | C24—C25—Br1 | 118.72 (15) |
C5—C6—H6A | 108.8 | C26—C25—Br1 | 118.33 (16) |
N1—C6—H6B | 108.8 | C27—C26—C25 | 119.9 (2) |
C5—C6—H6B | 108.8 | C27—C26—H26 | 120.1 |
H6A—C6—H6B | 107.7 | C25—C26—H26 | 120.1 |
N1—C7—C38 | 129.56 (18) | C28—C27—C26 | 118.18 (18) |
N1—C7—C8 | 109.08 (17) | C28—C27—H27 | 120.9 |
C38—C7—C8 | 121.37 (18) | C26—C27—H27 | 120.9 |
C9—C8—C7 | 120.07 (18) | N1—C28—C27 | 129.37 (18) |
C9—C8—C23 | 133.19 (18) | N1—C28—C23 | 109.24 (18) |
C7—C8—C23 | 106.73 (16) | C27—C28—C23 | 121.38 (19) |
C8—C9—C10 | 119.78 (17) | C30—C29—N2 | 129.50 (18) |
C8—C9—H9 | 120.1 | C30—C29—C34 | 121.60 (19) |
C10—C9—H9 | 120.1 | N2—C29—C34 | 108.90 (18) |
C9—C10—C37 | 118.72 (18) | C29—C30—C31 | 118.11 (18) |
C9—C10—C11 | 122.78 (17) | C29—C30—H30 | 120.9 |
C37—C10—C11 | 118.46 (19) | C31—C30—H30 | 120.9 |
C12—C11—C10 | 126.0 (2) | C30—C31—C32 | 120.0 (2) |
C12—C11—H11 | 117.0 | C30—C31—H31 | 120.0 |
C10—C11—H11 | 117.0 | C32—C31—H31 | 120.0 |
C11—C12—C13 | 127.3 (2) | C33—C32—C31 | 123.2 (2) |
C11—C12—H12 | 116.4 | C33—C32—Br2 | 118.65 (15) |
C13—C12—H12 | 116.4 | C31—C32—Br2 | 118.17 (16) |
C14—C13—C36 | 118.61 (18) | C32—C33—C34 | 117.33 (18) |
C14—C13—C12 | 122.78 (18) | C32—C33—H33 | 121.3 |
C36—C13—C12 | 118.61 (19) | C34—C33—H33 | 121.3 |
C15—C14—C13 | 119.81 (17) | C33—C34—C29 | 119.81 (19) |
C15—C14—H14 | 120.1 | C33—C34—C15 | 133.55 (18) |
C13—C14—H14 | 120.1 | C29—C34—C15 | 106.61 (17) |
C14—C15—C16 | 119.93 (19) | C16—C35—C36 | 117.65 (19) |
C14—C15—C34 | 133.42 (18) | C16—C35—H35 | 121.2 |
C16—C15—C34 | 106.66 (17) | C36—C35—H35 | 121.2 |
N2—C16—C35 | 129.78 (18) | C35—C36—C13 | 122.7 (2) |
N2—C16—C15 | 108.96 (18) | C35—C36—H36 | 118.6 |
C35—C16—C15 | 121.26 (18) | C13—C36—H36 | 118.6 |
N2—C17—C18 | 113.14 (17) | C38—C37—C10 | 122.59 (19) |
N2—C17—H17A | 109.0 | C38—C37—H37 | 118.7 |
C18—C17—H17A | 109.0 | C10—C37—H37 | 118.7 |
N2—C17—H17B | 109.0 | C7—C38—C37 | 117.42 (18) |
C18—C17—H17B | 109.0 | C7—C38—H38 | 121.3 |
H17A—C17—H17B | 107.8 | C37—C38—H38 | 121.3 |
Cg6 is the centroid of the C29–C34 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Br1i | 0.93 | 3.04 | 3.9062 (19) | 157 |
C12—H12···Br1i | 0.93 | 3.00 | 3.921 (2) | 172 |
C11—H11···Br2ii | 0.93 | 3.03 | 3.932 (2) | 163 |
C14—H14···Br2ii | 0.93 | 2.94 | 3.821 (2) | 159 |
C21—H21B···Cg6iii | 0.93 | 2.89 | 3.791 (3) | 154 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z−1. |
Cg(I) | Cg(J) [ ARU(J)] | Cg-Cg | α | CgI_Perp | CgJ_Perp |
Cg(1) | Cg(1) [2656.01] | 4.3365 | 0 | -3.5042 | -3.5042 |
Cg(1) | Cg(3) [2656.01] | 5.4195 | 1.424 | -3.5070 | -3.5193 |
Cg(1) | Cg(5) [2656.01] | 3.6898 | 1.126 | -3.5290 | -3.5284 |
Cg(2) | Cg(2) [2765.01] | 4.0065 | 0 | 3.5166 | 3.5166 |
Cg(2) | Cg(4) [2765.01] | 5.2650 | 0.997 | 3.5672 | 3.5002 |
Cg(2) | Cg(6) [2765.01] | 3.5000 | 1.275 | 3.4956 | 3.4909 |
Cg(3) | Cg(1) [2656.01] | 5.4195 | 1.424 | -3.5193 | -3.5070 |
Cg(3) | Cg(5) [2656.01] | 4.0524 | 1.960 | -3.5814 | -3.5354 |
Cg(4) | Cg(2) [2765.01] | 5.2650 | 0.997 | 3.5002 | 3.5672 |
Cg(4) | Cg(6) [2765.01] | 4.0191 | 2.123 | 3.4465 | 3.5085 |
Cg(5) | Cg(1) [2656.01] | 3.6898 | 1.126 | -3.5284 | -3.5290 |
Cg(5) | Cg(3) [2656.01] | 4.0524 | 1.960 | -3.5354 | -3.5814 |
Cg(5) | Cg(5) [2656.01] | 4.2114 | 0 | -3.5109 | -3.5109 |
Cg(5) | Cg(6) [1556.01] | 5.4638 | 16.970 | -4.0104 | 3.0948 |
Cg(6) | Cg(2) [2765.01] | 3.5000 | 1.275 | 3.4909 | 3.4956 |
Cg(6) | Cg(4) [2765.01] | 4.0191 | 2.123 | 3.5085 | 3.4465 |
Cg(6) | Cg(5) [1554.01] | 5.4638 | 16.970 | 3.0948 | -4.0104 |
Cg(6) | Cg(6) [2765.01] | 4.2119 | 0 | 3.5165 | 3.5165 |
Cg(I), Cg(J): Plane number I,J (ring number in figure 1); Cg-Cg: Distance between ring Centroids (Ang.); α: Dihedral Angle between Planes I and J (Deg); CgI_Perp: Perpendicular distance of Cg(I) on ring J (Ang.); CgJ_Perp: Perpendicular distance of Cg(J) on ring I (Ang.); [2656.01]: 1-X, -Y, 1-Z; [2765.01] = 2-X, 1-Y, -Z; [1556.01] = X, Y, 1+Z; [1554.01] = X, Y, -1+Z. |
CgI | x | y | z |
Cg1 | 0.589228 | 0.201962 | 0.526550 |
Cg2 | 0.925482 | 0.314678 | -0.014062 |
Cg3 | 0.576427 | 0.257533 | 0.414090 |
Cg4 | 0.930362 | 0.257838 | 0.097958 |
Cg5 | 0.691673 | 0.097473 | 0.600602 |
Cg6 | 0.804030 | 0.396628 | -0.097550 |
Funding information
This research was supported by the Natural Science Foundation of Shandong Province (No. ZR2015EM006) and the National Natural Science Foundation of China (No. 51372143).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, T., Zhang, B., Liu, Z., Duan, L., Dong, G., Feng, Y., Luo, X. & Cui, D. (2017). Tetrahedron Lett. 58, 531–535. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hua, W., Liu, Z., Duan, L., Dong, G., Qiu, Y., Zhang, B., Cui, D., Tao, X., Cheng, N. & Liu, Y. (2015). RSC Adv. 5, 75–84. Web of Science CSD CrossRef CAS Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Kim, E., Felouat, A., Zaborova, E., Ribierre, J.-C., Wu, J. W., Senatore, S., Matthews, C., Lenne, P.-F., Baffert, C., Karapetyan, A., Giorgi, M., Jacquemin, D., Ponce-Vargas, M., Le Guennic, B., Fages, F. & D'Aléo, A. (2016). Org. Biomol. Chem. 14, 1311–1324. Web of Science CSD CrossRef CAS Google Scholar
Kumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455–o3456. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Nishiura, M., Wang, Y. & Hou, Z. (2006). J. Am. Chem. Soc. 128, 5592–5593. Web of Science CrossRef PubMed CAS Google Scholar
Liu, Y., Ye, X., Liu, G., Lv, Y., Zhang, X., Chen, S., Lam, J. W. Y., Kwok, H. S., Tao, X. & Tang, B. Z. (2014). J. Mater. Chem. C. 2, 1004–1009. Web of Science CSD CrossRef CAS Google Scholar
Percino, J. M., Cerón, M., Rodríguez, O., Soriano-Moro, G., Castro, E. M., Chapela, M. V., Siegler, A. M. & Pérez-Gutiérrez, E. (2016). Molecules, 21, 389–408. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, L., Liu, Z., Dong, G., Duan, L., Qiu, Y., Jia, J., Guo, W., Zhao, D., Cui, D. & Tao, X. (2012). Chem. Eur. J. 18, 8092–8099. Web of Science CSD CrossRef CAS PubMed Google Scholar
Shi, L.-Q., Liu, Z., Guo, W., Zhao, D., Wang, L., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 535–537. CAS Google Scholar
Shi, H., Xin, D., Bai, S.-D., Fang, L., Duan, X.-E., Roose, J., Peng, H., Chen, S. & Tang, B. Z. (2016). Org. Electron. 33, 78–87. Web of Science CSD CrossRef CAS Google Scholar
Song, Y. B., Di, C. A., Wei, Z. M., Zhao, T. Y., Xu, W., Liu, Y. Q., Zhang, D. Q. & Zhu, D. B. (2008). Chem. Eur. J. 14, 4731–4740. Web of Science CSD CrossRef CAS Google Scholar
Teetsov, J. & Fox, M. A. (1999). J. Mater. Chem. 9, 2117–2122. Web of Science CrossRef CAS Google Scholar
Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. (2012). Chem. Rev. 112, 2208–2267. Web of Science CrossRef CAS Google Scholar
Xue, P., Yao, B., Zhang, Y., Chen, P., Li, K., Liu, B. & Lu, R. (2014). Org. Biomol. Chem. 12, 7110–7118. Web of Science CSD CrossRef CAS Google Scholar
Zhang, L., Cai, C., Li, K. F., Tam, H. L., Chan, K. L. & Cheah, K. W. (2015). Appl. Mater. Interfaces, 7, 24983–24986. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.