research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1,2-bis­­(6-bromo-9-hexyl-9H-carbazol-3-yl)ethene

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
*Correspondence e-mail: lz@sdu.edu.cn

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 30 January 2018; accepted 4 February 2018; online 13 February 2018)

The title compound, C38H40Br2N2, crystallizes in the triclinic space group P-1 with two mol­ecules in a unit cell. The two carbazole groups are nearly coplanar, making a dihedral angle of 16.90 (5)°, and are bridged by vinyl. The crystal structure features ππ and C—H⋯π inter­actions and C—H⋯Br short contacts.

1. Chemical context

To date, π-conjugated organic mol­ecules have attracted considerable attention because of their applications in many fields, such as non-linear optics (Kim et al., 2016[Kim, E., Felouat, A., Zaborova, E., Ribierre, J.-C., Wu, J. W., Senatore, S., Matthews, C., Lenne, P.-F., Baffert, C., Karapetyan, A., Giorgi, M., Jacquemin, D., Ponce-Vargas, M., Le Guennic, B., Fages, F. & D'Aléo, A. (2016). Org. Biomol. Chem. 14, 1311-1324.]; Percino et al., 2016[Percino, J. M., Cerón, M., Rodríguez, O., Soriano-Moro, G., Castro, E. M., Chapela, M. V., Siegler, A. M. & Pérez-Gutiérrez, E. (2016). Molecules, 21, 389-408.]; Xue et al., 2014[Xue, P., Yao, B., Zhang, Y., Chen, P., Li, K., Liu, B. & Lu, R. (2014). Org. Biomol. Chem. 12, 7110-7118.]) and optoeletronic devices (Shi et al., 2016[Shi, H., Xin, D., Bai, S.-D., Fang, L., Duan, X.-E., Roose, J., Peng, H., Chen, S. & Tang, B. Z. (2016). Org. Electron. 33, 78-87.]; Zhang et al., 2015[Zhang, L., Cai, C., Li, K. F., Tam, H. L., Chan, K. L. & Cheah, K. W. (2015). Appl. Mater. Interfaces, 7, 24983-24986.]). Carbazole-based π-conjugated compounds have been utilized as the light-emitting layers in OLEDs (Liu et al., 2006[Liu, Y., Nishiura, M., Wang, Y. & Hou, Z. (2006). J. Am. Chem. Soc. 128, 5592-5593.], 2014[Liu, Y., Ye, X., Liu, G., Lv, Y., Zhang, X., Chen, S., Lam, J. W. Y., Kwok, H. S., Tao, X. & Tang, B. Z. (2014). J. Mater. Chem. C. 2, 1004-1009.]). The design of the title mol­ecule combines the advantages of several factors. Firstly, vinyl has been introduced to bridge mol­ecules; this is of importance for extension of the π-conjugated system, which is beneficial for carrier mobility (Wang et al., 2012[Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. (2012). Chem. Rev. 112, 2208-2267.]). Secondly, introducing long alkyl substituents to carbazole cores is an effective method to solve poor solubility (Teetsov & Fox, 1999[Teetsov, J. & Fox, M. A. (1999). J. Mater. Chem. 9, 2117-2122.]) and fluorescence quenching in the solid state (Hua et al., 2015[Hua, W., Liu, Z., Duan, L., Dong, G., Qiu, Y., Zhang, B., Cui, D., Tao, X., Cheng, N. & Liu, Y. (2015). RSC Adv. 5, 75-84.]). In addition, introduction of Br into the structure of vinyl-bridged carbazoles can enhance inter­molecular inter­actions by forming non-classical hydrogen bonds. Br-substituted mol­ecules are excellent inter­mediate products since the bonding energy of the C—Br bond is weaker than that of C—H, and Br substituents are easily replaced by other substituents.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the space group Pī with one mol­ecule in the asymmetric unit, as shown in Fig. 1[link]. The mol­ecule is an (E) isomer and has approximate Cs symmetry. The mean deviation from the plane of the cabazole unit including N1 is 0.0272 Å, with deviations of 0.159 (2) Å for C11 and 0.059 (2) Å for Br1, while the mean of the cabazole unit including N2 is 0.0224 Å with deviations of 0.052 (2) Å for C12 and 0.084 (2) Å for Br2. Note that there is a double bond between carbon atoms C11 and C12. Each carbazole group is planar, excluding hexyl groups, and its respective peripheral atoms such as bromine and the double-bonded carbon atoms were accommodated in a planar geometry, as shown by the C6—N1—N2—C17 torsion angle of −147.5 (2)° and the Br1—C25—C32—Br2 torsion angle of −167.70 (3)°. The two carbazole groups are almost in the same plane, making a dihedral angle of 16.9 (5)°. The angles between the least-squares planes of neighboring rings are in the range of 1.00–1.42°. Furthermore, they are trans to the C=C double bond, as indicated by the C10—C11—C12—C13 torsion angle of 176.1 (2)°. The intra­molecular Br1⋯Br2 distance of 16.710 (5) Å is much longer than the sum of the van der Waals radii (3.7 Å) and the angle between C—Br bonds is 169.4°, indicating that the title mol­ecule forms an extended, conjugated π-system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, 1, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules stack in a face-to-face manner along the b axis (see Fig. 2[link]). Adjacent mol­ecules are staggered and inter­locked through their aromatic units, which assume face-to-face orientations. The distances and angles between them indicate the presence of well-defined inter­molecular ππ inter­actions (Hunter et al., 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]) [Cg1⋯Cg5(1 − x, 2 − y, 1 − z) = 3.6898 (13) and Cg2⋯Cg6(−x, 1 − y, 2 − z) = 3.5000 (13) Å; Cg1, Cg2, Cg5 and Cg6 are the centroids of the N1/C7/C8/C23/C28, N2/C16/C15/C34/C29, C23–C28 and C29–C34 rings, respectively]. There are C—H⋯π inter­actions (Table 1[link]) between neighboring mol­ecules along the a axis while weak C—H⋯Br short contacts link the mol­ecules into a chain-like arrangement in the ac plane (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C29–C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Br1i 0.93 3.04 3.9062 (19) 157
C12—H12⋯Br1i 0.93 3.00 3.921 (2) 172
C11—H11⋯Br2ii 0.93 3.03 3.932 (2) 163
C14—H14⋯Br2ii 0.93 2.94 3.821 (2) 159
C21—H21BCg6iii 0.93 2.89 3.791 (3) 154
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z-1.
[Figure 2]
Figure 2
The crystal packing of the title compound 1 viewed along the b axis. Details of C—H⋯Br also were showed.

4. Database survey

A search of the Cambridge Crystallographic Database (WebCSD, Version 1.1.2, last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for (E)-1,2-di(9H-carbazol-3-yl)ethene, reveals six structures. The structure of (E)-1,2-bis­(9-hexyl-9H-carbazol-3-yl)ethene was determined successfully by our research group (Shi, Liu, Dong et al., 2012[Shi, L., Liu, Z., Dong, G., Duan, L., Qiu, Y., Jia, J., Guo, W., Zhao, D., Cui, D. & Tao, X. (2012). Chem. Eur. J. 18, 8092-8099.]; Shi, Liu, Guo et al., 2012[Shi, L.-Q., Liu, Z., Guo, W., Zhao, D., Wang, L., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 535-537.]) and we have also investigated the propeller-shaped structures of two ethene derivatives substituted by carbazole, phenyl and dimesitylboron (Shi et al., 2016[Shi, H., Xin, D., Bai, S.-D., Fang, L., Duan, X.-E., Roose, J., Peng, H., Chen, S. & Tang, B. Z. (2016). Org. Electron. 33, 78-87.]). The single crystal structure of the ethene substituted by two cabazole groups and two phenyl rings has been reported (Liu et al., 2014[Liu, Y., Ye, X., Liu, G., Lv, Y., Zhang, X., Chen, S., Lam, J. W. Y., Kwok, H. S., Tao, X. & Tang, B. Z. (2014). J. Mater. Chem. C. 2, 1004-1009.]) as well as structures where the two carbazole groups are linked via several organic groups, including vinyl (Kumar et al., 2006[Kumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455-o3456.]; Song et al., 2008[Song, Y. B., Di, C. A., Wei, Z. M., Zhao, T. Y., Xu, W., Liu, Y. Q., Zhang, D. Q. & Zhu, D. B. (2008). Chem. Eur. J. 14, 4731-4740.]).

5. Synthesis and crystallization

All reactants and solvents were purchased and used without further purification. THF was dried by using Na in the presence of benzo­phenone and DMF was dried by using mol­ecular sieves. 9-Hexyl-9H-carbazole (4), 9-hexyl-9-carbazole-3-carbaldehyde (3) and 9-hexyl-9-carbazole-3-Br-6-carbaldehyde (2) were synthesized according to methods reported by our research group (Chen et al., 2017[Chen, T., Zhang, B., Liu, Z., Duan, L., Dong, G., Feng, Y., Luo, X. & Cui, D. (2017). Tetrahedron Lett. 58, 531-535.]; Shi, Liu et al., 2012[Shi, L., Liu, Z., Dong, G., Duan, L., Qiu, Y., Jia, J., Guo, W., Zhao, D., Cui, D. & Tao, X. (2012). Chem. Eur. J. 18, 8092-8099.][Shi, L.-Q., Liu, Z., Guo, W., Zhao, D., Wang, L., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 535-537.]; Shi, Xin et al., 2012[Shi, L., Liu, Z., Dong, G., Duan, L., Qiu, Y., Jia, J., Guo, W., Zhao, D., Cui, D. & Tao, X. (2012). Chem. Eur. J. 18, 8092-8099.][Shi, L.-Q., Liu, Z., Guo, W., Zhao, D., Wang, L., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 535-537.]).

The title compound 1 was synthesized through a McMurry reaction (see Fig. 3[link]). (E)-1,2-Bis(6-bromo-9-hexyl-9H-carbazol-3-yl)ethene (1): Zn power (5.840 g, 80.0 mmol) was mixed with THF (200.0 mL) and stirred sharply on the flask under Ar. Pure di­chloro­methane (30.0 mL) was poured into a constant pressure funnel and then TiCl4 (4.42 mL, 40.0 mmol) was injected into the di­chloro­methane. The mixture was added dropwise to the flask. The reaction system was heated at 353 K and stirred for 3 h. After cooling to room temperature, compound 2 was dissolved in THF (100.0 mL), added dropwise to the flask for 2 h at 273 K, then heated to 353 K and stirred for 24 h. Finally, the mixture was poured into saturated NaHCO3 solution and stirred sharply for 3 h. The reaction solution was extracted with di­chloro­methane. The solvent was washed with deionized water and saturated brine three times, then dried with anhydrous magnesium sulfate. After the solvent had been removed under reduced pressure, the residue was purified by flash chromatography on silica gel using di­chloro­methane–petroleum ether (1: 4 v:v) as eluent to achieve a yellow solid. Pale-yellow block-shaped crystals were obtained by recrystallization from the mixed solvent n-hex­ane/methyl­ene chloride (0.878 g). Yield: 64.3%.

[Figure 3]
Figure 3
Reaction scheme.

1H NMR (300 MHz, CDCl3, 298 K, TMS): δ = 8.24 (d, J = 1.8 Hz, 2H; Ar-H), 8.19 (d, J = 1.5 Hz, 2H; Ar-H), 7.74 (d, J = 1.8 Hz, 2H; Ar-H), 7.71 (d, J = 1.5 Hz, 2H; Ar-H), 7.55 (dd, J = 1.8 Hz, 2H; Ar-H), 7.52 (d, J = 2.4 Hz, 2H; Ar-H), 7.40 (s, 1H; Ar-H), 7.38 (s, 1H; Ar-H), 4.27 (t, J = 7.5 Hz 4H; hexyl-H), 1.91–1.81 (m, 4H, hexyl-H), 1.42–1.45 (m, 12H; hexyl-H), 0.87 ppm (t, J = 7.0 Hz, 6H; hexyl-H); 13C NMR (75 MHz, CDCl3, 298 K, TMS): δ = 139.73, 138.97, 129.01, 127.85, 126.61, 124.46, 124.12, 122.68, 121.73, 117.87, 111.18, 109.78, 108.67, 42.85, 31.05, 28.44, 26.44, 22.04, 13.51 ppm; FTIR: 3030, 2955, 2944, 2926, 2864, 1839, 1736, 1628, 1596, 1488, 1465, 1450, 1383, 1349, 1302, 1286, 1244, 1220, 1194, 1152, 1134, 1053, 1019, 896, 867, 804, 790, 746, 730 cm−1; HRMS (MALDI–TOF): m/z: calculated for C38H40Br2N2: 682.2; found: 683.7.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C38H40Br2N2
Mr 684.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.5553 (12), 11.4379 (16), 17.333 (2)
α, β, γ (°) 101.247 (2), 98.392 (1), 104.990 (2)
V3) 1572.0 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.61
Crystal size (mm) 0.50 × 0.24 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.477, 0.659
No. of measured, independent and observed [I > 2σ(I)] reflections 18097, 7063, 5602
Rint 0.036
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.106, 0.77
No. of reflections 7063
No. of parameters 381
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.37
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

(E)-1,2-Bis(6-bromo-9-hexyl-9H-carbazol-3-yl)ethene top
Crystal data top
C38H40Br2N2Z = 2
Mr = 684.54F(000) = 704
Triclinic, P1Dx = 1.446 Mg m3
a = 8.5553 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4379 (16) ÅCell parameters from 7151 reflections
c = 17.333 (2) Åθ = 2.5–27.4°
α = 101.247 (2)°µ = 2.61 mm1
β = 98.392 (1)°T = 296 K
γ = 104.990 (2)°Block, pale yellow
V = 1572.0 (4) Å30.50 × 0.24 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
7063 independent reflections
Radiation source: fine-focus sealed tube5602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1111
Tmin = 0.477, Tmax = 0.659k = 1414
18097 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.77 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
7063 reflections(Δ/σ)max = 0.033
381 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07518 (3)1.08100 (2)0.368357 (13)0.03674 (9)
Br20.48276 (3)0.47768 (2)1.151520 (13)0.03649 (9)
N10.4919 (2)0.74884 (16)0.43613 (10)0.0292 (4)
N20.0392 (2)0.70603 (16)1.03984 (10)0.0290 (4)
C11.1045 (3)0.4685 (2)0.39475 (17)0.0485 (6)
H1A1.17160.51890.44560.073*
H1B1.17080.42980.36430.073*
H1C1.01530.40520.40350.073*
C21.0354 (3)0.5495 (2)0.34896 (14)0.0357 (5)
H2A0.97480.49890.29610.043*
H2B1.12650.61420.34150.043*
C30.9216 (3)0.6105 (2)0.39002 (13)0.0316 (5)
H3A0.98140.66000.44320.038*
H3B0.82920.54590.39660.038*
C40.8552 (3)0.6937 (2)0.34368 (13)0.0311 (4)
H4A0.78620.64230.29270.037*
H4B0.94760.75260.33220.037*
C50.7551 (3)0.7660 (2)0.38762 (13)0.0320 (5)
H5A0.74310.83220.36190.038*
H5B0.81510.80440.44260.038*
C60.5841 (3)0.68408 (19)0.38851 (13)0.0319 (5)
H6A0.52100.65160.33370.038*
H6B0.59610.61360.40960.038*
C70.4684 (2)0.73873 (18)0.51204 (12)0.0260 (4)
C80.3640 (2)0.80997 (17)0.53622 (12)0.0240 (4)
C90.3180 (2)0.81224 (17)0.61012 (11)0.0264 (4)
H90.24920.85920.62610.032*
C100.3754 (2)0.74392 (18)0.66009 (12)0.0274 (4)
C110.3229 (3)0.7348 (2)0.73609 (12)0.0298 (4)
H110.38300.70180.77070.036*
C120.1974 (3)0.76918 (19)0.76010 (12)0.0290 (4)
H120.14240.80680.72670.035*
C130.1359 (2)0.75442 (19)0.83351 (12)0.0283 (4)
C140.2124 (2)0.70651 (17)0.89176 (11)0.0267 (4)
H140.30770.68410.88550.032*
C150.1458 (2)0.69252 (18)0.95890 (12)0.0265 (4)
C160.0028 (2)0.72944 (19)0.96916 (12)0.0278 (4)
C170.1801 (2)0.7281 (2)1.07101 (13)0.0314 (5)
H17A0.23010.65831.09230.038*
H17B0.26170.73201.02720.038*
C180.1347 (3)0.8482 (2)1.13693 (14)0.0361 (5)
H18A0.05360.84431.18100.043*
H18B0.08440.91821.11580.043*
C190.2842 (3)0.8703 (2)1.16877 (13)0.0344 (5)
H19A0.34700.79341.17920.041*
H19B0.24530.93251.21960.041*
C200.3993 (3)0.9134 (2)1.11272 (12)0.0306 (4)
H20A0.33610.98801.09980.037*
H20B0.44420.84921.06300.037*
C210.5411 (3)0.9413 (2)1.14864 (13)0.0323 (5)
H21A0.49660.99511.20230.039*
H21B0.61380.86381.15370.039*
C220.6416 (3)1.0029 (2)1.10040 (16)0.0448 (6)
H22A0.57211.08171.09720.067*
H22B0.72991.01611.12610.067*
H22C0.68700.95021.04720.067*
C230.3243 (2)0.86664 (18)0.47177 (11)0.0241 (4)
C240.2259 (2)0.94360 (18)0.45978 (12)0.0244 (4)
H240.17090.97080.49890.029*
C250.2127 (2)0.97824 (19)0.38768 (12)0.0276 (4)
C260.2924 (3)0.9391 (2)0.32750 (13)0.0317 (5)
H260.28040.96500.27990.038*
C270.3894 (3)0.8616 (2)0.33856 (12)0.0314 (5)
H270.44250.83400.29870.038*
C280.4054 (2)0.82602 (19)0.41109 (12)0.0268 (4)
C290.0727 (2)0.65426 (19)1.07554 (12)0.0275 (4)
C300.0789 (3)0.6144 (2)1.14621 (13)0.0319 (5)
H300.00200.62241.17810.038*
C310.2025 (3)0.5627 (2)1.16787 (13)0.0326 (5)
H310.20910.53451.21470.039*
C320.3170 (3)0.55263 (19)1.11963 (12)0.0288 (4)
C330.3143 (2)0.59188 (18)1.04918 (11)0.0260 (4)
H330.39210.58351.01790.031*
C340.1905 (2)0.64437 (18)1.02687 (12)0.0250 (4)
C350.0731 (3)0.7797 (2)0.91302 (14)0.0330 (5)
H350.16580.80520.92030.040*
C360.0061 (3)0.7904 (2)0.84590 (13)0.0315 (4)
H360.05670.82260.80730.038*
C370.4842 (3)0.6770 (2)0.63531 (13)0.0309 (4)
H370.52580.63400.66960.037*
C380.5315 (3)0.6729 (2)0.56168 (13)0.0315 (5)
H380.60270.62780.54630.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03362 (13)0.04857 (15)0.03772 (14)0.02071 (10)0.00922 (10)0.01996 (10)
Br20.03889 (14)0.04713 (15)0.03280 (14)0.02262 (11)0.01095 (10)0.01533 (10)
N10.0315 (9)0.0318 (9)0.0308 (9)0.0152 (7)0.0158 (8)0.0076 (7)
N20.0274 (9)0.0350 (9)0.0298 (9)0.0131 (7)0.0133 (7)0.0092 (7)
C10.0410 (14)0.0496 (15)0.0563 (16)0.0221 (12)0.0036 (12)0.0093 (12)
C20.0280 (10)0.0365 (12)0.0435 (13)0.0109 (9)0.0136 (10)0.0052 (10)
C30.0285 (10)0.0356 (11)0.0324 (11)0.0096 (9)0.0136 (9)0.0063 (9)
C40.0292 (10)0.0352 (11)0.0302 (11)0.0096 (9)0.0123 (9)0.0063 (8)
C50.0341 (11)0.0317 (11)0.0347 (11)0.0126 (9)0.0154 (9)0.0081 (8)
C60.0311 (11)0.0309 (11)0.0367 (11)0.0143 (8)0.0144 (9)0.0028 (9)
C70.0254 (9)0.0256 (10)0.0281 (10)0.0076 (8)0.0099 (8)0.0058 (8)
C80.0217 (9)0.0237 (9)0.0269 (10)0.0070 (7)0.0067 (8)0.0051 (7)
C90.0257 (10)0.0277 (10)0.0290 (11)0.0105 (8)0.0109 (8)0.0069 (8)
C100.0267 (10)0.0276 (10)0.0307 (11)0.0097 (8)0.0099 (8)0.0084 (8)
C110.0321 (11)0.0343 (11)0.0289 (11)0.0134 (9)0.0090 (9)0.0147 (8)
C120.0328 (11)0.0314 (11)0.0277 (11)0.0133 (9)0.0091 (9)0.0114 (8)
C130.0304 (10)0.0278 (10)0.0295 (11)0.0104 (8)0.0110 (9)0.0077 (8)
C140.0271 (10)0.0288 (11)0.0279 (11)0.0116 (8)0.0111 (8)0.0065 (8)
C150.0267 (10)0.0265 (10)0.0268 (10)0.0092 (8)0.0088 (8)0.0034 (8)
C160.0272 (10)0.0284 (10)0.0297 (10)0.0101 (8)0.0109 (8)0.0053 (8)
C170.0252 (10)0.0363 (11)0.0356 (11)0.0128 (8)0.0137 (9)0.0050 (9)
C180.0299 (11)0.0395 (12)0.0380 (12)0.0144 (9)0.0099 (9)0.0002 (9)
C190.0351 (11)0.0414 (12)0.0303 (11)0.0193 (10)0.0107 (9)0.0034 (9)
C200.0326 (11)0.0320 (11)0.0293 (11)0.0111 (9)0.0130 (9)0.0052 (8)
C210.0311 (10)0.0329 (11)0.0344 (11)0.0113 (8)0.0129 (9)0.0046 (8)
C220.0398 (13)0.0455 (14)0.0540 (15)0.0190 (11)0.0112 (11)0.0134 (11)
C230.0242 (9)0.0247 (9)0.0227 (9)0.0057 (7)0.0069 (8)0.0044 (7)
C240.0222 (9)0.0257 (10)0.0259 (10)0.0076 (7)0.0067 (8)0.0054 (7)
C250.0242 (9)0.0309 (10)0.0287 (10)0.0080 (8)0.0068 (8)0.0088 (8)
C260.0321 (11)0.0392 (12)0.0249 (10)0.0085 (9)0.0083 (9)0.0114 (8)
C270.0328 (11)0.0363 (11)0.0261 (10)0.0099 (9)0.0125 (9)0.0059 (8)
C280.0260 (10)0.0278 (10)0.0268 (10)0.0079 (8)0.0100 (8)0.0038 (8)
C290.0269 (10)0.0272 (10)0.0282 (10)0.0084 (8)0.0103 (8)0.0024 (8)
C300.0338 (11)0.0364 (11)0.0280 (11)0.0108 (9)0.0154 (9)0.0064 (8)
C310.0386 (12)0.0363 (11)0.0262 (10)0.0124 (9)0.0120 (9)0.0096 (8)
C320.0310 (10)0.0302 (11)0.0265 (10)0.0116 (8)0.0090 (8)0.0042 (8)
C330.0274 (10)0.0272 (10)0.0244 (10)0.0096 (8)0.0094 (8)0.0036 (7)
C340.0261 (10)0.0248 (10)0.0239 (10)0.0073 (8)0.0082 (8)0.0032 (7)
C350.0298 (11)0.0345 (11)0.0415 (12)0.0163 (9)0.0138 (9)0.0112 (9)
C360.0315 (11)0.0341 (11)0.0349 (11)0.0155 (9)0.0098 (9)0.0126 (9)
C370.0307 (10)0.0323 (11)0.0360 (12)0.0148 (8)0.0099 (9)0.0133 (9)
C380.0309 (10)0.0324 (11)0.0393 (12)0.0182 (9)0.0140 (9)0.0106 (9)
Geometric parameters (Å, º) top
Br1—C251.906 (2)C16—C351.388 (3)
Br2—C321.907 (2)C17—C181.525 (3)
N1—C71.382 (3)C17—H17A0.9700
N1—C281.382 (3)C17—H17B0.9700
N1—C61.451 (2)C18—C191.524 (3)
N2—C161.382 (3)C18—H18A0.9700
N2—C291.383 (3)C18—H18B0.9700
N2—C171.450 (2)C19—C201.522 (3)
C1—C21.507 (3)C19—H19A0.9700
C1—H1A0.9600C19—H19B0.9700
C1—H1B0.9600C20—C211.518 (3)
C1—H1C0.9600C20—H20A0.9700
C2—C31.517 (3)C20—H20B0.9700
C2—H2A0.9700C21—C221.506 (3)
C2—H2B0.9700C21—H21A0.9700
C3—C41.523 (3)C21—H21B0.9700
C3—H3A0.9700C22—H22A0.9600
C3—H3B0.9700C22—H22B0.9600
C4—C51.519 (3)C22—H22C0.9600
C4—H4A0.9700C23—C241.389 (3)
C4—H4B0.9700C23—C281.412 (3)
C5—C61.524 (3)C24—C251.381 (3)
C5—H5A0.9700C24—H240.9300
C5—H5B0.9700C25—C261.392 (3)
C6—H6A0.9700C26—C271.383 (3)
C6—H6B0.9700C26—H260.9300
C7—C381.388 (3)C27—C281.394 (3)
C7—C81.411 (3)C27—H270.9300
C8—C91.391 (3)C29—C301.386 (3)
C8—C231.438 (3)C29—C341.417 (3)
C9—C101.393 (3)C30—C311.380 (3)
C9—H90.9300C30—H300.9300
C10—C371.412 (3)C31—C321.390 (3)
C10—C111.466 (3)C31—H310.9300
C11—C121.329 (3)C32—C331.380 (3)
C11—H110.9300C33—C341.390 (3)
C12—C131.469 (3)C33—H330.9300
C12—H120.9300C35—C361.382 (3)
C13—C141.399 (3)C35—H350.9300
C13—C361.411 (3)C36—H360.9300
C14—C151.387 (3)C37—C381.390 (3)
C14—H140.9300C37—H370.9300
C15—C161.417 (3)C38—H380.9300
C15—C341.438 (3)
C7—N1—C28108.54 (16)C19—C18—C17112.46 (18)
C7—N1—C6125.99 (18)C19—C18—H18A109.1
C28—N1—C6125.38 (18)C17—C18—H18A109.1
C16—N2—C29108.88 (16)C19—C18—H18B109.1
C16—N2—C17126.08 (18)C17—C18—H18B109.1
C29—N2—C17125.02 (18)H18A—C18—H18B107.8
C2—C1—H1A109.5C20—C19—C18114.68 (18)
C2—C1—H1B109.5C20—C19—H19A108.6
H1A—C1—H1B109.5C18—C19—H19A108.6
C2—C1—H1C109.5C20—C19—H19B108.6
H1A—C1—H1C109.5C18—C19—H19B108.6
H1B—C1—H1C109.5H19A—C19—H19B107.6
C1—C2—C3113.9 (2)C21—C20—C19112.96 (17)
C1—C2—H2A108.8C21—C20—H20A109.0
C3—C2—H2A108.8C19—C20—H20A109.0
C1—C2—H2B108.8C21—C20—H20B109.0
C3—C2—H2B108.8C19—C20—H20B109.0
H2A—C2—H2B107.7H20A—C20—H20B107.8
C2—C3—C4113.19 (18)C20—C21—C22114.16 (19)
C2—C3—H3A108.9C20—C21—H21A108.7
C4—C3—H3A108.9C22—C21—H21A108.7
C2—C3—H3B108.9C20—C21—H21B108.7
C4—C3—H3B108.9C22—C21—H21B108.7
H3A—C3—H3B107.8H21A—C21—H21B107.6
C3—C4—C5114.11 (17)C21—C22—H22A109.5
C3—C4—H4A108.7C21—C22—H22B109.5
C5—C4—H4A108.7H22A—C22—H22B109.5
C3—C4—H4B108.7C21—C22—H22C109.5
C5—C4—H4B108.7H22A—C22—H22C109.5
H4A—C4—H4B107.6H22B—C22—H22C109.5
C4—C5—C6112.79 (17)C24—C23—C28119.99 (18)
C4—C5—H5A109.0C24—C23—C8133.57 (17)
C6—C5—H5A109.0C28—C23—C8106.41 (17)
C4—C5—H5B109.0C25—C24—C23117.61 (17)
C6—C5—H5B109.0C25—C24—H24121.2
H5A—C5—H5B107.8C23—C24—H24121.2
N1—C6—C5113.69 (17)C24—C25—C26122.94 (19)
N1—C6—H6A108.8C24—C25—Br1118.72 (15)
C5—C6—H6A108.8C26—C25—Br1118.33 (16)
N1—C6—H6B108.8C27—C26—C25119.9 (2)
C5—C6—H6B108.8C27—C26—H26120.1
H6A—C6—H6B107.7C25—C26—H26120.1
N1—C7—C38129.56 (18)C28—C27—C26118.18 (18)
N1—C7—C8109.08 (17)C28—C27—H27120.9
C38—C7—C8121.37 (18)C26—C27—H27120.9
C9—C8—C7120.07 (18)N1—C28—C27129.37 (18)
C9—C8—C23133.19 (18)N1—C28—C23109.24 (18)
C7—C8—C23106.73 (16)C27—C28—C23121.38 (19)
C8—C9—C10119.78 (17)C30—C29—N2129.50 (18)
C8—C9—H9120.1C30—C29—C34121.60 (19)
C10—C9—H9120.1N2—C29—C34108.90 (18)
C9—C10—C37118.72 (18)C29—C30—C31118.11 (18)
C9—C10—C11122.78 (17)C29—C30—H30120.9
C37—C10—C11118.46 (19)C31—C30—H30120.9
C12—C11—C10126.0 (2)C30—C31—C32120.0 (2)
C12—C11—H11117.0C30—C31—H31120.0
C10—C11—H11117.0C32—C31—H31120.0
C11—C12—C13127.3 (2)C33—C32—C31123.2 (2)
C11—C12—H12116.4C33—C32—Br2118.65 (15)
C13—C12—H12116.4C31—C32—Br2118.17 (16)
C14—C13—C36118.61 (18)C32—C33—C34117.33 (18)
C14—C13—C12122.78 (18)C32—C33—H33121.3
C36—C13—C12118.61 (19)C34—C33—H33121.3
C15—C14—C13119.81 (17)C33—C34—C29119.81 (19)
C15—C14—H14120.1C33—C34—C15133.55 (18)
C13—C14—H14120.1C29—C34—C15106.61 (17)
C14—C15—C16119.93 (19)C16—C35—C36117.65 (19)
C14—C15—C34133.42 (18)C16—C35—H35121.2
C16—C15—C34106.66 (17)C36—C35—H35121.2
N2—C16—C35129.78 (18)C35—C36—C13122.7 (2)
N2—C16—C15108.96 (18)C35—C36—H36118.6
C35—C16—C15121.26 (18)C13—C36—H36118.6
N2—C17—C18113.14 (17)C38—C37—C10122.59 (19)
N2—C17—H17A109.0C38—C37—H37118.7
C18—C17—H17A109.0C10—C37—H37118.7
N2—C17—H17B109.0C7—C38—C37117.42 (18)
C18—C17—H17B109.0C7—C38—H38121.3
H17A—C17—H17B107.8C37—C38—H38121.3
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C29–C34 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Br1i0.933.043.9062 (19)157
C12—H12···Br1i0.933.003.921 (2)172
C11—H11···Br2ii0.933.033.932 (2)163
C14—H14···Br2ii0.932.943.821 (2)159
C21—H21B···Cg6iii0.932.893.791 (3)154
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z1.
Analysis of Short Ring-Interactions with Cg-Cg (Å, °) top
Cg(I)Cg(J) [ ARU(J)]Cg-CgαCgI_PerpCgJ_Perp
Cg(1)Cg(1) [2656.01]4.33650-3.5042-3.5042
Cg(1)Cg(3) [2656.01]5.41951.424-3.5070-3.5193
Cg(1)Cg(5) [2656.01]3.68981.126-3.5290-3.5284
Cg(2)Cg(2) [2765.01]4.006503.51663.5166
Cg(2)Cg(4) [2765.01]5.26500.9973.56723.5002
Cg(2)Cg(6) [2765.01]3.50001.2753.49563.4909
Cg(3)Cg(1) [2656.01]5.41951.424-3.5193-3.5070
Cg(3)Cg(5) [2656.01]4.05241.960-3.5814-3.5354
Cg(4)Cg(2) [2765.01]5.26500.9973.50023.5672
Cg(4)Cg(6) [2765.01]4.01912.1233.44653.5085
Cg(5)Cg(1) [2656.01]3.68981.126-3.5284-3.5290
Cg(5)Cg(3) [2656.01]4.05241.960-3.5354-3.5814
Cg(5)Cg(5) [2656.01]4.21140-3.5109-3.5109
Cg(5)Cg(6) [1556.01]5.463816.970-4.01043.0948
Cg(6)Cg(2) [2765.01]3.50001.2753.49093.4956
Cg(6)Cg(4) [2765.01]4.01912.1233.50853.4465
Cg(6)Cg(5) [1554.01]5.463816.9703.0948-4.0104
Cg(6)Cg(6) [2765.01]4.211903.51653.5165
Cg(I), Cg(J): Plane number I,J (ring number in figure 1); Cg-Cg: Distance between ring Centroids (Ang.); α: Dihedral Angle between Planes I and J (Deg); CgI_Perp: Perpendicular distance of Cg(I) on ring J (Ang.); CgJ_Perp: Perpendicular distance of Cg(J) on ring I (Ang.); [2656.01]: 1-X, -Y, 1-Z; [2765.01] = 2-X, 1-Y, -Z; [1556.01] = X, Y, 1+Z; [1554.01] = X, Y, -1+Z.
The fractional coordinates of single crystal top
CgIxyz
Cg10.5892280.2019620.526550
Cg20.9254820.314678-0.014062
Cg30.5764270.2575330.414090
Cg40.9303620.2578380.097958
Cg50.6916730.0974730.600602
Cg60.8040300.396628-0.097550

Funding information

This research was supported by the Natural Science Foundation of Shandong Province (No. ZR2015EM006) and the National Natural Science Foundation of China (No. 51372143).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, T., Zhang, B., Liu, Z., Duan, L., Dong, G., Feng, Y., Luo, X. & Cui, D. (2017). Tetrahedron Lett. 58, 531–535.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHua, W., Liu, Z., Duan, L., Dong, G., Qiu, Y., Zhang, B., Cui, D., Tao, X., Cheng, N. & Liu, Y. (2015). RSC Adv. 5, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationKim, E., Felouat, A., Zaborova, E., Ribierre, J.-C., Wu, J. W., Senatore, S., Matthews, C., Lenne, P.-F., Baffert, C., Karapetyan, A., Giorgi, M., Jacquemin, D., Ponce-Vargas, M., Le Guennic, B., Fages, F. & D'Aléo, A. (2016). Org. Biomol. Chem. 14, 1311–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455–o3456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Nishiura, M., Wang, Y. & Hou, Z. (2006). J. Am. Chem. Soc. 128, 5592–5593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Ye, X., Liu, G., Lv, Y., Zhang, X., Chen, S., Lam, J. W. Y., Kwok, H. S., Tao, X. & Tang, B. Z. (2014). J. Mater. Chem. C. 2, 1004–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationPercino, J. M., Cerón, M., Rodríguez, O., Soriano-Moro, G., Castro, E. M., Chapela, M. V., Siegler, A. M. & Pérez-Gutiérrez, E. (2016). Molecules, 21, 389–408.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Liu, Z., Dong, G., Duan, L., Qiu, Y., Jia, J., Guo, W., Zhao, D., Cui, D. & Tao, X. (2012). Chem. Eur. J. 18, 8092–8099.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShi, L.-Q., Liu, Z., Guo, W., Zhao, D., Wang, L., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 535–537.  CAS Google Scholar
First citationShi, H., Xin, D., Bai, S.-D., Fang, L., Duan, X.-E., Roose, J., Peng, H., Chen, S. & Tang, B. Z. (2016). Org. Electron. 33, 78–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, Y. B., Di, C. A., Wei, Z. M., Zhao, T. Y., Xu, W., Liu, Y. Q., Zhang, D. Q. & Zhu, D. B. (2008). Chem. Eur. J. 14, 4731–4740.  Web of Science CSD CrossRef CAS Google Scholar
First citationTeetsov, J. & Fox, M. A. (1999). J. Mater. Chem. 9, 2117–2122.  Web of Science CrossRef CAS Google Scholar
First citationWang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. (2012). Chem. Rev. 112, 2208–2267.  Web of Science CrossRef CAS Google Scholar
First citationXue, P., Yao, B., Zhang, Y., Chen, P., Li, K., Liu, B. & Lu, R. (2014). Org. Biomol. Chem. 12, 7110–7118.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Cai, C., Li, K. F., Tam, H. L., Chan, K. L. & Cheah, K. W. (2015). Appl. Mater. Interfaces, 7, 24983–24986.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds