research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 2,3-di­aryl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones

CROSSMARK_Color_square_no_text.svg

aThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 January 2018; accepted 2 February 2018; online 20 February 2018)

The syntheses and crystal structures of 2,3-bis­[3-(tri­fluoro­meth­yl)phen­yl]-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (di-m-CF3; C22H13F6NOS) (1) and 2,3-bis­(4-methyl­phen­yl)-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (di-p-CH3; C22H19NOS) (2) are reported. Each structure is racemic: the asymmetric unit of 2 consists of two mol­ecules. In both 1 and 2, the six-membered 1,3-thia­zine ring is close to an envelope conformation with the chiral C atom forming the flap. In 1, the 2-aryl group is pseudo-equatorial, while in 2 it is pseudo-axial. In 1, the pendant aryl rings form a V shape with an inter-centroid distance of 3.938 (3) Å and an acute dihedral angle of 48.3 (2)° between them. Both CF3 groups are disordered over two orientations in 0.687 (19):0.313 (19) and 0.667 (16):0.33 (16) ratios. In each of the independent mol­ecules of 2, the aryl rings are almost orthogonal to each other [dihedral angles = 85.50 (12) and 86.07 (11)°]. In both structures, the chiral C atom and the O atoms participate in C—H⋯O-type hydrogen bonding between symmetry-related mol­ecules of 1 or the independent enanti­omers in 2, forming chains along the c-axis direction in 1 and the b-axis direction in 2. Additionally, in 1, ππ contacts of both face-to-face and edge-to-face type, as well as π-H⋯O and π-H⋯F inter­actions are observed. In 2, a racemic mixture of mol­ecules forms layers in the ac plane linked by weak ππ and C—H⋯π inter­actions.

1. Chemical context

N-Aryl (R1 = aryl or heteroar­yl) 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones display anti­tumor (Feng et al., 2015[Feng, J., Li, X., Shao, J., Zhu, M., Li, Y., Chen, H. & Li, X. (2015). Chin. J. Org. Chem. 35, 1370-1374.]; Kamel et al., 2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572-580.]; Nofal et al., 2014[Nofal, Z. M., Soliman, E. A., Abd El-Karim, S. S., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. Hetercyclic Chem. 51, 1797-1806.]) and anti­microbial (Mandour et al., 2007[Mandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555-568.]) activity, as well as inhibition of HIV-RT (Jeng et al., 2015[Feng, J., Li, X., Shao, J., Zhu, M., Li, Y., Chen, H. & Li, X. (2015). Chin. J. Org. Chem. 35, 1370-1374.]), and cyclo­oxygenase COX-2 enzyme (Zarghi et al., 2009[Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369-5373.]).

[Scheme 1]

As part of our studies in this area, we have previously reported the crystal structures of a number of 2-aryl-3-phenyl- and 3-aryl-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.], 2016[Yennawar, H. P., Coyle, D. J., Noble, D. J., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1108-1112.]). Herein we report the syntheses and crystal structures of two 2,3-diaryl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones (di-m-CF3 1, and di-p-CH3 2). Each has been synthesized using the same T3P/pyridine method that was used for the previously reported compounds.

2. Structural commentary

The title compounds are shown in Figs. 1[link] and 2[link]. In 1, the 2-aryl group is pseudo-equatorial, unlike the structures that we have reported previously, while in 2 it is pseudo-axial (both independent mol­ecules) (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.], 2016[Yennawar, H. P., Coyle, D. J., Noble, D. J., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1108-1112.]). The benzo­thia­zine rings in both 1 and 2 have envelope conformations with the chiral carbon atom forming the flap, with puckering parameters in 1 of Q = 0.596 (7) Å, θ = 118.2 (8)°, φ = 22.7 (9)° and in 2 (mol­ecules A and B) Q = 0.5490 (19) and 0.5715 (17) Å; θ = 63.5 (2) and 116.31 (19)°; φ = 40.8 (2) and 223.5 (2)°, respectively. In 1, the pendant aryl rings form an approximate V shape with an acute dihedral angle of 48.3 (2)° and inter-centroid distance of 3.938 (3) Å between them. In each of the independent mol­ecules of 2, the aryl rings are almost orthogonal to each other [dihedral angles = 85.50 (12) for the C1 mol­ecule and 86.07 (11)° for the C23 mol­ecule].

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Disorder in the CF3 groups is not shown for clarity.
[Figure 2]
Figure 2
The two independent mol­ecules of 2 showing the C—H⋯O inter­action between the enanti­omers. The displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the two structures, C—H⋯O inter­actions (Tables 1[link] and 2[link]) in which the chiral carbon atom (C1 in 1; C1 and C23 in 2) donates its H atom to the oxygen atom of a symmetry related mol­ecule in 1, or the independent enanti­omer in 2. This results in infinite chains along the c- and b-axis directions, respectively. In 1, these chains are further consolidated by π-H⋯O and π-H⋯F inter­actions [C10⋯O1i = 3.370 (5); C21⋯O1i = 3.368 (6) Å; symmetry code: (i) x, −y + [{3\over 2}], z + [{1\over 2}]], and π-H⋯F [C14⋯F2Aii = 3.27 (2); C18⋯F4ii = 3.394 (10) Å; symmetry code: (ii) x, y, z − 1] (Fig. 3[link]), although in the latter the participating mol­ecules reverse their donor and acceptor roles. Within these chains, the fused benzene rings of adjacent mol­ecules exibit inter­molecular face-to-face type ππ inter­actions [CgCg = 3.9920 (15) Å]. The structure also features inter­actions of edge-to-face type between the fused benzene and 2-aryl rings [CgCg = 5.0083 (14) Å]. In 2, weak ππ [CgCg = 4.735 (2) Å] and C—H⋯π inter­actions (Table 2[link]) are present between the racemic mixture of mol­ecules in ac plane (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.61 3.360 (5) 133
C10—H10⋯O1i 0.93 2.59 3.370 (5) 141
C14—H14⋯F2Aii 0.93 2.59 3.27 (2) 130
C18—H18⋯F4ii 0.93 2.56 3.394 (10) 149
C21—H21⋯O1i 0.93 2.50 3.368 (6) 156
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg4 and Cg8 are the centroids of the C16–C21 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.98 2.46 3.399 (3) 161
C23—H23⋯O1i 0.98 2.34 3.268 (2) 158
C28—H28⋯Cg8ii 0.93 2.60 3.514 (3) 169
C32—H32⋯Cg4 0.93 2.90 3.818 (2) 171
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+1].
[Figure 3]
Figure 3
Packing diagram of 1 with red dotted lines representing C—H⋯O and green dotted lines showing C(π)—H⋯F contacts forming chains comprising of alternating enanti­omers, along the c-axis direction.
[Figure 4]
Figure 4
Packing diagram of 2 with red dotted lines representing C—H⋯O contacts forming chains along the b-axis direction comprising of alternating enanti­omers.

3.1. Database survey

Along with the structures we have previously published (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.], 2016[Yennawar, H. P., Coyle, D. J., Noble, D. J., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1108-1112.]), crystal structures of three other compounds with the same 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one core have been reported (Kröger et al. 2015[Kröger, D., Schlüter, T., Fischer, M., Geibel, I. & Martnes, J. (2015). ACS Comb. Chem. 17, 202-207.]; Wang et al., 2017[Wang, H., Shi, T., Gao, W., Zhang, H., Wang, Y., Li, J., Hou, S., Chen, J., Peng, X. & Wang, Z. (2017). Org. Biomol. Chem. 15, 8013-8017.]; Yin et al., 2016[Yin, Z., Zhu, M., Wei, S., Shao, J., Hou, Y., Chen, H. & Li, X. (2016). Bioorg. Med. Chem. Lett. 26, 1738-1741.]). The structure reported by Yin displays an envelope pucker with the 2-C atom as the flap for the thia­zine ring that is sandwiched between two fused rings. CIFs were not available for the other two compounds.

[Scheme 2]

4. Synthesis and crystallization

General: A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar and the imine (6 mmol). Thio­salicylic acid (0.93 g, 6 mmol) and then 2-methyl­tetra­hydro­furan (2.3 mL) were added and the solution was stirred. Pyridine (1.95 mL, 24 mmol) and, finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight percent; 7.3 mL, 12 mmol) were added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous one was then extracted twice with di­chloro­methane. The organic layers were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed on 30 g flash silica gel and then recrystallized.

2,3-Bis[3-(tri­fluoro­meth­yl)phen­yl]-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (1): Recrystallized from 2-propanol solution. Yield: 0.5199 g (19%), m.p. 392–393 K. Colorless blocks of 1 were grown by slow evaporation from cyclo­hexane solution.

2,3-Bis(4-methyl­phen­yl)-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 2: Recrystallized from 2-propanol solution. Yield: 0.6288 g (30%), m.p. 412–414 K. Colorless needles of 2 were grown by slow evaporation from ethanol solution.

5. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3[link]. Both CF3 groups of 1 are disordered over two orientations in a 0.687 (19):0.313 (19) ratio for the C15 group and a 0.667 (16):0.33 (16) ratio for the C22 group·The disorder was restrained using SIMU and DELU commands in SHELX for the twelve resulting atoms.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C22H13F6NOS C22H19NOS
Mr 453.39 345.44
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 16.602 (6), 15.546 (6), 7.915 (3) 24.821 (7), 12.151 (3), 26.219 (7)
β (°) 99.344 (8) 112.470 (4)
V3) 2015.8 (13) 7307 (3)
Z 4 16
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.19
Crystal size (mm) 0.10 × 0.03 × 0.02 0.29 × 0.28 × 0.2
 
Data collection
Diffractometer Bruker SMART CCD Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.738, 0.9 0.100, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 17435, 4882, 1964 26265, 8985, 5453
Rint 0.062 0.046
(sin θ/λ)max−1) 0.663 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.111, 0.329, 0.91 0.058, 0.174, 0.96
No. of reflections 4882 8985
No. of parameters 337 455
No. of restraints 72 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.49 0.32, −0.33
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,3-Bis[3-(trifluoromethyl)phenyl]-2,3-dihydro-4H-1,3-benzothiazin-4-one (1) top
Crystal data top
C22H13F6NOSF(000) = 920
Mr = 453.39Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.602 (6) ÅCell parameters from 1716 reflections
b = 15.546 (6) Åθ = 2.5–26.2°
c = 7.915 (3) ŵ = 0.23 mm1
β = 99.344 (8)°T = 298 K
V = 2015.8 (13) Å3Needle, colorless
Z = 40.10 × 0.03 × 0.02 mm
Data collection top
Bruker SMART CCD
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Parallel-graphite monochromatorRint = 0.062
phi and ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2118
Tmin = 0.738, Tmax = 0.9k = 2020
17435 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.111H-atom parameters constrained
wR(F2) = 0.329 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4882 reflectionsΔρmax = 0.64 e Å3
337 parametersΔρmin = 0.49 e Å3
72 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.118 (13)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The disorder in the two CF3 moieties were subject to SIMU and DELU Shelx restraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.42945 (8)0.92091 (9)0.0814 (2)0.1041 (7)
F10.1828 (9)1.0377 (5)0.6037 (15)0.126 (4)0.687 (19)
F1A0.119 (2)1.066 (3)0.498 (4)0.189 (12)0.313 (19)
F20.2537 (9)1.1469 (13)0.6119 (16)0.177 (6)0.687 (19)
F2A0.234 (3)1.071 (3)0.628 (3)0.189 (13)0.313 (19)
F30.1288 (10)1.1503 (13)0.4887 (16)0.180 (7)0.687 (19)
F3A0.188 (3)1.1751 (9)0.531 (3)0.150 (11)0.313 (19)
F40.0493 (6)0.8379 (9)0.3828 (12)0.115 (3)0.667 (16)
F4A0.023 (2)0.811 (3)0.324 (5)0.203 (14)0.333 (16)
F50.0427 (5)0.7991 (8)0.1878 (11)0.131 (3)0.667 (16)
F5A0.0572 (10)0.881 (2)0.175 (3)0.151 (11)0.333 (16)
F60.0248 (11)0.9333 (7)0.225 (2)0.177 (9)0.667 (16)
F6A0.0366 (12)0.9396 (11)0.329 (2)0.124 (6)0.333 (16)
O10.2812 (2)0.6905 (2)0.0183 (4)0.0887 (10)
N10.2902 (2)0.8323 (2)0.0806 (4)0.0675 (9)
C10.3401 (3)0.9014 (3)0.1739 (6)0.0669 (11)
H10.35770.88160.29170.080*
C20.3238 (3)0.7513 (3)0.0694 (5)0.0654 (11)
C30.4140 (3)0.7453 (3)0.1057 (5)0.0721 (12)
C40.4660 (3)0.8163 (4)0.1067 (7)0.0897 (14)
C50.5502 (4)0.8019 (5)0.1133 (10)0.127 (2)
H50.58470.84850.10690.152*
C60.5819 (5)0.7210 (7)0.1290 (10)0.143 (3)
H60.63770.71280.13330.172*
C70.5317 (5)0.6513 (6)0.1385 (10)0.131 (2)
H70.55370.59630.15300.157*
C80.4488 (4)0.6633 (4)0.1265 (7)0.0991 (17)
H80.41530.61580.13240.119*
C90.2939 (3)0.9826 (2)0.1814 (5)0.0663 (11)
C100.2680 (3)1.0050 (3)0.3319 (6)0.0705 (11)
H100.28040.96980.42760.085*
C110.2233 (3)1.0795 (3)0.3417 (6)0.0715 (12)
C120.2041 (3)1.1332 (3)0.2009 (7)0.0801 (13)
H120.17301.18250.20770.096*
C130.2313 (3)1.1127 (3)0.0526 (6)0.0848 (14)
H130.22071.14940.04120.102*
C140.2745 (3)1.0380 (3)0.0413 (6)0.0782 (13)
H140.29121.02390.06190.094*
C150.1930 (5)1.1029 (4)0.5032 (9)0.0955 (17)
C160.2051 (3)0.8448 (2)0.0275 (5)0.0658 (11)
C170.1733 (3)0.8600 (3)0.1429 (6)0.0771 (13)
H170.20730.85830.22520.092*
C180.0922 (3)0.8776 (3)0.1905 (6)0.0836 (13)
H180.07160.88860.30480.100*
C190.0414 (3)0.8791 (3)0.0713 (6)0.0815 (13)
H190.01370.89180.10460.098*
C200.0712 (3)0.8618 (3)0.0984 (6)0.0714 (12)
C210.1529 (3)0.8443 (2)0.1492 (5)0.0652 (10)
H210.17300.83230.26340.078*
C220.0157 (4)0.8648 (4)0.2259 (9)0.0948 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0821 (10)0.0974 (11)0.1418 (15)0.0087 (7)0.0449 (9)0.0044 (8)
F10.190 (10)0.102 (5)0.105 (6)0.008 (5)0.087 (7)0.019 (4)
F1A0.18 (2)0.24 (3)0.17 (2)0.03 (2)0.109 (17)0.02 (2)
F20.204 (10)0.221 (13)0.120 (7)0.074 (10)0.069 (6)0.082 (8)
F2A0.30 (4)0.20 (3)0.077 (11)0.03 (3)0.071 (18)0.009 (16)
F30.180 (11)0.231 (16)0.151 (8)0.115 (11)0.095 (8)0.052 (9)
F3A0.26 (3)0.062 (8)0.151 (18)0.008 (14)0.09 (2)0.034 (8)
F40.107 (5)0.182 (9)0.064 (4)0.017 (4)0.034 (3)0.003 (4)
F4A0.21 (3)0.23 (3)0.19 (3)0.05 (2)0.09 (2)0.09 (2)
F50.097 (5)0.153 (8)0.151 (6)0.041 (5)0.047 (4)0.000 (5)
F5A0.071 (9)0.23 (3)0.159 (12)0.029 (14)0.043 (8)0.01 (2)
F60.196 (17)0.114 (6)0.260 (18)0.079 (8)0.160 (15)0.059 (8)
F6A0.111 (11)0.154 (13)0.119 (10)0.016 (9)0.051 (8)0.026 (8)
O10.095 (2)0.0711 (19)0.100 (3)0.0082 (17)0.0163 (19)0.0159 (17)
N10.065 (2)0.064 (2)0.076 (2)0.0045 (16)0.0163 (17)0.0079 (16)
C10.075 (3)0.061 (2)0.067 (3)0.0041 (19)0.017 (2)0.0013 (19)
C20.074 (3)0.062 (2)0.062 (3)0.009 (2)0.016 (2)0.0102 (19)
C30.080 (3)0.077 (3)0.063 (3)0.008 (2)0.021 (2)0.005 (2)
C40.071 (3)0.114 (4)0.089 (4)0.007 (3)0.028 (2)0.003 (3)
C50.073 (4)0.142 (6)0.169 (7)0.007 (4)0.029 (4)0.008 (5)
C60.089 (5)0.190 (9)0.154 (7)0.043 (6)0.031 (4)0.004 (6)
C70.117 (6)0.137 (6)0.135 (6)0.054 (5)0.011 (4)0.004 (5)
C80.102 (4)0.104 (4)0.089 (4)0.037 (3)0.008 (3)0.003 (3)
C90.079 (3)0.055 (2)0.066 (3)0.0081 (19)0.017 (2)0.0027 (18)
C100.080 (3)0.063 (2)0.072 (3)0.002 (2)0.023 (2)0.001 (2)
C110.084 (3)0.062 (2)0.071 (3)0.003 (2)0.021 (2)0.000 (2)
C120.089 (3)0.065 (3)0.086 (3)0.002 (2)0.013 (2)0.003 (2)
C130.109 (4)0.069 (3)0.076 (3)0.008 (3)0.011 (3)0.009 (2)
C140.095 (3)0.080 (3)0.061 (3)0.003 (2)0.019 (2)0.003 (2)
C150.123 (5)0.086 (4)0.085 (4)0.012 (4)0.039 (4)0.005 (3)
C160.074 (3)0.058 (2)0.069 (3)0.0075 (18)0.020 (2)0.0015 (18)
C170.095 (4)0.080 (3)0.061 (3)0.003 (2)0.025 (2)0.007 (2)
C180.083 (3)0.098 (4)0.067 (3)0.004 (3)0.004 (2)0.004 (2)
C190.071 (3)0.086 (3)0.084 (3)0.003 (2)0.003 (2)0.005 (2)
C200.071 (3)0.065 (2)0.082 (3)0.0051 (19)0.021 (2)0.002 (2)
C210.066 (3)0.066 (2)0.065 (3)0.0011 (18)0.0158 (19)0.0019 (18)
C220.081 (4)0.096 (4)0.116 (5)0.015 (3)0.038 (3)0.015 (4)
Geometric parameters (Å, º) top
S1—C11.784 (4)C6—C71.377 (10)
S1—C41.736 (6)C7—H70.9300
F1—C151.317 (11)C7—C81.376 (9)
F1A—C151.35 (2)C8—H80.9300
F2—C151.393 (12)C9—C101.375 (6)
F2A—C151.20 (3)C9—C141.400 (6)
F3—C151.285 (10)C10—H100.9300
F3A—C151.151 (14)C10—C111.384 (6)
F4—C221.343 (14)C11—C121.388 (6)
F4A—C221.14 (3)C11—C151.493 (7)
F5—C221.408 (9)C12—H120.9300
F5A—C221.238 (17)C12—C131.363 (7)
F6—C221.258 (10)C13—H130.9300
F6A—C221.428 (15)C13—C141.376 (7)
O1—C21.210 (5)C14—H140.9300
N1—C11.478 (5)C16—C171.387 (6)
N1—C21.385 (5)C16—C211.397 (6)
N1—C161.420 (5)C17—H170.9300
C1—H10.9800C17—C181.364 (6)
C1—C91.483 (6)C18—H180.9300
C2—C31.481 (6)C18—C191.365 (7)
C3—C41.401 (7)C19—H190.9300
C3—C81.398 (7)C19—C201.380 (6)
C4—C51.408 (8)C20—C211.378 (6)
C5—H50.9300C20—C221.473 (7)
C5—C61.362 (10)C21—H210.9300
C6—H60.9300
C4—S1—C195.2 (2)F2A—C15—F146 (2)
C2—N1—C1119.6 (3)F2A—C15—F1A104 (2)
C2—N1—C16119.8 (3)F2A—C15—F256 (2)
C16—N1—C1119.8 (3)F2A—C15—F3130.6 (15)
S1—C1—H1107.7F2A—C15—C11112.4 (13)
N1—C1—S1110.7 (3)F3—C15—F1108.0 (9)
N1—C1—H1107.7F3—C15—F1A60.0 (16)
N1—C1—C9112.8 (3)F3—C15—F2106.2 (10)
C9—C1—S1109.9 (3)F3—C15—C11116.9 (8)
C9—C1—H1107.7F3A—C15—F1127.8 (12)
O1—C2—N1120.8 (4)F3A—C15—F1A108.4 (19)
O1—C2—C3122.1 (4)F3A—C15—F258.2 (17)
N1—C2—C3116.7 (4)F3A—C15—F2A107 (2)
C4—C3—C2123.6 (4)F3A—C15—F350.8 (16)
C8—C3—C2117.9 (5)F3A—C15—C11116.7 (12)
C8—C3—C4118.3 (5)C17—C16—N1121.0 (4)
C3—C4—S1122.3 (4)C17—C16—C21119.3 (4)
C3—C4—C5118.9 (5)C21—C16—N1119.6 (4)
C5—C4—S1118.6 (5)C16—C17—H17119.8
C4—C5—H5119.4C18—C17—C16120.4 (4)
C6—C5—C4121.1 (7)C18—C17—H17119.8
C6—C5—H5119.4C17—C18—H18119.8
C5—C6—H6119.9C17—C18—C19120.4 (4)
C5—C6—C7120.2 (7)C19—C18—H18119.8
C7—C6—H6119.9C18—C19—H19119.9
C6—C7—H7120.1C18—C19—C20120.3 (4)
C8—C7—C6119.9 (7)C20—C19—H19119.9
C8—C7—H7120.1C19—C20—C22119.7 (5)
C3—C8—H8119.3C21—C20—C19120.2 (4)
C7—C8—C3121.4 (7)C21—C20—C22120.1 (5)
C7—C8—H8119.3C16—C21—H21120.4
C10—C9—C1119.1 (4)C20—C21—C16119.3 (4)
C10—C9—C14117.8 (4)C20—C21—H21120.4
C14—C9—C1123.1 (4)F4—C22—F598.0 (8)
C9—C10—H10119.8F4—C22—F6A72.6 (10)
C9—C10—C11120.4 (4)F4—C22—C20114.3 (6)
C11—C10—H10119.8F4A—C22—F432 (2)
C10—C11—C12121.0 (4)F4A—C22—F567 (2)
C10—C11—C15120.6 (4)F4A—C22—F5A111 (2)
C12—C11—C15118.4 (4)F4A—C22—F6128.8 (19)
C11—C12—H12120.5F4A—C22—F6A103 (2)
C13—C12—C11119.0 (4)F4A—C22—C20115.7 (17)
C13—C12—H12120.5F5—C22—F6A143.9 (7)
C12—C13—H13119.9F5—C22—C20108.4 (6)
C12—C13—C14120.2 (4)F5A—C22—F4126.9 (12)
C14—C13—H13119.9F5A—C22—F558.2 (14)
C9—C14—H14119.2F5A—C22—F648.3 (11)
C13—C14—C9121.5 (4)F5A—C22—F6A99.0 (13)
C13—C14—H14119.2F5A—C22—C20118.1 (11)
F1—C15—F1A59.2 (19)F6—C22—F4114.2 (11)
F1—C15—F299.0 (10)F6—C22—F5105.3 (10)
F1—C15—C11115.1 (6)F6—C22—F6A52.8 (8)
F1A—C15—F2142.1 (11)F6—C22—C20114.6 (7)
F1A—C15—C11107.7 (10)F6A—C22—C20107.1 (7)
F2—C15—C11109.8 (6)
S1—C1—C9—C10131.6 (4)C10—C11—C15—F1A89 (3)
S1—C1—C9—C1449.1 (5)C10—C11—C15—F285.3 (13)
S1—C4—C5—C6178.4 (6)C10—C11—C15—F2A25 (3)
O1—C2—C3—C4157.0 (5)C10—C11—C15—F3153.7 (14)
O1—C2—C3—C817.7 (6)C10—C11—C15—F3A149 (3)
N1—C1—C9—C10104.3 (4)C11—C12—C13—C142.6 (7)
N1—C1—C9—C1475.1 (5)C12—C11—C15—F1153.3 (10)
N1—C2—C3—C416.9 (6)C12—C11—C15—F1A90 (3)
N1—C2—C3—C8168.4 (4)C12—C11—C15—F296.1 (13)
N1—C16—C17—C18175.7 (4)C12—C11—C15—F2A157 (3)
N1—C16—C21—C20176.0 (4)C12—C11—C15—F324.9 (15)
C1—S1—C4—C329.4 (5)C12—C11—C15—F3A33 (3)
C1—S1—C4—C5156.4 (5)C12—C13—C14—C92.1 (7)
C1—N1—C2—O1168.2 (4)C14—C9—C10—C110.7 (6)
C1—N1—C2—C317.8 (5)C15—C11—C12—C13180.0 (5)
C1—N1—C16—C17105.6 (4)C16—N1—C1—S1131.0 (3)
C1—N1—C16—C2172.5 (5)C16—N1—C1—C97.3 (5)
C1—C9—C10—C11178.7 (4)C16—N1—C2—O11.6 (6)
C1—C9—C14—C13179.8 (4)C16—N1—C2—C3172.4 (4)
C2—N1—C1—S159.2 (4)C16—C17—C18—C191.0 (7)
C2—N1—C1—C9177.1 (3)C17—C16—C21—C202.1 (6)
C2—N1—C16—C1784.7 (5)C17—C18—C19—C200.8 (7)
C2—N1—C16—C2197.2 (5)C18—C19—C20—C211.1 (7)
C2—C3—C4—S15.1 (7)C18—C19—C20—C22179.2 (5)
C2—C3—C4—C5169.1 (5)C19—C20—C21—C160.4 (6)
C2—C3—C8—C7171.5 (5)C19—C20—C22—F4173.1 (8)
C3—C4—C5—C64.0 (10)C19—C20—C22—F4A137 (3)
C4—S1—C1—N157.7 (3)C19—C20—C22—F565.0 (9)
C4—S1—C1—C9177.0 (3)C19—C20—C22—F5A2 (2)
C4—C3—C8—C73.5 (8)C19—C20—C22—F652.4 (14)
C4—C5—C6—C70.1 (12)C19—C20—C22—F6A108.7 (11)
C5—C6—C7—C82.1 (12)C21—C16—C17—C182.4 (6)
C6—C7—C8—C30.4 (10)C21—C20—C22—F48.8 (10)
C8—C3—C4—S1179.8 (4)C21—C20—C22—F4A45 (3)
C8—C3—C4—C55.6 (8)C21—C20—C22—F5116.9 (8)
C9—C10—C11—C120.2 (7)C21—C20—C22—F5A180 (2)
C9—C10—C11—C15178.3 (5)C21—C20—C22—F6125.8 (13)
C10—C9—C14—C130.4 (7)C21—C20—C22—F6A69.5 (11)
C10—C11—C12—C131.5 (7)C22—C20—C21—C16177.7 (4)
C10—C11—C15—F125.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.613.360 (5)133
C10—H10···O1i0.932.593.370 (5)141
C14—H14···F2Aii0.932.593.27 (2)130
C18—H18···F4ii0.932.563.394 (10)149
C21—H21···O1i0.932.503.368 (6)156
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z1.
2,3-Bis(4-methylphenyl)-2,3-dihydro-4H-1,3-benzothiazin-4-one (2) top
Crystal data top
C22H19NOSF(000) = 2912
Mr = 345.44Dx = 1.256 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.821 (7) ÅCell parameters from 6387 reflections
b = 12.151 (3) Åθ = 2.2–26.5°
c = 26.219 (7) ŵ = 0.19 mm1
β = 112.470 (4)°T = 298 K
V = 7307 (3) Å3Block, colorless
Z = 160.29 × 0.28 × 0.2 mm
Data collection top
Bruker SMART CCD
diffractometer
8985 independent reflections
Radiation source: fine-focus sealed tube5453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 1.7°
phi and ω scansh = 3230
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1611
Tmin = 0.100, Tmax = 0.85l = 3434
26265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
8985 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69203 (9)0.43913 (16)0.38181 (8)0.0537 (5)
H10.68530.38810.40770.064*
C20.71007 (9)0.64058 (16)0.38441 (9)0.0554 (5)
C30.74576 (9)0.62403 (17)0.35099 (9)0.0583 (5)
C40.77404 (9)0.52539 (19)0.34957 (9)0.0620 (6)
C50.81323 (11)0.5215 (3)0.32349 (12)0.0829 (8)
H50.83270.45620.32340.099*
C60.82346 (14)0.6118 (3)0.29810 (13)0.0991 (10)
H60.84990.60780.28080.119*
C70.79488 (14)0.7100 (3)0.29771 (12)0.0967 (9)
H70.80150.77140.27970.116*
C80.75636 (12)0.7158 (2)0.32431 (10)0.0754 (7)
H80.73730.78170.32440.090*
C90.64495 (8)0.41536 (15)0.32575 (8)0.0505 (5)
C100.63218 (10)0.30700 (17)0.31082 (9)0.0625 (6)
H100.65230.25170.33520.075*
C110.59011 (10)0.2790 (2)0.26034 (10)0.0718 (6)
H110.58190.20500.25190.086*
C120.56009 (9)0.3567 (2)0.22225 (10)0.0695 (6)
C130.57233 (12)0.4638 (2)0.23774 (12)0.0974 (10)
H130.55230.51870.21310.117*
C140.61355 (11)0.4943 (2)0.28892 (12)0.0887 (9)
H140.61980.56840.29820.106*
C150.51477 (12)0.3251 (3)0.16630 (11)0.1052 (10)
H15A0.52790.26170.15250.158*
H15B0.50910.38530.14110.158*
H15C0.47860.30850.16990.158*
C160.66457 (9)0.56341 (15)0.44320 (9)0.0524 (5)
C170.69408 (9)0.61834 (16)0.49170 (9)0.0568 (5)
H170.73090.64690.49850.068*
C180.66956 (10)0.63141 (18)0.53031 (9)0.0622 (6)
H180.69020.66840.56300.075*
C190.61458 (11)0.59039 (19)0.52124 (11)0.0691 (6)
C200.58631 (11)0.5337 (2)0.47281 (12)0.0772 (7)
H200.54960.50450.46610.093*
C210.61053 (10)0.51887 (19)0.43411 (11)0.0699 (6)
H210.59070.47920.40210.084*
C220.58743 (14)0.6089 (3)0.56288 (13)0.1016 (10)
H22A0.61640.59890.59940.152*
H22B0.55630.55720.55660.152*
H22C0.57230.68250.55920.152*
N10.69068 (7)0.54944 (13)0.40328 (7)0.0539 (4)
O10.69975 (7)0.73376 (11)0.39598 (7)0.0718 (4)
S10.76424 (2)0.40690 (5)0.38303 (3)0.0683 (2)
C230.63847 (8)0.06355 (14)0.43575 (7)0.0456 (4)
H230.66650.11290.42940.055*
C240.63691 (9)0.13713 (15)0.45273 (8)0.0496 (5)
C250.60023 (8)0.11523 (15)0.48487 (8)0.0483 (4)
C260.60103 (8)0.01584 (16)0.51208 (7)0.0489 (5)
C270.57311 (10)0.0090 (2)0.54882 (8)0.0626 (6)
H270.57490.05620.56800.075*
C280.54295 (10)0.0972 (2)0.55722 (10)0.0737 (7)
H280.52450.09150.58200.088*
C290.53988 (10)0.1944 (2)0.52887 (10)0.0754 (7)
H290.51850.25340.53380.091*
C300.56844 (9)0.20366 (19)0.49332 (9)0.0633 (6)
H300.56660.26950.47460.076*
C310.57976 (8)0.08712 (14)0.39016 (7)0.0439 (4)
C320.56036 (9)0.19472 (16)0.38227 (8)0.0548 (5)
H320.58330.24980.40480.066*
C330.50727 (9)0.22179 (19)0.34125 (9)0.0617 (5)
H330.49520.29480.33700.074*
C340.47204 (9)0.14356 (19)0.30666 (8)0.0563 (5)
C350.49174 (9)0.03677 (19)0.31450 (8)0.0615 (5)
H350.46860.01790.29170.074*
C360.54490 (9)0.00759 (16)0.35518 (8)0.0545 (5)
H360.55710.06540.35890.065*
C370.41430 (10)0.1747 (2)0.26196 (9)0.0809 (8)
H37A0.42100.20600.23130.121*
H37B0.39040.11020.25000.121*
H37C0.39490.22750.27620.121*
C380.70360 (8)0.06513 (15)0.41266 (8)0.0473 (4)
C390.69724 (9)0.01669 (17)0.36311 (8)0.0576 (5)
H390.66490.02710.34440.069*
C400.73937 (11)0.0338 (2)0.34142 (10)0.0724 (7)
H400.73510.00050.30820.087*
C410.78753 (11)0.0989 (2)0.36779 (12)0.0747 (7)
C420.79376 (10)0.14326 (19)0.41859 (11)0.0704 (6)
H420.82670.18500.43800.084*
C430.75286 (9)0.12709 (16)0.44072 (9)0.0573 (5)
H430.75810.15780.47480.069*
C440.83113 (14)0.1224 (3)0.34151 (15)0.1201 (12)
H44A0.83070.06320.31710.180*
H44B0.86940.12920.36980.180*
H44C0.82080.18990.32100.180*
N20.66062 (7)0.04828 (12)0.43611 (6)0.0465 (4)
O20.64754 (7)0.23142 (11)0.44332 (6)0.0678 (4)
S20.63943 (2)0.09836 (4)0.50364 (2)0.05417 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0599 (12)0.0329 (10)0.0653 (12)0.0020 (9)0.0204 (10)0.0012 (8)
C20.0560 (12)0.0385 (11)0.0750 (14)0.0016 (9)0.0286 (11)0.0044 (10)
C30.0598 (12)0.0487 (12)0.0675 (13)0.0064 (10)0.0257 (11)0.0112 (10)
C40.0472 (11)0.0687 (15)0.0640 (13)0.0005 (10)0.0145 (10)0.0168 (11)
C50.0703 (16)0.093 (2)0.0903 (19)0.0011 (14)0.0363 (14)0.0239 (16)
C60.097 (2)0.121 (3)0.098 (2)0.016 (2)0.0573 (19)0.025 (2)
C70.112 (2)0.102 (2)0.093 (2)0.028 (2)0.0587 (18)0.0087 (17)
C80.0900 (17)0.0667 (16)0.0801 (16)0.0135 (13)0.0443 (14)0.0061 (12)
C90.0505 (11)0.0419 (11)0.0613 (12)0.0008 (8)0.0240 (9)0.0054 (9)
C100.0744 (14)0.0440 (12)0.0622 (13)0.0062 (10)0.0184 (11)0.0029 (9)
C110.0758 (15)0.0628 (15)0.0705 (15)0.0017 (12)0.0210 (12)0.0155 (12)
C120.0528 (13)0.0935 (19)0.0638 (14)0.0045 (13)0.0242 (11)0.0013 (13)
C130.0771 (17)0.086 (2)0.097 (2)0.0040 (15)0.0033 (15)0.0405 (16)
C140.0775 (16)0.0513 (14)0.103 (2)0.0058 (12)0.0039 (15)0.0209 (13)
C150.0727 (17)0.162 (3)0.0672 (16)0.0157 (19)0.0113 (14)0.0036 (18)
C160.0529 (11)0.0340 (10)0.0706 (13)0.0001 (9)0.0240 (10)0.0026 (9)
C170.0518 (11)0.0449 (11)0.0717 (14)0.0029 (9)0.0214 (11)0.0034 (10)
C180.0692 (14)0.0507 (13)0.0652 (13)0.0101 (11)0.0241 (11)0.0056 (10)
C190.0734 (15)0.0563 (14)0.0862 (17)0.0118 (12)0.0401 (14)0.0145 (12)
C200.0647 (14)0.0688 (16)0.107 (2)0.0104 (13)0.0428 (15)0.0027 (15)
C210.0627 (14)0.0587 (14)0.0902 (17)0.0162 (11)0.0314 (13)0.0136 (12)
C220.110 (2)0.113 (3)0.105 (2)0.0228 (19)0.069 (2)0.0217 (18)
N10.0616 (10)0.0333 (9)0.0711 (11)0.0028 (7)0.0302 (9)0.0030 (7)
O10.0907 (11)0.0344 (8)0.1102 (13)0.0027 (7)0.0605 (10)0.0048 (8)
S10.0560 (3)0.0515 (3)0.0850 (4)0.0120 (3)0.0131 (3)0.0085 (3)
C230.0511 (10)0.0333 (9)0.0518 (10)0.0012 (8)0.0190 (9)0.0019 (8)
C240.0622 (12)0.0357 (10)0.0507 (10)0.0008 (9)0.0215 (9)0.0013 (8)
C250.0505 (11)0.0446 (11)0.0466 (10)0.0015 (8)0.0151 (9)0.0037 (8)
C260.0482 (10)0.0543 (12)0.0396 (9)0.0021 (9)0.0116 (8)0.0038 (8)
C270.0664 (13)0.0720 (15)0.0490 (11)0.0074 (11)0.0218 (10)0.0003 (10)
C280.0637 (14)0.103 (2)0.0597 (14)0.0045 (14)0.0289 (12)0.0125 (13)
C290.0691 (15)0.0851 (19)0.0761 (16)0.0135 (13)0.0324 (13)0.0165 (14)
C300.0673 (13)0.0574 (13)0.0652 (13)0.0121 (11)0.0255 (11)0.0033 (10)
C310.0515 (10)0.0358 (10)0.0474 (10)0.0014 (8)0.0222 (8)0.0012 (7)
C320.0569 (12)0.0394 (11)0.0631 (12)0.0019 (9)0.0172 (10)0.0016 (9)
C330.0611 (12)0.0526 (12)0.0692 (13)0.0099 (10)0.0224 (11)0.0129 (10)
C340.0525 (11)0.0703 (15)0.0479 (11)0.0006 (10)0.0213 (9)0.0054 (10)
C350.0602 (13)0.0687 (15)0.0500 (11)0.0088 (11)0.0148 (10)0.0086 (10)
C360.0628 (13)0.0448 (11)0.0533 (11)0.0006 (9)0.0193 (10)0.0042 (9)
C370.0628 (14)0.109 (2)0.0610 (14)0.0087 (14)0.0124 (11)0.0117 (13)
C380.0509 (11)0.0389 (10)0.0518 (10)0.0011 (8)0.0192 (9)0.0018 (8)
C390.0607 (12)0.0590 (13)0.0560 (12)0.0046 (10)0.0253 (10)0.0039 (10)
C400.0881 (17)0.0731 (16)0.0668 (14)0.0089 (14)0.0415 (14)0.0102 (12)
C410.0670 (15)0.0662 (16)0.103 (2)0.0093 (12)0.0463 (15)0.0281 (14)
C420.0585 (13)0.0553 (14)0.0948 (18)0.0043 (11)0.0266 (13)0.0115 (13)
C430.0567 (12)0.0439 (11)0.0657 (13)0.0038 (9)0.0172 (10)0.0000 (9)
C440.107 (2)0.126 (3)0.164 (3)0.013 (2)0.092 (3)0.049 (2)
N20.0555 (9)0.0333 (8)0.0537 (9)0.0032 (7)0.0244 (8)0.0036 (7)
O20.0971 (11)0.0352 (8)0.0838 (10)0.0006 (8)0.0485 (9)0.0009 (7)
S20.0635 (3)0.0438 (3)0.0498 (3)0.0034 (2)0.0157 (2)0.0073 (2)
Geometric parameters (Å, º) top
C1—H10.9800C23—H230.9800
C1—C91.515 (3)C23—C311.518 (2)
C1—N11.459 (2)C23—N21.465 (2)
C1—S11.823 (2)C23—S21.821 (2)
C2—C31.479 (3)C24—C251.482 (3)
C2—N11.373 (3)C24—N21.378 (2)
C2—O11.224 (2)C24—O21.222 (2)
C3—C41.397 (3)C25—C261.399 (3)
C3—C81.394 (3)C25—C301.400 (3)
C4—C51.387 (3)C26—C271.388 (3)
C4—S11.750 (3)C26—S21.745 (2)
C5—H50.9300C27—H270.9300
C5—C61.357 (4)C27—C281.372 (3)
C6—H60.9300C28—H280.9300
C6—C71.386 (4)C28—C291.382 (3)
C7—H70.9300C29—H290.9300
C7—C81.384 (4)C29—C301.374 (3)
C8—H80.9300C30—H300.9300
C9—C101.376 (3)C31—C321.381 (3)
C9—C141.373 (3)C31—C361.385 (3)
C10—H100.9300C32—H320.9300
C10—C111.379 (3)C32—C331.385 (3)
C11—H110.9300C33—H330.9300
C11—C121.369 (3)C33—C341.373 (3)
C12—C131.363 (4)C34—C351.374 (3)
C12—C151.517 (3)C34—C371.512 (3)
C13—H130.9300C35—H350.9300
C13—C141.391 (4)C35—C361.389 (3)
C14—H140.9300C36—H360.9300
C15—H15A0.9600C37—H37A0.9600
C15—H15B0.9600C37—H37B0.9600
C15—H15C0.9600C37—H37C0.9600
C16—C171.374 (3)C38—C391.379 (3)
C16—C211.380 (3)C38—C431.384 (3)
C16—N11.437 (3)C38—N21.435 (2)
C17—H170.9300C39—H390.9300
C17—C181.375 (3)C39—C401.384 (3)
C18—H180.9300C40—H400.9300
C18—C191.385 (3)C40—C411.378 (4)
C19—C201.378 (4)C41—C421.390 (4)
C19—C221.503 (4)C41—C441.516 (4)
C20—H200.9300C42—H420.9300
C20—C211.375 (3)C42—C431.362 (3)
C21—H210.9300C43—H430.9300
C22—H22A0.9600C44—H44A0.9600
C22—H22B0.9600C44—H44B0.9600
C22—H22C0.9600C44—H44C0.9600
C9—C1—H1106.2C31—C23—H23106.3
C9—C1—S1111.38 (14)C31—C23—S2112.08 (13)
N1—C1—H1106.2N2—C23—H23106.3
N1—C1—C9115.24 (16)N2—C23—C31115.16 (15)
N1—C1—S1110.97 (13)N2—C23—S2110.17 (12)
S1—C1—H1106.2S2—C23—H23106.3
N1—C2—C3118.41 (18)N2—C24—C25117.95 (16)
O1—C2—C3120.15 (19)O2—C24—C25120.68 (18)
O1—C2—N1121.41 (19)O2—C24—N2121.31 (18)
C4—C3—C2123.6 (2)C26—C25—C24123.57 (17)
C8—C3—C2117.3 (2)C26—C25—C30118.74 (19)
C8—C3—C4118.7 (2)C30—C25—C24117.26 (18)
C3—C4—S1121.68 (18)C25—C26—S2121.60 (15)
C5—C4—C3119.8 (2)C27—C26—C25119.51 (19)
C5—C4—S1118.5 (2)C27—C26—S2118.82 (16)
C4—C5—H5119.6C26—C27—H27119.6
C6—C5—C4120.8 (3)C28—C27—C26120.8 (2)
C6—C5—H5119.6C28—C27—H27119.6
C5—C6—H6119.7C27—C28—H28119.9
C5—C6—C7120.6 (3)C27—C28—C29120.2 (2)
C7—C6—H6119.7C29—C28—H28119.9
C6—C7—H7120.3C28—C29—H29120.1
C8—C7—C6119.3 (3)C30—C29—C28119.9 (2)
C8—C7—H7120.3C30—C29—H29120.1
C3—C8—H8119.6C25—C30—H30119.6
C7—C8—C3120.8 (3)C29—C30—C25120.8 (2)
C7—C8—H8119.6C29—C30—H30119.6
C10—C9—C1117.82 (17)C32—C31—C23118.12 (16)
C14—C9—C1124.68 (19)C32—C31—C36117.88 (18)
C14—C9—C10117.5 (2)C36—C31—C23123.98 (16)
C9—C10—H10119.5C31—C32—H32119.5
C9—C10—C11121.1 (2)C31—C32—C33120.98 (19)
C11—C10—H10119.5C33—C32—H32119.5
C10—C11—H11118.9C32—C33—H33119.1
C12—C11—C10122.1 (2)C34—C33—C32121.7 (2)
C12—C11—H11118.9C34—C33—H33119.1
C11—C12—C15121.8 (3)C33—C34—C35117.03 (19)
C13—C12—C11116.3 (2)C33—C34—C37121.0 (2)
C13—C12—C15121.8 (3)C35—C34—C37122.0 (2)
C12—C13—H13118.7C34—C35—H35118.8
C12—C13—C14122.7 (2)C34—C35—C36122.4 (2)
C14—C13—H13118.7C36—C35—H35118.8
C9—C14—C13120.2 (2)C31—C36—C35120.02 (19)
C9—C14—H14119.9C31—C36—H36120.0
C13—C14—H14119.9C35—C36—H36120.0
C12—C15—H15A109.5C34—C37—H37A109.5
C12—C15—H15B109.5C34—C37—H37B109.5
C12—C15—H15C109.5C34—C37—H37C109.5
H15A—C15—H15B109.5H37A—C37—H37B109.5
H15A—C15—H15C109.5H37A—C37—H37C109.5
H15B—C15—H15C109.5H37B—C37—H37C109.5
C17—C16—C21119.3 (2)C39—C38—C43119.51 (19)
C17—C16—N1120.17 (18)C39—C38—N2120.43 (17)
C21—C16—N1120.5 (2)C43—C38—N2120.02 (18)
C16—C17—H17119.7C38—C39—H39120.3
C16—C17—C18120.5 (2)C38—C39—C40119.4 (2)
C18—C17—H17119.7C40—C39—H39120.3
C17—C18—H18119.5C39—C40—H40119.1
C17—C18—C19121.1 (2)C41—C40—C39121.8 (2)
C19—C18—H18119.5C41—C40—H40119.1
C18—C19—C22120.5 (3)C40—C41—C42117.4 (2)
C20—C19—C18117.4 (2)C40—C41—C44120.9 (3)
C20—C19—C22122.2 (3)C42—C41—C44121.7 (3)
C19—C20—H20118.9C41—C42—H42119.2
C21—C20—C19122.2 (2)C43—C42—C41121.6 (2)
C21—C20—H20118.9C43—C42—H42119.2
C16—C21—H21120.3C38—C43—H43119.9
C20—C21—C16119.4 (2)C42—C43—C38120.2 (2)
C20—C21—H21120.3C42—C43—H43119.9
C19—C22—H22A109.5C41—C44—H44A109.5
C19—C22—H22B109.5C41—C44—H44B109.5
C19—C22—H22C109.5C41—C44—H44C109.5
H22A—C22—H22B109.5H44A—C44—H44B109.5
H22A—C22—H22C109.5H44A—C44—H44C109.5
H22B—C22—H22C109.5H44B—C44—H44C109.5
C2—N1—C1122.63 (17)C24—N2—C23121.63 (16)
C2—N1—C16119.03 (16)C24—N2—C38120.08 (15)
C16—N1—C1118.23 (16)C38—N2—C23117.93 (14)
C4—S1—C197.96 (10)C26—S2—C2397.79 (9)
C1—C9—C10—C11179.6 (2)C23—C31—C32—C33179.76 (18)
C1—C9—C14—C13178.1 (2)C23—C31—C36—C35179.92 (18)
C2—C3—C4—C5170.8 (2)C24—C25—C26—C27168.90 (18)
C2—C3—C4—S15.9 (3)C24—C25—C26—S27.9 (3)
C2—C3—C8—C7172.3 (2)C24—C25—C30—C29170.92 (19)
C3—C2—N1—C114.5 (3)C25—C24—N2—C2316.9 (2)
C3—C2—N1—C16169.61 (18)C25—C24—N2—C38170.16 (16)
C3—C4—C5—C61.6 (4)C25—C26—C27—C282.4 (3)
C3—C4—S1—C126.04 (19)C25—C26—S2—C2325.38 (17)
C4—C3—C8—C71.1 (4)C26—C25—C30—C291.9 (3)
C4—C5—C6—C70.0 (4)C26—C27—C28—C290.2 (3)
C5—C4—S1—C1157.21 (18)C27—C26—S2—C23157.83 (16)
C5—C6—C7—C81.0 (5)C27—C28—C29—C301.8 (4)
C6—C7—C8—C30.5 (4)C28—C29—C30—C250.7 (3)
C8—C3—C4—C52.1 (3)C30—C25—C26—C273.4 (3)
C8—C3—C4—S1178.83 (17)C30—C25—C26—S2179.83 (15)
C9—C1—N1—C276.4 (2)C31—C23—N2—C2473.1 (2)
C9—C1—N1—C1699.6 (2)C31—C23—N2—C3899.91 (19)
C9—C1—S1—C478.97 (15)C31—C23—S2—C2676.93 (14)
C9—C10—C11—C121.6 (4)C31—C32—C33—C340.4 (3)
C10—C9—C14—C132.7 (4)C32—C31—C36—C351.3 (3)
C10—C11—C12—C132.5 (4)C32—C33—C34—C350.0 (3)
C10—C11—C12—C15178.7 (2)C32—C33—C34—C37179.8 (2)
C11—C12—C13—C140.9 (4)C33—C34—C35—C360.3 (3)
C12—C13—C14—C91.7 (5)C34—C35—C36—C310.9 (3)
C14—C9—C10—C111.1 (3)C36—C31—C32—C331.1 (3)
C15—C12—C13—C14179.7 (3)C37—C34—C35—C36179.51 (19)
C16—C17—C18—C190.4 (3)C38—C39—C40—C410.5 (3)
C17—C16—C21—C202.3 (3)C39—C38—C43—C422.3 (3)
C17—C16—N1—C1129.4 (2)C39—C38—N2—C2344.1 (2)
C17—C16—N1—C254.5 (3)C39—C38—N2—C24129.0 (2)
C17—C18—C19—C201.7 (3)C39—C40—C41—C422.8 (4)
C17—C18—C19—C22177.7 (2)C39—C40—C41—C44176.1 (2)
C18—C19—C20—C210.9 (4)C40—C41—C42—C432.6 (3)
C19—C20—C21—C161.1 (4)C41—C42—C43—C380.1 (3)
C21—C16—C17—C181.6 (3)C43—C38—C39—C402.1 (3)
C21—C16—N1—C148.5 (3)C43—C38—N2—C23133.54 (18)
C21—C16—N1—C2127.6 (2)C43—C38—N2—C2453.3 (2)
C22—C19—C20—C21178.5 (2)C44—C41—C42—C43176.3 (2)
N1—C1—C9—C10160.31 (19)N2—C23—C31—C32170.50 (16)
N1—C1—C9—C1418.9 (3)N2—C23—C31—C368.1 (3)
N1—C1—S1—C450.86 (16)N2—C23—S2—C2652.70 (14)
N1—C2—C3—C417.9 (3)N2—C24—C25—C2618.3 (3)
N1—C2—C3—C8169.1 (2)N2—C24—C25—C30169.31 (17)
N1—C16—C17—C18179.55 (18)N2—C38—C39—C40179.77 (19)
N1—C16—C21—C20179.7 (2)N2—C38—C43—C42180.00 (18)
O1—C2—C3—C4160.1 (2)O2—C24—C25—C26158.83 (19)
O1—C2—C3—C813.0 (3)O2—C24—C25—C3013.6 (3)
O1—C2—N1—C1167.6 (2)O2—C24—N2—C23165.96 (18)
O1—C2—N1—C168.4 (3)O2—C24—N2—C386.9 (3)
S1—C1—C9—C1072.1 (2)S2—C23—C31—C3262.5 (2)
S1—C1—C9—C14108.7 (2)S2—C23—C31—C36118.86 (18)
S1—C1—N1—C251.4 (2)S2—C23—N2—C2454.8 (2)
S1—C1—N1—C16132.69 (16)S2—C23—N2—C38132.13 (14)
S1—C4—C5—C6178.4 (2)S2—C26—C27—C28179.28 (16)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg8 are the centroids of the C16–C21 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.982.463.399 (3)161
C23—H23···O1i0.982.343.268 (2)158
C28—H28···Cg8ii0.932.603.514 (3)169
C32—H32···Cg40.932.903.818 (2)171
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Euticals Inc. for the gift of T3P.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, J., Li, X., Shao, J., Zhu, M., Li, Y., Chen, H. & Li, X. (2015). Chin. J. Org. Chem. 35, 1370–1374.  CrossRef CAS Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKröger, D., Schlüter, T., Fischer, M., Geibel, I. & Martnes, J. (2015). ACS Comb. Chem. 17, 202-207.  Google Scholar
First citationMandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555–568.  CAS Google Scholar
First citationNofal, Z. M., Soliman, E. A., Abd El-Karim, S. S., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. Hetercyclic Chem. 51, 1797–1806.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Shi, T., Gao, W., Zhang, H., Wang, Y., Li, J., Hou, S., Chen, J., Peng, X. & Wang, Z. (2017). Org. Biomol. Chem. 15, 8013–8017.  CSD CrossRef CAS Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Coyle, D. J., Noble, D. J., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1108–1112.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z., Zhu, M., Wei, S., Shao, J., Hou, Y., Chen, H. & Li, X. (2016). Bioorg. Med. Chem. Lett. 26, 1738–1741.  CSD CrossRef CAS Google Scholar
First citationZarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds