research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of bis­­[N,N-bis­­(2-meth­­oxy­eth­yl)di­thio­carbamato-κ2S,S′]di-n-butyl­tin(IV) and [N-(2-meth­­oxy­eth­yl)-N-methyl­di­thio­carbamato-κ2S,S′]tri­phenyl­tin(IV)

CROSSMARK_Color_square_no_text.svg

aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Chemical Crystallography, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 January 2018; accepted 31 January 2018; online 7 February 2018)

The crystal and mol­ecular structures of the two title organotin di­thio­carbamate compounds, [Sn(C4H9)2(C7H14NO2S2)2], (I), and [Sn(C6H5)3(C5H10NOS2)], (II), are described. Both structures feature asymmetrically bound di­thio­carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra­hedral geometry in (II). The complete mol­ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol­ecules self-assemble into a supra­molecular array parallel to (10-1) via methyl­ene-C—H⋯O(meth­oxy) inter­actions. In the crystal of (II), supra­molecular dimers are formed via pairs of weak phenyl-C—H⋯π(phen­yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter­actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol­ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth­oxy-H⋯H(but­yl) contacts between layers.

1. Chemical context

While formerly the purview of all-alkyl substituents (Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]; Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]), recent work in the chemistry of di­thio­carbamate ligands, S2CN(R)R′, has increasingly seen the inclusion of oxygen atoms in these N-bound groups (Hogarth et al., 2009[Hogarth, G., Rainford-Brent, E. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361-1364.]), leading to different chemistry/biochemistry. Oxygen can be present as a hydroxyl group, giving rise to supra­molecular aggregation patterns based on hydrogen bonding for otherwise non-aggregating species (Tan et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]; Jotani et al., 2017[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287-298.]) or as an ether, giving rise to compounds with biological activity (Ferreira et al., 2012[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493-503.]). Organotin di­thio­carbamates have long been known to possess biological activity, in particular as anti-tumour and anti-bacterial agents (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). In keeping with the aforementioned, several recent studies have appeared investigating the biological activity of metal di­thio­carbamates where the ligand contains at least one 2-meth­oxy­ethyl substituent (Khan et al., 2013[Khan, H., Badshah, A., Said, M., Murtaza, G., Ahmad, J., Jean-Claude, B. J., Todorova, M. & Butler, I. S. (2013). Appl. Organomet. Chem. 27, 387-395.], 2016[Khan, H., Badshah, A., Said, M., Murtaza, G., Sirajuddin, M., Ahmad, J. & Butler, I. S. (2016). Inorg. Chim. Acta, 447, 176-182.]), including anti-bacterial potential of organo­tins (Mohamad, Awang, Kamaludin & Abu Bakar, 2016[Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269-1274.]; Mohamad, Awang & Kamaludin, 2016[Mohamad, R., Awang, N. & Kamaludin, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1920-1925.]). The latter studies have been augmented by several structural investigations in recent times (Mohamad, Awang, Jotani & Tiekink, 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]; Mohamad, Awang, Kamaludin, Jotani et al., 2016[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480-1487.]; Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.]). In a continuation of these structural studies, herein, the crystal and mol­ecular structures of (n-Bu)2Sn[S2CN(CH2CH2OCH3)2]2 (I)[link] and (C6H5)3Sn[S2CN(CH3)CH2CH2OCH3] (II)[link] are reported along with a Hirshfeld surface analysis to provide more details on the mol­ecular packing, which generally lacks directional inter­molecular inter­actions.

[Scheme 1]

1.1. Structural commentary

The tin atom in (I)[link], Fig. 1[link]a, lies on a crystallographic twofold axis so that the asymmetric unit comprises half a mol­ecule. The di­thio­carbamate ligand coordinates to the tin atom with quite disparate Sn—S bond lengths with Δ(Sn—S) = d(Sn—Slong) − (Sn—S)short = 0.38 Å, Table 1[link]. The disparity in the Sn—S bond lengths is reflected in systematic differences in the C—S bonds lengths with the bond associated with the stronger Sn—S1 bond being significantly longer, i.e. by about 0.03 Å, than the C—S bond associated with the weaker Sn—S2 bond. The coordination environment is completed by two α-carbon atoms of the n-butyl substituents. The resultant C2S4 donor set defines a skew-trapezoidal bipyramidal geometry with the tin-bound organic substituents lying over the weaker Sn—S2 bonds, which subtend an angle at the tin atom approximately 50° wider than that subtended by the S1 atoms, Table 1[link]. The 2-meth­oxy­ethyl groups lie to either side of the S2CN residue and have very similar conformations, as seen in the values of the C1—N1—C2—C3, N1—C2—C3—O1 and C2—C3—O1—C4 torsion angles of −94.1 (4), −67.4 (4) and −177.1 (3)°, indicating that − anti-clinal, − syn-clinal and − anti-periplanar descriptors, respectively, are in effect. For the O2-meth­oxy­ethyl group, the equivalent torsion angles are −82.0 (4), −70.3 (4) and −169.1 (3)°. The independent n-butyl substituent has an all-trans (+ anti-periplanar) conformation, as seen in the values of the Sn—C8—C9—C10 and C8—C9—C10— C11 torsion angles of 172.9 (2) and 176.3 (3)°, respectively.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Sn—S1 2.5503 (9) S1—C1 1.736 (3)
Sn—S2 2.9300 (9) S2—C1 1.702 (3)
Sn—C8 2.131 (3)    
       
S1—Sn—S2 65.13 (3) S2—Sn—C8 83.95 (9)
S1—Sn—S1i 87.95 (4) S1—Sn—C8i 104.64 (9)
S2—Sn—S2i 141.79 (3) S2—Sn—C8i 82.96 (9)
S1—Sn—C8 104.38 (9) C8—Sn—C8i 139.25 (17)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes and displacement ellipsoids at the 50% probability level. Unlabelled atoms in (a) are related by the symmetry operation x, y, [{1\over 2}] − z.

The mol­ecule in (II)[link], Fig. 1[link]b, lies on a general position and has a quite distinct coordination geometry owing to the presence of three tin-bound phenyl groups. As for (I)[link], the di­thio­carbamate ligand coordinates in an asymmetric mode with Δ(Sn—S) being 0.55 Å. Consistent with the greater disparity in Sn—S bond lengths, the difference in the associated C—S bond lengths in (II)[link] is greater cf. (I)[link], i.e. nearly 0.07 Å, Table 2[link]. The increased asymmetry in the mode of coordination of the di­thio­carbamate ligand in (II)[link], cf. (I)[link], is correlated with the reduced Lewis acidity of the tin atom in the triorganotin compound, (II)[link], compared with that in the diorganotin compound, (I)[link]. The angles subtended at the tin atom vary from a narrow 64.37 (2)° for the S1—Sn—S2 chelate angle to 155.54 (8)° for S2—Sn—C11. The C3S2 donor set approximates a trigonal–bipyramidal geometry with the value of τ, an indicator of a five-coordinate coordination geometry, being 0.61, cf. 1.0 for an ideal trigonal bipyramid and 0.0 for an ideal square pyramid (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). If the coordination geometry is considered as being based on a C3S donor set, the range of tetra­hedral angles is 91.17 (8)°, for S1—Sn—C11, to 119.09 (7)°, for S1—Sn—C31. The C21—Sn—C31 angle, at 115.55 (10)°, is wider by 10° than the other C—Sn—C angles, a result correlated with the close approach of the S2 atom. The 2-meth­oxy­ethyl group has a very similar conformation to the O1-meth­oxy­ethyl group in (I)[link], with the values of the C1—N1—C3—C4, N1—C3—C4—O1 and C5—O1—C4—C3 torsion angles being 95.1 (3), 81.8 (3) and 178.7 (3)°, respectively.

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Sn—S1 2.4711 (7) Sn—C11 2.162 (3)
Sn—S2 3.0180 (7) Sn—C21 2.136 (3)
S1—C1 1.755 (3) Sn—C31 2.133 (2)
S2—C1 1.686 (3)    
       
S1—Sn—S2 64.37 (2) S2—Sn—C21 87.38 (7)
S1—Sn—C11 91.17 (8) S2—Sn—C31 87.83 (7)
S1—Sn—C21 115.84 (7) C11—Sn—C21 104.11 (10)
S1—Sn—C31 119.09 (7) C11—Sn—C31 105.78 (10)
S2—Sn—C11 155.54 (8) C21—Sn—C31 115.55 (10)

2. Supra­molecular features

Geometric parameters characterizing the inter­molecular inter­actions operating in the crystal structures of (I)[link] and (II)[link] are collected in Tables 3[link] and 4[link], respectively. The mol­ecular packing of (I)[link] is dominated by methyl­ene-C—H⋯O(meth­oxy) inter­actions whereby each meth­oxy-oxygen atom accepts a single inter­action. Supra­molecular chains form about the twofold axis along b so that a supra­molecular array is formed parallel to (10[\overline{1}]), Fig. 2[link]a. Layers stack with no directional inter­actions between them, Fig. 2[link]b.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the N4/C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2ii 0.98 2.55 3.423 (5) 149
C6—H6B⋯O1iii 0.99 2.57 3.553 (4) 175
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯Cg1i 0.95 2.99 3.760 (3) 139
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular layer parallel to (10[\overline{1}]) sustained by methyl­ene-C—H⋯O(meth­oxy) inter­actions shown as orange dashed lines and (b) a view of the unit-cell contents in projection down the b axis, with one layer highlighted in space-filling mode.

The mol­ecular packing in (II)[link] is largely devoid of directional inter­actions with the only contact rated in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) being a phenyl-C—H⋯π(phen­yl) contact. These occur between centrosymmetrically related mol­ecules to form dimeric aggregates which assemble into columns parallel to the a axis, Fig. 3[link]

[Figure 3]
Figure 3
Mol­ecular packing in the crystal of (II)[link]: a view of the unit-cell contents in projection down the a axis. The phenyl-C—H⋯π(phen­yl) inter­actions are shown as purple dashed lines.

3. Hirshfeld surface analysis

The Hirshfeld surface calculations for the organotin derivatives (I)[link] and (II)[link] were performed in accord with recent work on related organotin di­thio­carbamate compounds (Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.]), and these exhibit different inter­molecular environments as described below.

The bright-red spots near each of the meth­oxy-O1 and -O2, and methyl­ene-H4A and H6B atoms lying on both the sides of twofold symmetry axis on the Hirshfeld surfaces mapped over dnorm for (I)[link] in Fig. 4[link]a and b represent the dominant inter­molecular C—H⋯O contacts, Table 3[link]. In addition, the bright-red spots appearing near the meth­oxy-H8B and butyl-H8A atoms in Fig. 4[link]c indicate the significant influence of intra-layer H⋯H contacts, Table 5[link]. On the Hirshfeld surface mapped over the electrostatic potential for (I)[link] shown in Fig. 5[link]a and b, the donors and acceptors are represented with blue and red regions around the respective atoms corresponding to positive and negative potentials, respectively.

Table 5
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
(I)    
H4B⋯H8A 2.00 x, − y, 1 − z
H5A⋯H6B 2.21 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
H8B⋯H10B 2.37 x, 1 − y, 1 − z
H10B⋯H10B 2.37 x, 1 − y, 1 − z
(II)    
H14⋯H33 2.37 1 + x, 1 + y, z
H16⋯H33 2.25 x, 1 + y, z
H22⋯H34 2.33 x, 1 + y, z
C1⋯H3B 2.86 x, − y, 2 − z
C14⋯H4A 2.85 1 − x, 1 − y, 2 − z
[Figure 4]
Figure 4
Views of Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.163 to +1.302, highlighting (a) and (b) inter­molecular methyl­ene-C—H⋯O(meth­oxy) inter­actions and (c) short intra-layer H⋯H contacts between meth­oxy- and butyl-hydrogen atoms H4B and H8A as sky-blue dashed lines.
[Figure 5]
Figure 5
Views of Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for: (a) and (b) a mol­ecule of (I)[link] in the range −0.054 to +0.036 au and (c) a mol­ecule of (II)[link] in the range ±0.036 au.

The Hirshfeld surfaces mapped over dnorm for (II)[link] (not shown), indicate the absence of significant directional inter­actions operating in the crystal as no characteristic red spots appear on the surface. The blue and red regions on the Hirshfeld surface mapped over electrostatic potential for (II)[link] in Fig. 5[link]c are due to polarization of charges near the respective functional groups and do not represent any significant inter­action in the crystal. The weak inter­molecular C—H⋯π contact and intra-layer inter­atomic H⋯H contacts (Table 5[link]) present in the crystal of (II)[link] are illustrated in Fig. 6[link].

[Figure 6]
Figure 6
Views of the Hirshfeld surface for (II)[link] mapped with the shape-index property showing (a) inter­molecular C—H⋯π/π⋯H—C contacts and (b) short inter­atomic H⋯H contacts through black-dashed lines.

The overall two-dimensional fingerprint plots for (I)[link] and (II)[link], Fig. 7[link]a and b, reveal the distinct supra­molecular associations in their crystals. The terminal meth­oxy-ethyl and coordinated n-butyl substituents in (I)[link] form significant intra-layer H⋯H contacts in comparison to (II)[link], Table 5[link]. This fact is also indicated in the fingerprint plots delineated into H⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), showing a short thick spike at de + di ∼ 2.0 Å and the distribution of points with greater density in (de, di) range ∼1.0 to 1.2 Å for (I)[link] in Fig. 7[link]a, and a small peak at de + di ∼ 2.2 Å with relatively few points at de + di < 2.4 Å for (II)[link] in Fig. 7[link]b. The fingerprint plot delineated into O⋯H/H⋯O contacts for (I)[link], Fig. 7[link]a, characterizes inter­molecular C—H⋯O inter­actions as the pair of forceps-like tips at de + di ∼ 2.5 Å. A low percentage contribution due to O⋯H/H⋯O contacts is noted for (II)[link], as summarized in Table 6[link]. The relatively high, i.e. 29.1%, contribution from C⋯H/H⋯C contacts to the Hirshfeld surfaces of (II)[link] is due to the presence of tin-bound phenyl substituents and the resulting short inter­atomic C⋯H/H⋯C contacts, Table 5[link], and inter­molecular C—H⋯π contact, Table 4[link], viewed as the pair of peaks at de + di ∼ 2.8 Å and the distribution of points around de + di ∼ 2.9 Å in both the wings of its delineated fingerprint plot, Fig. 7b[link]. Although S⋯H/H⋯S contacts have significant contributions to the Hirshfeld surfaces of (I)[link] and (II)[link], as summarized in Table 6[link], their inter­atomic distances are farther than sum of their van der Waals radii, i.e. de + di > 3.0 Å, Fig. 7[link], and hence do not have a structure-directing influence on the mol­ecular packing. The small contributions from other contacts in (I)[link] and (II)[link] also have negligible impact in the respective crystals.

Table 6
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link] and (II)

Contact % contribution in (I) % contribution in (II)
H⋯H 77.9 58.9
S⋯H/H⋯S 12.2 7.3
C⋯H/H⋯C 1.6 29.1
O⋯H/H⋯O 7.9 2.5
N⋯H/H⋯N 0.4 0.7
C⋯S/S⋯C 0.0 1.3
S⋯O/O⋯S 0.0 0.1
Sn⋯H/N⋯Sn 0.0 0.1
[Figure 7]
Figure 7
Comparison of the full two-dimensional fingerprint plots for (I)[link] and (II)[link], and the plots delineated into (a) H⋯H, O⋯H/H⋯O and S⋯H/H⋯S contacts and (b) H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts.

4. Database survey

It is well documented that organotin di­thio­carbamates, R′′xSn(S2CNRR′)4–x, can adopt a variety of coordination geometries, especially for x = 2 (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). The structural motifs for the x = 2 series were recently summarized (Zaldi et al., 2017[Zaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842-848.]) and four structural motifs recognized. With a trapezoidal bipyramidal geometry being observed in (I)[link], this structure conforms to the common motif for the x = 2 structures. There is one other diorganotin structure with the same di­thio­carbamate ligand, viz. the R′′ = C6H5 compound (Mohamad, Awang, Jotani et al., 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]). This, too, adopts the common trapezoidal bipyramidal geometry although a good number of other derivatives with R′′ = Ph adopt octa­hedral geometries, such as in (C6H5)2Sn[S2CN(CH3)CH2CH2OCH3]2 (Muthalib et al., 2014[Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39-46.]) featuring the same di­thio­carbamate ligand as in (II)[link]. The observed anisobidentate mode of coordination for the di­thio­carbamate ligand in (II)[link] is as expected and in fact is the norm for x = 3 structures which may be described as having 4 + 1 coordination geometries (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]).

5. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification. The melting points were determined using an automated melting point apparatus (MPA 120 EZ-Melt). Carbon, hydrogen, nitro­gen and sulfur analyses were performed on a Leco CHNS-932 Elemental Analyzer. The IR spectra were obtained on a Perkin Elmer Spectrum GX from 4000 to 400 cm−1. NMR spectra were recorded at room temperature on Bruker AVANCE 400 lll HD in CDCl3.

Synthesis of (I)[link]: bis­(2-meth­oxy­eth­yl)amine (Aldrich; 1.48 ml, 10 mmol) dissolved in ethanol (30 ml) was stirred for 30 min. Then, carbon di­sulfide (0.6 ml, 10 mmol) in cold ethanol was added and the resulting mixture was stirred for 2 h. A 25% ammonia solution (1–2 ml) was added to generate basic conditions. Then, di-n-butyl­tin(IV) dichloride (Aldrich; 1.52 g, 5 mmol) dissolved in ethanol (20–30 ml) was added dropwise into the solution and stirring was continued for 2 h. All reactions were carried out at 277 K. The precipitate that formed was dried and collected. Colourless prisms were harvested from the slow evaporation of its chloro­form:ethanol (2:1 v/v) solution. Yield: 72%. M.p. 341–342 K. Elemental analysis: calculated (%): C 40.68, H 7.14, N 4.31, S 19.75. Found (%): C 41.76, H 6.07, N 4.91, S 19.25. IR (KBr cm−1): 1487 ν(C—N), 992 ν(C—S), 544 ν(Sn—C), 386 ν(Sn—S). 1H NMR (CDCl3): δ 4.13 (2H, O—CH2); 3.70 (2H, N—CH2); 3.35 (3H, O—CH3); 1.45–2.05 (6H, Sn—CH2—CH2—CH2–), 0.94 (3H, CH2—CH3). 13C NMR (CDCl3): δ 201.52 (NCS2); 70.07 (O—CH2); 55.59 (N—CH2); 59.01 (O—CH3); 34.26 Sn—CH2; 28.55 Sn—CH2CH2; 26.41 Sn—CH2CH2CH2; 13.87 CH2CH3. 119Sn NMR (CDCl3): δ −335.5.

Synthesis of (II)[link]: The synthesis of (II)[link] was carried out in the same manner as for (I)[link] using (2-meth­oxy­eth­yl)methyl­amine (Santa Cruz Biotechnology; 1.1 ml, 10 mmol) and tri­phenyl­tin(IV) chloride (Merck; 3.85 g, 10 mmol). Crystallization in the form of colourless slabs was from its chloro­form:ethanol (1:2 v/v) solution. Yield: 78%. M.p. 366-367 K. Elemental analysis: calculated (%): C 53.71, H 4.89, N 2.72, S 12.47. Found (%): C 54.28, H 5.26, N 2.73, S 12.5. IR (KBr cm−1): 1477 ν(C—N), 997 ν(C—S), 527 ν(Sn—C), 451 ν(Sn—S). 1H NMR (CDCl3): δ 7.41–7.82 (15H, Sn—C6H5); 4.05 (2H, O—CH2); 3.71 (2H, N—CH2); 3.51 (3H, O—CH3); 3.38 (3H, N—CH3). 13C NMR (CDCl3): δ 196.97 (NCS2); 128.25–142.28 (C-aromatic); 70.09 (O—CH2); 59.06 (N—CH2); 58.10 (O—CH3); 45.81 (N—CH3);. 119Sn NMR (CDCl3): δ −183.8.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). For (I)[link], the maximum and minimum residual electron density peaks of 2.18 and 0.88 e Å−3, respectively, were located 0.88 and 1.03 Å from the S1 and Sn atoms, respectively. For (II)[link], the maximum and minimum residual electron density peaks of 2.21 and 1.82 e Å−3, respectively, were located 0.96 and 0.76 Å from the Sn atom.

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula [Sn(C4H9)2(C7H14NO2S2)2] [Sn(C6H5)3(C5H10NOS2)]
Mr 649.54 514.25
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 173 148
a, b, c (Å) 25.8819 (17), 7.1272 (4), 16.4146 (11) 7.6258 (3), 10.2178 (3), 14.8621 (6)
α, β, γ (°) 90, 97.282 (6), 90 91.976 (3), 90.655 (3), 107.875 (3)
V3) 3003.5 (3) 1101.19 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.16 1.36
Crystal size (mm) 0.30 × 0.15 × 0.05 0.50 × 0.30 × 0.30
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.247, 1.000 0.479, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18349, 4631, 3678 11916, 6547, 6089
Rint 0.054 0.046
(sin θ/λ)max−1) 0.738 0.739
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.05 0.040, 0.114, 1.09
No. of reflections 4631 6547
No. of parameters 153 255
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.18, −0.88 2.21, −1.82
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012) for (II). For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']di-n-butyltin(IV) (I) top
Crystal data top
[Sn(C4H9)2(C7H14NO2S2)2]F(000) = 1352
Mr = 649.54Dx = 1.436 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.8819 (17) ÅCell parameters from 5103 reflections
b = 7.1272 (4) Åθ = 3.9–30.2°
c = 16.4146 (11) ŵ = 1.16 mm1
β = 97.282 (6)°T = 173 K
V = 3003.5 (3) Å3Prism, colourless
Z = 40.30 × 0.15 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
4631 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3678 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4041 pixels mm-1θmax = 31.6°, θmin = 3.3°
ω scanh = 3637
Absorption correction: multi-scan
(CrysAlis Pro; Agilent, 2015)
k = 99
Tmin = 0.247, Tmax = 1.000l = 1823
18349 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0581P)2 + 4.9909P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4631 reflectionsΔρmax = 2.18 e Å3
153 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 2.18 and 0.88 eÅ-3, respectively, were located 0.88 Å and 1.03 Å from the S1 and Sn atoms, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.00000.22626 (4)0.25000.03003 (11)
S10.06302 (3)0.03124 (11)0.30644 (5)0.03538 (19)
S20.09910 (3)0.36081 (12)0.33633 (5)0.03628 (19)
O10.18723 (10)0.1322 (4)0.54586 (15)0.0420 (6)
O20.26265 (10)0.1284 (4)0.34048 (17)0.0468 (6)
N10.15552 (10)0.0612 (4)0.38750 (16)0.0307 (5)
C10.11053 (12)0.1264 (4)0.34726 (18)0.0300 (6)
C20.16660 (13)0.1410 (5)0.4000 (2)0.0348 (7)
H2A0.20410.16350.39700.042*
H2B0.14650.21270.35500.042*
C30.15321 (15)0.2133 (5)0.4811 (2)0.0378 (7)
H3A0.11670.18070.48720.045*
H3B0.15660.35160.48300.045*
C40.17861 (15)0.2007 (6)0.6240 (2)0.0444 (9)
H4A0.18160.33780.62470.067*
H4B0.14370.16450.63510.067*
H4C0.20460.14730.66620.067*
C50.19574 (13)0.1927 (5)0.42487 (19)0.0329 (7)
H5A0.21810.12730.46950.039*
H5B0.17850.29830.44980.039*
C60.22976 (13)0.2705 (5)0.3646 (2)0.0342 (7)
H6A0.20760.32010.31570.041*
H6B0.25110.37510.39030.041*
C70.30157 (16)0.2029 (6)0.2963 (3)0.0475 (9)
H7A0.32470.28500.33230.071*
H7B0.28510.27520.24920.071*
H7C0.32190.10000.27670.071*
C80.03139 (13)0.3304 (5)0.35511 (19)0.0311 (6)
H8A0.06730.28220.35430.037*
H8B0.01040.28100.40510.037*
C90.03254 (13)0.5440 (4)0.36019 (19)0.0323 (6)
H9A0.00360.59200.36840.039*
H9B0.04980.59490.30750.039*
C100.06123 (13)0.6138 (5)0.42990 (19)0.0341 (7)
H10A0.09800.57260.41970.041*
H10B0.04540.55620.48210.041*
C110.05949 (17)0.8260 (5)0.4386 (2)0.0454 (9)
H11A0.07520.88380.38720.068*
H11B0.02320.86710.45100.068*
H11C0.07900.86390.48340.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03662 (18)0.02227 (17)0.03257 (17)0.0000.00965 (12)0.000
S10.0400 (4)0.0212 (4)0.0445 (4)0.0060 (3)0.0036 (3)0.0035 (3)
S20.0399 (4)0.0252 (4)0.0433 (4)0.0045 (3)0.0037 (3)0.0006 (3)
O10.0456 (14)0.0362 (15)0.0443 (13)0.0097 (11)0.0063 (11)0.0091 (11)
O20.0485 (15)0.0295 (14)0.0657 (16)0.0004 (11)0.0197 (12)0.0066 (12)
N10.0393 (14)0.0201 (13)0.0338 (13)0.0038 (10)0.0094 (11)0.0006 (10)
C10.0391 (16)0.0268 (16)0.0267 (13)0.0013 (12)0.0148 (12)0.0008 (11)
C20.0406 (17)0.0218 (16)0.0433 (17)0.0027 (12)0.0102 (14)0.0027 (13)
C30.0461 (19)0.0186 (16)0.0496 (19)0.0032 (12)0.0101 (15)0.0015 (13)
C40.044 (2)0.037 (2)0.052 (2)0.0035 (15)0.0053 (16)0.0186 (16)
C50.0356 (16)0.0309 (18)0.0314 (15)0.0100 (12)0.0011 (12)0.0012 (12)
C60.0376 (17)0.0263 (17)0.0384 (17)0.0085 (12)0.0038 (13)0.0054 (12)
C70.044 (2)0.043 (2)0.058 (2)0.0004 (16)0.0157 (17)0.0078 (18)
C80.0376 (16)0.0239 (15)0.0337 (15)0.0023 (12)0.0117 (12)0.0002 (12)
C90.0403 (17)0.0241 (16)0.0338 (15)0.0014 (12)0.0093 (13)0.0002 (12)
C100.0401 (17)0.0281 (17)0.0355 (15)0.0019 (13)0.0104 (13)0.0005 (12)
C110.067 (2)0.0281 (19)0.0429 (19)0.0084 (16)0.0138 (17)0.0051 (15)
Geometric parameters (Å, º) top
Sn—S12.5503 (9)C4—H4C0.9800
Sn—S1i2.5504 (9)C5—C61.511 (4)
Sn—S22.9300 (9)C5—H5A0.9900
Sn—S2i2.9300 (9)C5—H5B0.9900
Sn—C82.131 (3)C6—H6A0.9900
Sn—C8i2.131 (3)C6—H6B0.9900
S1—C11.736 (3)C7—H7A0.9800
S2—C11.702 (3)C7—H7B0.9800
O1—C31.415 (4)C7—H7C0.9800
O1—C41.416 (4)C8—C91.526 (4)
O2—C61.412 (4)C8—H8A0.9900
O2—C71.417 (4)C8—H8B0.9900
N1—C11.347 (4)C9—C101.524 (4)
N1—C51.475 (4)C9—H9A0.9900
N1—C21.479 (4)C9—H9B0.9900
C2—C31.508 (5)C10—C111.519 (5)
C2—H2A0.9900C10—H10A0.9900
C2—H2B0.9900C10—H10B0.9900
C3—H3A0.9900C11—H11A0.9800
C3—H3B0.9900C11—H11B0.9800
C4—H4A0.9800C11—H11C0.9800
C4—H4B0.9800
S1—Sn—S265.13 (3)C6—C5—H5A108.9
S1—Sn—S1i87.95 (4)N1—C5—H5B108.9
S2—Sn—S2i141.79 (3)C6—C5—H5B108.9
S1—Sn—C8104.38 (9)H5A—C5—H5B107.7
S2—Sn—C883.95 (9)O2—C6—C5110.0 (3)
S1—Sn—C8i104.64 (9)O2—C6—H6A109.7
C8—Sn—S1i104.64 (9)C5—C6—H6A109.7
C8i—Sn—S1i104.38 (9)O2—C6—H6B109.7
S2—Sn—C8i82.96 (9)C5—C6—H6B109.7
S1—Sn—S2i153.08 (3)H6A—C6—H6B108.2
C8—Sn—C8i139.25 (17)O2—C7—H7A109.5
C1—S1—Sn93.64 (11)O2—C7—H7B109.5
C1—S2—Sn81.93 (11)H7A—C7—H7B109.5
C3—O1—C4112.6 (3)O2—C7—H7C109.5
C6—O2—C7111.6 (3)H7A—C7—H7C109.5
C1—N1—C5120.4 (3)H7B—C7—H7C109.5
C1—N1—C2123.0 (3)C9—C8—Sn113.8 (2)
C5—N1—C2116.6 (3)C9—C8—H8A108.8
N1—C1—S2121.2 (2)Sn—C8—H8A108.8
N1—C1—S1119.5 (2)C9—C8—H8B108.8
S2—C1—S1119.31 (19)Sn—C8—H8B108.8
N1—C2—C3113.2 (3)H8A—C8—H8B107.7
N1—C2—H2A108.9C10—C9—C8112.4 (3)
C3—C2—H2A108.9C10—C9—H9A109.1
N1—C2—H2B108.9C8—C9—H9A109.1
C3—C2—H2B108.9C10—C9—H9B109.1
H2A—C2—H2B107.8C8—C9—H9B109.1
O1—C3—C2109.4 (3)H9A—C9—H9B107.9
O1—C3—H3A109.8C11—C10—C9112.6 (3)
C2—C3—H3A109.8C11—C10—H10A109.1
O1—C3—H3B109.8C9—C10—H10A109.1
C2—C3—H3B109.8C11—C10—H10B109.1
H3A—C3—H3B108.2C9—C10—H10B109.1
O1—C4—H4A109.5H10A—C10—H10B107.8
O1—C4—H4B109.5C10—C11—H11A109.5
H4A—C4—H4B109.5C10—C11—H11B109.5
O1—C4—H4C109.5H11A—C11—H11B109.5
H4A—C4—H4C109.5C10—C11—H11C109.5
H4B—C4—H4C109.5H11A—C11—H11C109.5
N1—C5—C6113.6 (3)H11B—C11—H11C109.5
N1—C5—H5A108.9
C5—N1—C1—S21.4 (4)C5—N1—C2—C383.2 (3)
C2—N1—C1—S2178.6 (2)C4—O1—C3—C2177.1 (3)
C5—N1—C1—S1178.1 (2)N1—C2—C3—O167.4 (4)
C2—N1—C1—S10.8 (4)C1—N1—C5—C682.0 (4)
Sn—S2—C1—N1179.6 (2)C2—N1—C5—C6100.6 (3)
Sn—S2—C1—S10.11 (15)C7—O2—C6—C5169.1 (3)
Sn—S1—C1—N1179.6 (2)N1—C5—C6—O270.3 (4)
Sn—S1—C1—S20.12 (17)Sn—C8—C9—C10172.9 (2)
C1—N1—C2—C394.1 (4)C8—C9—C10—C11176.3 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N4/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.982.553.423 (5)149
C6—H6B···O1iii0.992.573.553 (4)175
Symmetry codes: (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1.
[N-(2-Methoxyethyl)-N-methyldithiocarbamato-κ2S,S']triphenyltin(IV) (II) top
Crystal data top
[Sn(C6H5)3(C5H10NOS2)]Z = 2
Mr = 514.25F(000) = 520
Triclinic, P1Dx = 1.551 Mg m3
a = 7.6258 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2178 (3) ÅCell parameters from 8110 reflections
c = 14.8621 (6) Åθ = 4.1–31.4°
α = 91.976 (3)°µ = 1.36 mm1
β = 90.655 (3)°T = 148 K
γ = 107.875 (3)°Slab, colourless
V = 1101.19 (7) Å30.50 × 0.30 × 0.30 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
6547 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6089 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 31.7°, θmin = 3.5°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis Pro; Agilent, 2015)
k = 1514
Tmin = 0.479, Tmax = 1.000l = 2020
11916 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.2783P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6547 reflectionsΔρmax = 2.21 e Å3
255 parametersΔρmin = 1.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 2.21 and 1.82 eÅ-3, respectively, were located 0.96 Å and 0.76 Å from the Sn atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.33155 (2)0.17167 (2)0.71926 (2)0.01646 (7)
S10.22626 (10)0.21030 (8)0.87168 (5)0.02514 (15)
S20.04590 (10)0.01260 (7)0.76544 (5)0.02473 (15)
O10.3089 (3)0.2686 (2)1.02520 (19)0.0379 (6)
N10.1129 (3)0.0832 (3)0.92564 (17)0.0254 (5)
C10.0058 (4)0.0900 (3)0.85949 (19)0.0211 (5)
C20.3028 (4)0.0073 (4)0.9179 (3)0.0358 (7)
H2A0.38420.04640.90150.054*
H2B0.33990.04960.97570.054*
H2C0.31180.07940.87130.054*
C30.0635 (4)0.1730 (4)1.0074 (2)0.0302 (6)
H3A0.07170.20021.01740.036*
H3B0.12180.12031.05960.036*
C40.1216 (4)0.3017 (3)1.0033 (2)0.0293 (6)
H4A0.04590.37341.04640.035*
H4B0.10320.33800.94210.035*
C50.3705 (6)0.3865 (4)1.0244 (3)0.0456 (9)
H5A0.29850.45591.06890.068*
H5B0.50110.36031.03950.068*
H5C0.35420.42460.96440.068*
C110.5881 (4)0.3348 (3)0.74340 (19)0.0210 (5)
C120.7602 (4)0.3153 (3)0.7336 (2)0.0249 (6)
H120.76690.22640.71690.030*
C130.9229 (4)0.4240 (4)0.7479 (2)0.0321 (7)
H131.03890.40910.74040.039*
C140.9145 (4)0.5536 (3)0.7729 (2)0.0308 (6)
H141.02500.62790.78210.037*
C150.7455 (4)0.5753 (3)0.7846 (2)0.0299 (6)
H150.73970.66410.80210.036*
C160.5846 (4)0.4662 (3)0.7704 (2)0.0262 (6)
H160.46910.48140.77930.031*
C210.2016 (4)0.2414 (3)0.61084 (18)0.0188 (5)
C220.2874 (4)0.3708 (3)0.5777 (2)0.0262 (6)
H220.39980.42700.60500.031*
C230.2114 (5)0.4192 (4)0.5050 (2)0.0345 (7)
H230.27040.50830.48380.041*
C240.0504 (5)0.3373 (4)0.4643 (2)0.0370 (7)
H240.00180.37000.41480.044*
C250.0359 (5)0.2075 (4)0.4951 (2)0.0344 (7)
H250.14630.15090.46630.041*
C260.0387 (4)0.1600 (3)0.5682 (2)0.0263 (6)
H260.02190.07120.58940.032*
C310.4062 (3)0.0098 (3)0.69017 (18)0.0175 (5)
C320.3456 (4)0.1288 (3)0.7390 (2)0.0272 (6)
H320.26590.13230.78810.033*
C330.4018 (5)0.2424 (3)0.7156 (3)0.0360 (8)
H330.36080.32310.74930.043*
C340.5168 (4)0.2389 (3)0.6439 (3)0.0312 (7)
H340.55350.31730.62810.037*
C350.5782 (4)0.1216 (3)0.5952 (2)0.0255 (6)
H350.65730.11900.54600.031*
C360.5237 (4)0.0067 (3)0.61873 (19)0.0212 (5)
H360.56730.07450.58570.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01712 (11)0.01286 (10)0.01959 (11)0.00482 (7)0.00283 (7)0.00054 (7)
S10.0219 (3)0.0277 (3)0.0224 (3)0.0028 (3)0.0036 (2)0.0031 (3)
S20.0239 (3)0.0231 (3)0.0250 (3)0.0041 (3)0.0038 (3)0.0000 (3)
O10.0331 (12)0.0285 (11)0.0553 (16)0.0134 (10)0.0124 (11)0.0057 (11)
N10.0239 (12)0.0295 (12)0.0249 (12)0.0108 (10)0.0072 (9)0.0043 (10)
C10.0216 (12)0.0201 (12)0.0233 (13)0.0085 (10)0.0035 (10)0.0037 (10)
C20.0258 (15)0.0372 (17)0.0429 (19)0.0065 (13)0.0144 (13)0.0060 (14)
C30.0348 (16)0.0395 (17)0.0213 (13)0.0183 (14)0.0079 (11)0.0027 (12)
C40.0316 (15)0.0277 (14)0.0259 (14)0.0051 (12)0.0076 (12)0.0003 (11)
C50.047 (2)0.0374 (19)0.060 (3)0.0249 (17)0.0004 (18)0.0011 (18)
C110.0195 (12)0.0174 (11)0.0248 (13)0.0038 (10)0.0036 (10)0.0029 (9)
C120.0225 (13)0.0212 (13)0.0316 (15)0.0079 (11)0.0026 (11)0.0024 (11)
C130.0185 (13)0.0373 (17)0.0381 (17)0.0052 (12)0.0043 (12)0.0009 (13)
C140.0248 (14)0.0289 (15)0.0293 (15)0.0053 (12)0.0018 (12)0.0011 (12)
C150.0336 (16)0.0176 (12)0.0348 (16)0.0025 (11)0.0007 (12)0.0020 (11)
C160.0243 (14)0.0192 (13)0.0344 (16)0.0059 (11)0.0022 (11)0.0018 (11)
C210.0201 (12)0.0178 (11)0.0201 (12)0.0077 (10)0.0060 (9)0.0021 (9)
C220.0267 (14)0.0212 (13)0.0312 (15)0.0075 (11)0.0026 (11)0.0054 (11)
C230.0418 (18)0.0308 (16)0.0348 (17)0.0155 (14)0.0069 (14)0.0137 (13)
C240.0381 (18)0.050 (2)0.0303 (16)0.0225 (16)0.0043 (13)0.0139 (15)
C250.0301 (16)0.0466 (19)0.0252 (15)0.0096 (14)0.0025 (12)0.0034 (13)
C260.0234 (13)0.0285 (14)0.0242 (14)0.0035 (11)0.0018 (11)0.0027 (11)
C310.0161 (11)0.0140 (10)0.0219 (12)0.0039 (9)0.0019 (9)0.0016 (9)
C320.0269 (14)0.0191 (13)0.0389 (16)0.0103 (11)0.0141 (12)0.0109 (11)
C330.0344 (17)0.0191 (13)0.059 (2)0.0131 (12)0.0178 (15)0.0148 (14)
C340.0271 (14)0.0196 (13)0.0492 (19)0.0111 (11)0.0036 (13)0.0033 (13)
C350.0233 (13)0.0269 (14)0.0271 (14)0.0094 (11)0.0042 (11)0.0049 (11)
C360.0212 (12)0.0199 (12)0.0220 (12)0.0054 (10)0.0036 (10)0.0006 (10)
Geometric parameters (Å, º) top
Sn—S12.4711 (7)C13—H130.9500
Sn—S23.0180 (7)C14—C151.385 (5)
S1—C11.755 (3)C14—H140.9500
S2—C11.686 (3)C15—C161.390 (4)
Sn—C112.162 (3)C15—H150.9500
Sn—C212.136 (3)C16—H160.9500
Sn—C312.133 (2)C21—C221.393 (4)
O1—C41.408 (4)C21—C261.396 (4)
O1—C51.420 (4)C22—C231.395 (4)
N1—C11.333 (4)C22—H220.9500
N1—C21.460 (4)C23—C241.375 (5)
N1—C31.470 (4)C23—H230.9500
C2—H2A0.9800C24—C251.384 (5)
C2—H2B0.9800C24—H240.9500
C2—H2C0.9800C25—C261.389 (4)
C3—C41.514 (4)C25—H250.9500
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C31—C361.392 (4)
C4—H4A0.9900C31—C321.393 (4)
C4—H4B0.9900C32—C331.389 (4)
C5—H5A0.9800C32—H320.9500
C5—H5B0.9800C33—C341.383 (5)
C5—H5C0.9800C33—H330.9500
C11—C121.395 (4)C34—C351.379 (5)
C11—C161.396 (4)C34—H340.9500
C12—C131.396 (4)C35—C361.395 (4)
C12—H120.9500C35—H350.9500
C13—C141.383 (5)C36—H360.9500
S1—Sn—S264.37 (2)C14—C13—C12119.8 (3)
S1—Sn—C1191.17 (8)C14—C13—H13120.1
S1—Sn—C21115.84 (7)C12—C13—H13120.1
S1—Sn—C31119.09 (7)C13—C14—C15120.2 (3)
S2—Sn—C11155.54 (8)C13—C14—H14119.9
S2—Sn—C2187.38 (7)C15—C14—H14119.9
S2—Sn—C3187.83 (7)C14—C15—C16119.5 (3)
C11—Sn—C21104.11 (10)C14—C15—H15120.2
C11—Sn—C31105.78 (10)C16—C15—H15120.2
C21—Sn—C31115.55 (10)C15—C16—C11121.8 (3)
C1—S1—Sn96.57 (10)C15—C16—H16119.1
C1—S2—Sn79.96 (10)C11—C16—H16119.1
C4—O1—C5111.3 (3)C22—C21—C26118.1 (3)
C1—N1—C2121.6 (3)C22—C21—Sn118.9 (2)
C1—N1—C3121.8 (3)C26—C21—Sn122.9 (2)
C2—N1—C3116.4 (2)C21—C22—C23121.1 (3)
N1—C1—S2122.9 (2)C21—C22—H22119.4
N1—C1—S1118.3 (2)C23—C22—H22119.4
S2—C1—S1118.72 (16)C24—C23—C22119.7 (3)
N1—C2—H2A109.5C24—C23—H23120.2
N1—C2—H2B109.5C22—C23—H23120.2
H2A—C2—H2B109.5C23—C24—C25120.3 (3)
N1—C2—H2C109.5C23—C24—H24119.9
H2A—C2—H2C109.5C25—C24—H24119.9
H2B—C2—H2C109.5C24—C25—C26120.1 (3)
N1—C3—C4113.6 (3)C24—C25—H25120.0
N1—C3—H3A108.8C26—C25—H25120.0
C4—C3—H3A108.8C25—C26—C21120.7 (3)
N1—C3—H3B108.8C25—C26—H26119.6
C4—C3—H3B108.8C21—C26—H26119.6
H3A—C3—H3B107.7C36—C31—C32119.1 (2)
O1—C4—C3108.7 (3)C36—C31—Sn117.20 (19)
O1—C4—H4A109.9C32—C31—Sn123.70 (19)
C3—C4—H4A109.9C33—C32—C31119.9 (3)
O1—C4—H4B109.9C33—C32—H32120.0
C3—C4—H4B109.9C31—C32—H32120.0
H4A—C4—H4B108.3C34—C33—C32120.6 (3)
O1—C5—H5A109.5C34—C33—H33119.7
O1—C5—H5B109.5C32—C33—H33119.7
H5A—C5—H5B109.5C35—C34—C33120.0 (3)
O1—C5—H5C109.5C35—C34—H34120.0
H5A—C5—H5C109.5C33—C34—H34120.0
H5B—C5—H5C109.5C34—C35—C36119.7 (3)
C12—C11—C16117.5 (3)C34—C35—H35120.1
C12—C11—Sn123.0 (2)C36—C35—H35120.1
C16—C11—Sn119.5 (2)C31—C36—C35120.6 (3)
C11—C12—C13121.2 (3)C31—C36—H36119.7
C11—C12—H12119.4C35—C36—H36119.7
C13—C12—H12119.4
C2—N1—C1—S25.0 (4)C12—C11—C16—C151.9 (5)
C3—N1—C1—S2179.3 (2)Sn—C11—C16—C15178.3 (2)
C2—N1—C1—S1175.7 (2)C26—C21—C22—C231.3 (4)
C3—N1—C1—S10.0 (4)Sn—C21—C22—C23177.9 (2)
Sn—S2—C1—N1175.2 (2)C21—C22—C23—C241.1 (5)
Sn—S2—C1—S15.46 (14)C22—C23—C24—C250.0 (5)
Sn—S1—C1—N1174.0 (2)C23—C24—C25—C260.8 (5)
Sn—S1—C1—S26.62 (16)C24—C25—C26—C210.6 (5)
C1—N1—C3—C495.1 (3)C22—C21—C26—C250.4 (4)
C2—N1—C3—C480.8 (3)Sn—C21—C26—C25176.9 (2)
C5—O1—C4—C3178.7 (3)C36—C31—C32—C330.4 (5)
N1—C3—C4—O181.8 (3)Sn—C31—C32—C33179.7 (3)
C16—C11—C12—C131.7 (5)C31—C32—C33—C340.4 (5)
Sn—C11—C12—C13178.5 (2)C32—C33—C34—C350.6 (6)
C11—C12—C13—C140.5 (5)C33—C34—C35—C360.0 (5)
C12—C13—C14—C150.6 (5)C32—C31—C36—C350.9 (4)
C13—C14—C15—C160.4 (5)Sn—C31—C36—C35179.7 (2)
C14—C15—C16—C110.9 (5)C34—C35—C36—C310.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···Cg1i0.952.993.760 (3)139
Symmetry code: (i) x+1, y, z+1.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
(I)
H4B···H8A2.00-x, - y, 1 - z
H5A···H6B2.211/2 - x, 1/2 - y, 1 - z
H8B···H10B2.37-x, 1 - y, 1 - z
H10B···H10B2.37-x, 1 - y, 1 - z
(II)
H14···H332.371 + x, 1 + y, z
H16···H332.25x, 1 + y, z
H22···H342.33x, 1 + y, z
C1···H3B2.86-x, - y, 2 - z
C14···H4A2.851 - x, 1 - y, 2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and (II) top
Contact% contribution in (I)% contribution in (II)
H···H77.958.9
S···H/H···S12.27.3
C···H/H···C1.629.1
O···H/H···O7.92.5
N···H/H···N0.40.7
C···S/S···C0.01.3
S···O/O···S0.00.1
Sn···H/N···Sn0.00.1
 

Footnotes

Additional correspondence author, e-mail: awang_normah@yahoo.com

Acknowledgements

We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, for providing the essential laboratory facilities. We would also like to thank the technical support received from the laboratory assistants of Faculty Science and Technology, Universiti Kebangsaan Malaysia. Intensity data were collected in the University of Malaya's crystallographic laboratory.

Funding information

This work was supported by grant No. GGP-2017-081 awarded by Universiti Kebangsaan Malaysia.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493–503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHogarth, G., Rainford-Brent, E. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361–1364.  Web of Science CSD CrossRef CAS Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.  CAS Google Scholar
First citationKhan, H., Badshah, A., Said, M., Murtaza, G., Ahmad, J., Jean-Claude, B. J., Todorova, M. & Butler, I. S. (2013). Appl. Organomet. Chem. 27, 387–395.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, H., Badshah, A., Said, M., Murtaza, G., Sirajuddin, M., Ahmad, J. & Butler, I. S. (2016). Inorg. Chim. Acta, 447, 176–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N. & Kamaludin, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1920–1925.  CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269–1274.  CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480–1487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842–848.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds