research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2S,5R)-5-Methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl 2-(4-meth­­oxy­phen­yl)-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil, cInstituto de Química, Universidade Estadual de Campinas, UNICAMP, C.P. 6154, CEP. 13084-971, Campinas, São Paulo, Brazil, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 February 2018; accepted 22 February 2018; online 28 February 2018)

In the title compound, C28H34N2O5, the adjacent ester and nitro­benzene substituents are connected via an intra­molecular methyl­ene-C—H⋯π(nitrobenzene) inter­action and the mol­ecule approximates to a U-shape. The di­hydro­pyrrole ring (r.m.s. deviation = 0.003 Å) is almost co-planar with the carboxyl­ate residue [Cm—N—C1—Oc (m = methine, c = carbox­yl) torsion angle = 1.8 (4)°] but is orthogonal to the 4-meth­oxy­benzene ring [dihedral angle = 84.34 (17)°]. In the crystal, methyl­ene-CHO(carbon­yl) inter­actions lead to linear supra­molecular chains along the b-axis direction, which pack without directional inter­actions between them. The analysis of the calculated Hirshfeld surface points to the importance of weak inter­atomic H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts in the crystal.

1. Chemical context

The reaction of an unsaturated halide species with an alkene, in the presence of both a base and a organopalladium catalyst, to form a substituted alkene, is termed the Heck reaction (Heck, 1982[Heck, R. F. (1982). Org. React. 27, 345-390.]; Crisp, 1998[Crisp, G. T. (1998). Chem. Soc. Rev. 27, 427-436.]). As part of our investigations into the scope of the Heck reaction in the total, enanti­oselective and efficient synthesis of pyrrolidine alkaloids, such as the natural product (–)-codonopsinine (Severino & Correia, 2001[Severino, E. A. & Correia, C. R. D. (2001). Org. Lett. 2, 3039-3042.]), an enecarbamate containing the chiral auxiliary residue, 8-(4-nitro­phen­yl)menthol, was submitted to a Heck aryl­ation reaction with 4-meth­oxy­phenyl­diazo­nium tetra­fluoro­borate. The reaction yielded the title compound, 8-(4-nitro­phen­yl)menthyl 2-(4-meth­oxy­phen­yl)pyrroline-3-carboxyl­ate, (I)[link], as the sole crystalline material (Machado, 2001[Machado, A. H. L. (2001). MSc Thesis. Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil.]). Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the calculated Hirshfeld surfaces.

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises a 1-, 2- and 5-substituted cyclo­hexyl ring (chair conformation) with the chirality at these equatorially substituted centres, i.e. C14, C15 and C18, established from the synthesis, being R, S and R, respectively. The di­hydro­pyrrole ring is essentially planar, with an r.m.s. deviation of 0.003 Å for the five constituent atoms; the N1 and C5 atoms lie 0.037 (2) and 0.030 (3) Å to opposite sides of the plane. The chirality of the C2 centre is R. The carboxyl­ate residue is almost co-planar with the five-membered pyrrole ring as seen in the value of the C2—N1—C13—O2 torsion angle of 1.8 (4)°. However, the appended 4-meth­oxy­benzene ring is almost orthogonal to the pyrrole ring, forming a dihedral angle of 84.34 (17)°; the meth­oxy group is co-planar with the benzene ring with the C12—O3—C9—C10 torsion angle being 178.0 (4)°. In the same way, the nitro group is co-planar with the benzene ring to which it is connected with the O5—N2—C27—C28 torsion angle being 1.2 (5)°. In the mol­ecule, there is a close pyrrole-methyl­ene-C5—H⋯π(C24–C29) inter­action, Table 1[link], which connects the substituents at the cyclo­hexyl-C14 and C15 atoms which lie to the same side of the mol­ecule and which define a shape corresponding to the letter U.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the ring centroid of the C24–C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1 0.97 2.67 3.612 (3) 163
C19—H19B⋯O2i 0.97 2.60 3.472 (4) 150
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features a number of weak non-covalent contacts as discussed below in the Hirshfeld surface analysis (§4). In accord with the distance criteria assumed in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), there is only one directional inter­action of note, Table 1[link]. Thus, methyl­ene-C19—H⋯O2(carbon­yl) inter­actions connect mol­ecules into a linear supra­molecular chain along the b-axis direction, Fig. 2[link]a. These assemble in the crystal with no directional inter­actions between them, Fig. 2[link]b.

[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of the supra­molecular chain along the b axis and (b) a view of the unit-cell contents shown in projection down the b axis. The C—H⋯O contacts are shown as orange dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for (I)[link] were conducted as reported recently for a related organic mol­ecule (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218-1222.]) and provide information on the influence of short inter­atomic non-bonded contacts upon the mol­ecular packing.

With reference to Fig. 3[link], in addition to the bright-red spots near the methyl­ene-H19B and carbonyl-O2 atoms, representing the C—H⋯O inter­action listed in Table 1[link], the diminutive-red spots near the O3, C9 and H17B atoms, corresponding to short inter­atomic O3⋯H17B and C9⋯H17B contacts (Table 2[link]), on the Hirshfeld surface mapped over dnorm suggest they also have some influence on the mol­ecular packing in the crystal. The effect of other short inter­atomic O⋯H/H⋯O and C⋯H/H⋯C contacts listed in Table 2[link] are also viewed as faint-red spots near the O3, H4, O5 and H20B atoms in Fig. 3[link]. The influence of the short inter­atomic O⋯H, C⋯H and H⋯H contacts in the mol­ecular packing are also illustrated in Fig. 4[link]a and b, which show the Hirshfeld surface mapped over the shape-index property and dnorm, respectively. The intra­molecular C—H⋯π contact between the pyrrole-H5A atom and the nitro­benzene ring [H5ACg(C24–C29) = 2.67 Å, C5⋯Cg(C24–C29) = 3.612 (3) Å and C—H5ACg(C24–C29) angle = 163°] is shown as a black-dotted line within the Hirshfeld surfaces mapped over the electrostatic potential in Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)[link]

Contact Distance Symmetry operation
H2⋯H5B 2.31 x, 1 + y, z
H7⋯H5B 2.28 x, 1 + y, z
H22A⋯H25 2.31 x, 1 + y, z
O3⋯H17B 2.52 1 + x, 1 + y, z
O3⋯H20B 2.56 2 − x, − [{1\over 2}] + y, 2 − z
O4⋯H4 2.56 2 − x, − [{1\over 2}] + y, 1 − z
O5⋯H22C 2.60 1 − x, − [{1\over 2}] + y, 1 − z
C9⋯H17B 2.72 1 + x, 1 + y, z
C9⋯H12C 2.80 2 − x, − [{1\over 2}] + y, 2 − z
C23⋯H3 2.84 −1 + x, −1 + y, z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.071 to +1.718 au.
[Figure 4]
Figure 4
Views of Hirshfeld surfaces mapped (a) with shape-index property highlighting short inter­atomic O⋯H/H⋯O and C⋯H/H⋯C contacts by red and sky-blue dashed lines, respectively, and (b) over dnorm showing intra-layer inter­atomic H⋯H contacts by black dashed lines.
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over the electrostatic potential for (I)[link] in the range −0.079 to +0.038 au, highlighting the intra­molecular C—H⋯π contact by a black dotted line. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plot for (I)[link], Fig. 6[link]a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]b-d, respectively. The fingerprint plots also reflect the presence of the short inter­atomic contacts on the packing, Table 2[link]. This is also evident from the percentage contribution from different inter­atomic contacts to the Hirshfeld surface summarized in Table 3[link]: the H⋯H, O⋯H/H⋯O and C⋯H/H⋯C inter­atomic contacts make the greatest contribution to the Hirshfeld surface and account for 97.9% of the overall surface. The broad feather-like distribution of points with a peak at de + di ∼2.3 Å in the fingerprint plot delineated into H⋯H contacts in Fig. 5[link]b represent H⋯H contacts in the structure and make the greatest, i.e. 61.7%, contribution to the surface. The inter­atomic O⋯H/H⋯O contacts having a 23.9% contribution to the Hirshfeld surface arise from the C—H⋯O contact (Table 1[link]) and short inter­atomic O⋯H/H⋯O contacts (Table 2[link]), and are viewed as the pair of green aligned points beginning at de + di ∼2.6 Å and a pair of jaw-shaped distribution of points in the range de + di ∼2.5–2.6 Å in Fig. 6[link]c. The points distributed around the pair of forceps-like peaks at de + di ∼2.8 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 6[link]d) represent the formation of such intra- and inter-layer contacts in the crystal. The small contribution from other inter­atomic contacts summarized in Table 3[link] appear to have a negligible impact on the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link]

Contact Percentage contribution
H⋯H 61.7
O⋯H/H⋯O 23.9
C⋯H/H⋯C 12.3
N⋯H/H⋯N 1.1
O⋯O 0.7
C⋯O/O⋯C 0.2
C⋯C 0.1
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

5. Database survey

The (1R,2S,5R)-menthyl substrate is important as a chiral source for the synthesis of natural products and, as such, has been found in a number of crystal structures related to (I)[link]. Owing to the dictates of the chirality at the C1 and C2 positions, a parallel alignment of the substituents at these positions usually result in U-shaped geometries (Aoyagi et al., 1998[Aoyagi, S., Tanaka, R., Naruse, M. & Kibayashi, C. (1998). J. Org. Chem. 63, 8397-8406.]; Singh et al., 1990[Singh, P., Comins, D. L. & Killpack, M. O. (1990). Acta Cryst. C46, 1955-1957.]; Streith et al., 1995[Streith, J., Boiron, A., Paillaud, J.-L., Rodriguez-Perez, E.-M., Strehler, C., Tschamber, T. & Zehnder, M. (1995). Helv. Chim. Acta, 78, 61-72.]), except in circumstances where steric hindrance precludes such an arrangement (Comins & Killpack, 1992[Comins, D. L. & Killpack, M. O. (1992). J. Am. Chem. Soc. 114, 10972-10974.]).

6. Synthesis and crystallization

As detailed previously (Machado, 2001[Machado, A. H. L. (2001). MSc Thesis. Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil.]), for the Heck aryl­ation of (1R,2S,5R)-5-methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl 2,3-di­hydro-1H-pyrrole-1-carboxyl­ate, a stoichiometric qu­antity of 4-meth­oxy­phenyl­diazo­nium tetra­fluoro­borate was used along with 1 mol equivalent of Pd0 and 400 mol equivalent of sodium acetate. The reaction was conducted in aceto­nitrile at room temperature for 15 min, yielding (1R,2S,5R)-5-methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl (2S)-2-(4-meth­oxy­phen­yl)-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate and the title compound, (I)[link], the latter being the only crystalline product, obtained as irregular colourless chunks by slow evaporation of an n-hexa­ne–ethyl acetate solution (8:2 v/v). M.p 378–380 K. ESI–MS (m/z) calculatedd for C28H34N2O5 [M]+ 478.24677, found 478.24676. [α]D20 = +85.6 9c = 0.7; ethyl­acetate). RF = 0.40 (hexa­ne–ethyl acetate, 8:2 v/v).

The reported 1H and 13C NMR reflect the presence of two conformational rotamers in solution. 1H NMR (500 MHz, CCl4): δ [8.01 (d, J = 9 Hz) + 7.94 (d, J = 9 Hz) = 2H]; [7.43 (d, J = 9 Hz) + 7.16 (d, J = 9 Hz) = 2H]; [7.05 (d, J = 9 Hz) + 7.00 (d, J = 9 Hz) = 2H]; [6.77 (d, J = 9 Hz) + 6.70 (d, J = 9 Hz) = 2H]; 5.88 (br d, J = 6 Hz) + 5.67–5.59 (m) = 1H]; [5.67–5.59 (m) + 5.51 (dd, J = 7 Hz, 1 Hz) = 1H]; [5.27 (br s) + 5.19 (br s) = 1H]; 4.70 (td, J = 10 Hz and 5 Hz, 1H); [4.36 (br d, J = 15 Hz) + 4.21 (m) + 3.53 (dd, J = 15 and 5Hz) + 2.59 (dd, J = 15 and 2 Hz) = 2H]; [3.77 (s) + 3.72 (s) = 3H]; 2.04–0.49 (m, 11H); [1.43 (s) + 1.25 (s) = 3H]; [1.21 (s) + 1.11 (s) = 3H]. 13C NMR (75.5 MHz, CCl4): δ 159.1, 158.5, 151.6, 132.2, 130.9, 130.5, 128.0, 127.8, 125.9, 125.5, 123.9, 123.7, 122.3, 113.3, 113.1, 95.8, 73.5, 72.7, 67.3, 66.8, 54.6, 54.3, 51.7, 51.5, 42.4, 39.9, 34.3, 31.1, 30.2, 29.4, 26.0, 21.6, 21.5.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C28H34N2O5
Mr 478.57
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.3142 (10), 6.1114 (8), 20.844 (3)
β (°) 92.83 (1)
V3) 1312.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.25 × 0.20
 
Data collection
Diffractometer Enraf–Nonius TurboCAD4
Absorption correction ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.])
No. of measured, independent and observed [I > 2σ(I)] reflections 4246, 4145, 2310
Rint 0.054
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 0.98
No. of reflections 4145
No. of parameters 320
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.16
Absolute structure No quotients, so Flack parameter determined by classical intensity fit
Absolute structure parameter −1.1 (16)
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

(1R,2S,5R)-5-Methyl-2-[2-(4-nitrophenyl)propan-2-yl]cyclohexyl 2-(4-methoxyphenyl)-2,5-dihydro-1H-pyrrole-1-carboxylate top
Crystal data top
C28H34N2O5F(000) = 512
Mr = 478.57Dx = 1.211 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.3142 (10) ÅCell parameters from 25 reflections
b = 6.1114 (8) Åθ = 11.8–18.2°
c = 20.844 (3) ŵ = 0.08 mm1
β = 92.83 (1)°T = 293 K
V = 1312.3 (3) Å3Irregular, colourles
Z = 20.40 × 0.25 × 0.20 mm
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
Rint = 0.054
Radiation source: Enraf–Nonius FR590θmax = 30.0°, θmin = 2.3°
non–profiled ω/2θ scansh = 1414
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1989)
k = 08
l = 290
4246 measured reflections3 standard reflections every 60 min
4145 independent reflections intensity decay: 1%
2310 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.27 e Å3
4145 reflectionsΔρmin = 0.16 e Å3
320 parametersAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
1 restraintAbsolute structure parameter: 1.1 (16)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8239 (2)0.1157 (4)0.71804 (11)0.0477 (6)
N20.7587 (3)0.3619 (8)0.48894 (14)0.0797 (11)
O10.66501 (17)0.1036 (3)0.74757 (9)0.0433 (5)
O20.6807 (2)0.2399 (4)0.78790 (11)0.0609 (6)
O31.1526 (2)0.4302 (5)0.96516 (11)0.0708 (7)
O40.8084 (4)0.5387 (8)0.48479 (16)0.1195 (13)
O50.7743 (3)0.2175 (7)0.45058 (14)0.1154 (13)
C20.9005 (3)0.3194 (5)0.71908 (15)0.0505 (8)
H20.84310.44340.70860.061*
C30.9859 (3)0.2781 (7)0.66428 (16)0.0667 (10)
H31.04480.37990.64980.080*
C40.9688 (3)0.0841 (8)0.63905 (16)0.0678 (11)
H41.01400.03210.60470.081*
C50.8683 (3)0.0446 (6)0.67187 (15)0.0553 (8)
H5A0.79830.08990.64200.066*
H5B0.90550.17250.69330.066*
C60.9711 (3)0.3593 (5)0.78309 (15)0.0475 (7)
C70.9543 (3)0.5462 (6)0.81758 (16)0.0564 (8)
H70.90120.65600.79990.068*
C81.0136 (3)0.5782 (6)0.87811 (16)0.0605 (9)
H81.00020.70760.90030.073*
C91.0914 (3)0.4197 (6)0.90480 (15)0.0546 (8)
C101.1126 (3)0.2279 (7)0.87032 (17)0.0638 (9)
H101.16670.11960.88800.077*
C111.0541 (3)0.1994 (6)0.81092 (16)0.0574 (8)
H111.06930.07150.78830.069*
C121.1372 (5)0.6248 (10)1.0010 (2)0.1029 (17)
H12A1.16920.74690.97750.154*
H12B1.18510.61281.04150.154*
H12C1.04690.64651.00820.154*
C130.7197 (3)0.0966 (5)0.75437 (13)0.0409 (6)
C140.5631 (2)0.1508 (5)0.79199 (12)0.0399 (6)
H140.51900.01430.80240.048*
C150.4655 (2)0.3067 (5)0.75898 (12)0.0386 (6)
H150.51170.44300.75050.046*
C160.3628 (3)0.3597 (7)0.80803 (14)0.0563 (8)
H16A0.31630.22710.81810.068*
H16B0.30060.46330.78920.068*
C170.4248 (3)0.4550 (6)0.86912 (15)0.0604 (9)
H17A0.46590.59270.85920.072*
H17B0.35760.48520.89890.072*
C180.5250 (3)0.3043 (6)0.90138 (13)0.0568 (8)
H180.48130.16930.91350.068*
C190.6253 (3)0.2468 (6)0.85248 (13)0.0474 (7)
H19A0.68680.14240.87150.057*
H19B0.67290.37770.84180.057*
C200.5893 (4)0.4048 (9)0.96163 (17)0.0898 (14)
H20A0.52420.44100.99120.135*
H20B0.64930.30180.98130.135*
H20C0.63510.53500.95040.135*
C210.4069 (3)0.2208 (5)0.69281 (13)0.0416 (6)
C220.3634 (3)0.0191 (5)0.69810 (16)0.0530 (8)
H22A0.43800.11030.70680.079*
H22B0.30510.03300.73230.079*
H22C0.32010.06360.65840.079*
C230.2859 (3)0.3568 (6)0.67073 (15)0.0565 (8)
H23A0.21720.32980.69910.085*
H23B0.30750.50960.67160.085*
H23C0.25820.31510.62780.085*
C240.5042 (2)0.2514 (5)0.63983 (12)0.0415 (6)
C250.5699 (3)0.4489 (5)0.63403 (14)0.0511 (7)
H250.55740.55930.66380.061*
C260.6534 (3)0.4855 (6)0.58506 (14)0.0573 (8)
H260.69750.61770.58220.069*
C270.6697 (3)0.3229 (7)0.54084 (13)0.0557 (8)
C280.6056 (3)0.1281 (7)0.54376 (14)0.0608 (9)
H280.61670.02070.51290.073*
C290.5237 (3)0.0928 (6)0.59349 (14)0.0530 (8)
H290.48060.04050.59590.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (12)0.0409 (14)0.0610 (14)0.0140 (12)0.0090 (11)0.0041 (13)
N20.078 (2)0.115 (3)0.0474 (16)0.007 (2)0.0169 (14)0.005 (2)
O10.0397 (10)0.0395 (11)0.0520 (10)0.0127 (9)0.0150 (8)0.0037 (9)
O20.0527 (12)0.0405 (12)0.0911 (16)0.0101 (11)0.0204 (11)0.0158 (13)
O30.0637 (13)0.088 (2)0.0603 (13)0.0025 (15)0.0009 (11)0.0014 (14)
O40.141 (3)0.129 (3)0.094 (2)0.037 (3)0.059 (2)0.009 (2)
O50.131 (3)0.142 (3)0.0780 (19)0.015 (3)0.0538 (19)0.027 (2)
C20.0430 (15)0.0399 (17)0.0684 (19)0.0163 (13)0.0002 (14)0.0094 (14)
C30.0557 (19)0.082 (3)0.064 (2)0.034 (2)0.0138 (16)0.015 (2)
C40.0537 (18)0.094 (3)0.0569 (19)0.024 (2)0.0169 (15)0.004 (2)
C50.0540 (17)0.060 (2)0.0531 (16)0.0135 (17)0.0160 (14)0.0087 (16)
C60.0368 (14)0.0436 (17)0.0625 (17)0.0125 (13)0.0072 (12)0.0034 (15)
C70.0477 (16)0.051 (2)0.070 (2)0.0005 (15)0.0012 (15)0.0039 (17)
C80.0575 (18)0.059 (2)0.0652 (19)0.0002 (17)0.0066 (15)0.0121 (18)
C90.0442 (15)0.065 (2)0.0552 (17)0.0055 (17)0.0070 (13)0.0046 (17)
C100.0536 (18)0.060 (2)0.077 (2)0.0071 (18)0.0029 (17)0.004 (2)
C110.0509 (16)0.0486 (19)0.072 (2)0.0037 (16)0.0005 (15)0.0021 (17)
C120.127 (4)0.110 (4)0.070 (3)0.007 (4)0.014 (3)0.028 (3)
C130.0362 (13)0.0360 (15)0.0506 (15)0.0067 (12)0.0046 (11)0.0015 (13)
C140.0367 (13)0.0397 (15)0.0445 (14)0.0087 (12)0.0159 (11)0.0044 (13)
C150.0331 (12)0.0370 (15)0.0466 (14)0.0065 (11)0.0099 (10)0.0013 (12)
C160.0427 (15)0.070 (2)0.0573 (17)0.0166 (16)0.0125 (13)0.0001 (18)
C170.0599 (18)0.066 (2)0.0576 (18)0.0162 (18)0.0227 (15)0.0081 (17)
C180.0626 (18)0.064 (2)0.0447 (15)0.0054 (17)0.0128 (13)0.0004 (16)
C190.0435 (14)0.0507 (18)0.0480 (15)0.0111 (14)0.0032 (12)0.0050 (15)
C200.101 (3)0.106 (4)0.062 (2)0.016 (3)0.002 (2)0.021 (3)
C210.0383 (13)0.0396 (16)0.0470 (15)0.0021 (12)0.0050 (12)0.0028 (13)
C220.0511 (17)0.0450 (18)0.0636 (18)0.0069 (14)0.0104 (15)0.0012 (16)
C230.0448 (15)0.060 (2)0.0637 (18)0.0143 (15)0.0027 (13)0.0000 (17)
C240.0393 (14)0.0444 (16)0.0406 (14)0.0068 (13)0.0005 (11)0.0010 (13)
C250.0631 (18)0.0438 (17)0.0472 (15)0.0021 (15)0.0103 (14)0.0015 (14)
C260.0671 (19)0.0546 (19)0.0504 (16)0.0024 (17)0.0063 (15)0.0097 (16)
C270.0545 (16)0.078 (2)0.0349 (14)0.0034 (18)0.0029 (12)0.0059 (16)
C280.0618 (19)0.075 (3)0.0455 (16)0.0021 (19)0.0035 (15)0.0150 (18)
C290.0536 (16)0.054 (2)0.0516 (16)0.0037 (16)0.0034 (13)0.0093 (16)
Geometric parameters (Å, º) top
N1—C131.350 (3)C15—C161.543 (4)
N1—C51.463 (4)C15—C211.569 (4)
N1—C21.474 (4)C15—H150.9800
N2—O41.201 (5)C16—C171.513 (4)
N2—O51.207 (5)C16—H16A0.9700
N2—C271.473 (4)C16—H16B0.9700
O1—C131.352 (3)C17—C181.517 (5)
O1—C141.463 (3)C17—H17A0.9700
O2—C131.202 (3)C17—H17B0.9700
O3—C91.381 (4)C18—C201.520 (5)
O3—C121.417 (6)C18—C191.529 (4)
C2—C31.498 (5)C18—H180.9800
C2—C61.508 (4)C19—H19A0.9700
C2—H20.9800C19—H19B0.9700
C3—C41.306 (6)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.494 (4)C20—H20C0.9600
C4—H40.9300C21—C221.539 (4)
C5—H5A0.9700C21—C241.540 (4)
C5—H5B0.9700C21—C231.550 (4)
C6—C71.365 (5)C22—H22A0.9600
C6—C111.405 (4)C22—H22B0.9600
C7—C81.389 (4)C22—H22C0.9600
C7—H70.9300C23—H23A0.9600
C8—C91.359 (5)C23—H23B0.9600
C8—H80.9300C23—H23C0.9600
C9—C101.398 (5)C24—C291.390 (4)
C10—C111.361 (5)C24—C251.393 (4)
C10—H100.9300C25—C261.386 (4)
C11—H110.9300C25—H250.9300
C12—H12A0.9600C26—C271.371 (5)
C12—H12B0.9600C26—H260.9300
C12—H12C0.9600C27—C281.365 (6)
C14—C191.505 (4)C28—C291.386 (4)
C14—C151.525 (4)C28—H280.9300
C14—H140.9800C29—H290.9300
C13—N1—C5126.5 (2)C17—C16—H16A109.4
C13—N1—C2120.4 (2)C15—C16—H16A109.4
C5—N1—C2113.0 (2)C17—C16—H16B109.4
O4—N2—O5122.6 (4)C15—C16—H16B109.4
O4—N2—C27118.8 (4)H16A—C16—H16B108.0
O5—N2—C27118.5 (4)C16—C17—C18113.0 (3)
C13—O1—C14114.9 (2)C16—C17—H17A109.0
C9—O3—C12117.4 (3)C18—C17—H17A109.0
N1—C2—C3100.5 (3)C16—C17—H17B109.0
N1—C2—C6112.6 (2)C18—C17—H17B109.0
C3—C2—C6115.2 (2)H17A—C17—H17B107.8
N1—C2—H2109.4C17—C18—C20112.4 (3)
C3—C2—H2109.4C17—C18—C19108.2 (2)
C6—C2—H2109.4C20—C18—C19111.2 (3)
C4—C3—C2112.8 (3)C17—C18—H18108.3
C4—C3—H3123.6C20—C18—H18108.3
C2—C3—H3123.6C19—C18—H18108.3
C3—C4—C5112.1 (3)C14—C19—C18111.9 (2)
C3—C4—H4123.9C14—C19—H19A109.2
C5—C4—H4123.9C18—C19—H19A109.2
N1—C5—C4101.3 (3)C14—C19—H19B109.2
N1—C5—H5A111.5C18—C19—H19B109.2
C4—C5—H5A111.5H19A—C19—H19B107.9
N1—C5—H5B111.5C18—C20—H20A109.5
C4—C5—H5B111.5C18—C20—H20B109.5
H5A—C5—H5B109.3H20A—C20—H20B109.5
C7—C6—C11117.1 (3)C18—C20—H20C109.5
C7—C6—C2122.2 (3)H20A—C20—H20C109.5
C11—C6—C2120.7 (3)H20B—C20—H20C109.5
C6—C7—C8122.3 (3)C22—C21—C24111.7 (2)
C6—C7—H7118.8C22—C21—C23107.4 (3)
C8—C7—H7118.8C24—C21—C23105.4 (2)
C9—C8—C7119.8 (3)C22—C21—C15110.9 (3)
C9—C8—H8120.1C24—C21—C15110.7 (2)
C7—C8—H8120.1C23—C21—C15110.6 (2)
C8—C9—O3125.0 (3)C21—C22—H22A109.5
C8—C9—C10119.4 (3)C21—C22—H22B109.5
O3—C9—C10115.6 (3)H22A—C22—H22B109.5
C11—C10—C9120.1 (3)C21—C22—H22C109.5
C11—C10—H10119.9H22A—C22—H22C109.5
C9—C10—H10119.9H22B—C22—H22C109.5
C10—C11—C6121.3 (3)C21—C23—H23A109.5
C10—C11—H11119.3C21—C23—H23B109.5
C6—C11—H11119.3H23A—C23—H23B109.5
O3—C12—H12A109.5C21—C23—H23C109.5
O3—C12—H12B109.5H23A—C23—H23C109.5
H12A—C12—H12B109.5H23B—C23—H23C109.5
O3—C12—H12C109.5C29—C24—C25117.2 (2)
H12A—C12—H12C109.5C29—C24—C21122.4 (3)
H12B—C12—H12C109.5C25—C24—C21120.3 (3)
O2—C13—N1124.1 (3)C26—C25—C24121.8 (3)
O2—C13—O1124.8 (2)C26—C25—H25119.1
N1—C13—O1111.1 (2)C24—C25—H25119.1
O1—C14—C19108.5 (2)C27—C26—C25118.6 (3)
O1—C14—C15108.43 (19)C27—C26—H26120.7
C19—C14—C15112.3 (2)C25—C26—H26120.7
O1—C14—H14109.2C28—C27—C26121.8 (3)
C19—C14—H14109.2C28—C27—N2119.7 (3)
C15—C14—H14109.2C26—C27—N2118.5 (4)
C14—C15—C16107.0 (2)C27—C28—C29118.9 (3)
C14—C15—C21113.9 (2)C27—C28—H28120.5
C16—C15—C21113.9 (2)C29—C28—H28120.5
C14—C15—H15107.2C28—C29—C24121.7 (3)
C16—C15—H15107.2C28—C29—H29119.2
C21—C15—H15107.2C24—C29—H29119.2
C17—C16—C15111.3 (2)
C13—N1—C2—C3170.1 (3)C19—C14—C15—C21175.3 (2)
C5—N1—C2—C36.0 (3)C14—C15—C16—C1756.9 (4)
C13—N1—C2—C666.8 (3)C21—C15—C16—C17176.4 (3)
C5—N1—C2—C6117.1 (3)C15—C16—C17—C1858.3 (4)
N1—C2—C3—C43.6 (4)C16—C17—C18—C20178.3 (3)
C6—C2—C3—C4117.7 (4)C16—C17—C18—C1955.1 (4)
C2—C3—C4—C50.0 (5)O1—C14—C19—C18179.1 (2)
C13—N1—C5—C4169.8 (3)C15—C14—C19—C1859.3 (3)
C2—N1—C5—C46.0 (3)C17—C18—C19—C1455.0 (4)
C3—C4—C5—N13.6 (4)C20—C18—C19—C14179.0 (3)
N1—C2—C6—C7123.2 (3)C14—C15—C21—C2246.9 (3)
C3—C2—C6—C7122.4 (3)C16—C15—C21—C2276.2 (3)
N1—C2—C6—C1154.4 (4)C14—C15—C21—C2477.7 (3)
C3—C2—C6—C1160.1 (4)C16—C15—C21—C24159.3 (3)
C11—C6—C7—C81.3 (4)C14—C15—C21—C23165.9 (2)
C2—C6—C7—C8176.4 (3)C16—C15—C21—C2342.8 (3)
C6—C7—C8—C90.1 (5)C22—C21—C24—C2914.5 (4)
C7—C8—C9—O3178.1 (3)C23—C21—C24—C29101.8 (3)
C7—C8—C9—C101.2 (5)C15—C21—C24—C29138.6 (3)
C12—O3—C9—C82.7 (5)C22—C21—C24—C25170.2 (3)
C12—O3—C9—C10178.0 (4)C23—C21—C24—C2573.5 (3)
C8—C9—C10—C110.9 (5)C15—C21—C24—C2546.1 (3)
O3—C9—C10—C11178.4 (3)C29—C24—C25—C261.3 (4)
C9—C10—C11—C60.4 (5)C21—C24—C25—C26176.9 (3)
C7—C6—C11—C101.5 (4)C24—C25—C26—C270.9 (5)
C2—C6—C11—C10176.2 (3)C25—C26—C27—C280.3 (5)
C5—N1—C13—O2173.7 (3)C25—C26—C27—N2179.8 (3)
C2—N1—C13—O21.8 (4)O4—N2—C27—C28175.6 (4)
C5—N1—C13—O15.8 (4)O5—N2—C27—C281.2 (5)
C2—N1—C13—O1178.7 (2)O4—N2—C27—C264.2 (5)
C14—O1—C13—O28.9 (4)O5—N2—C27—C26179.0 (4)
C14—O1—C13—N1171.6 (2)C26—C27—C28—C291.1 (5)
C13—O1—C14—C1988.2 (3)N2—C27—C28—C29179.0 (3)
C13—O1—C14—C15149.6 (2)C27—C28—C29—C240.7 (5)
O1—C14—C15—C16177.8 (2)C25—C24—C29—C280.5 (4)
C19—C14—C15—C1658.0 (3)C21—C24—C29—C28175.9 (3)
O1—C14—C15—C2155.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the ring centroid of the C24–C29 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg10.972.673.612 (3)163
C19—H19B···O2i0.972.603.472 (4)150
Symmetry code: (i) x, y1, z.
Summary of short interatomic contacts (Å) in (I). top
ContactDistanceSymmetry operation
H2···H5B2.31x, 1 + y, z
H7···H5B2.28x, 1 + y, z
H22A···H252.31x, 1 + y, z
O3···H17B2.521 + x, 1 + y, z
O3···H20B2.562 - x, - 1/2 + y, 2 - z
O4···H42.562 - x, - 1/2 + y, 1 - z
O5···H22C2.601 - x, - 1/2 + y, 1 - z
C9···H17B2.721 + x, 1 + y, z
C9···H12C2.802 - x, - 1/2 + y, 2 - z
C23···H32.84-1 + x, -1 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I). top
ContactPercentage contribution
H···H61.7
O···H/H···O23.9
C···H/H···C12.3
N···H/H···N1.1
O···O0.7
C···O/O···C0.2
C···C0.1
 

Footnotes

Present Address: Instituto de Química, Universidade de Brasília, UNB, DF, Brazil.

§Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES and National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2) are acknowledged for support.

Funding information: Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (award No. 305626/2013–2).

References

First citationAoyagi, S., Tanaka, R., Naruse, M. & Kibayashi, C. (1998). J. Org. Chem. 63, 8397–8406.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationComins, D. L. & Killpack, M. O. (1992). J. Am. Chem. Soc. 114, 10972–10974.  CrossRef CAS Google Scholar
First citationCrisp, G. T. (1998). Chem. Soc. Rev. 27, 427–436.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHeck, R. F. (1982). Org. React. 27, 345–390.  CAS Google Scholar
First citationMachado, A. H. L. (2001). MSc Thesis. Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSeverino, E. A. & Correia, C. R. D. (2001). Org. Lett. 2, 3039–3042.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Comins, D. L. & Killpack, M. O. (1990). Acta Cryst. C46, 1955–1957.  CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreith, J., Boiron, A., Paillaud, J.-L., Rodriguez-Perez, E.-M., Strehler, C., Tschamber, T. & Zehnder, M. (1995). Helv. Chim. Acta, 78, 61–72.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds