research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Nitro­phen­yl)methyl 2,3-di­hydro-1H-pyrrole-1-carboxyl­ate: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil, cInstituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, CEP. 13084-971, Campinas, São Paulo, Brazil, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and eCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 February 2018; accepted 10 February 2018; online 23 February 2018)

In the title compound, C12H12N2O4, the di­hydro­pyrrole ring is almost planar (r.m.s. deviation = 0.0049 Å) and is nearly coplanar with the adjacent C2O2 residue [dihedral angle = 4.56 (9)°], which links to the 4-nitro­benzene substituent [dihedral angle = 4.58 (8)°]. The mol­ecule is concave, with the outer rings lying to the same side of the central C2O2 residue and being inclined to each other [dihedral angle = 8.30 (7)°]. In the crystal, supra­molecular layers parallel to (10-5) are sustained by nitro­benzene-C—H⋯O(carbon­yl) and pyrrole-C—H⋯O(nitro) inter­actions. The layers are connected into a three-dimensional architecture by π(pyrrole)–π(nitro­benzene) stacking [inter-centroid separation = 3.7414 (10) Å] and nitro-O⋯π(pyrrole) inter­actions.

1. Chemical context

Many hy­droxy­lated prolines and homoprolines have the ability to inhibit glycosides and glycosyl­transferases, key enzymes in biosynthesis and the processing of glycoproteins and glycolipids (Rule et al., 1985[Rule, C. J., Wurzburg, B. A. & Ganem, B. (1985). Tetrahedron Lett. 26, 5379-5380.]; Fleet & Son, 1988[Fleet, G. W. J. & Son, J. C. (1988). Tetrahedron, 44, 2637-2647.]; Wong, 1997[Wong, C.-H. (1997). Pure & Appl. Chem. 69, 419-422.]). Glycoproteins are macromolecules involved in the recognition (cell–cell inter­actions and host–pathogen) and control of mechanisms associated with biological structures. Thus, compounds that are capable of inhibiting the biosynthetic pathway of glycoproteins have broad chemotherapeutic potential in the treatment of metabolic diseases such as diabetes, obesity, cancer, tuberculosis and viral infections among others (Kordik & Reitz, 1999[Kordik, C. P. & Reitz, A. B. (1999). J. Med. Chem. 42, 181-201.]; Nishimura, 2003[Nishimura, Y. (2003). Curr. Top. Med. Chem. 3, 575-591.]; Cheng & Josse, 2004[Cheng, A. Y. Y. & Josse, R. G. (2004). Drug Discov. Today: Therapeut. Strat. 1, 201-206.]). Some hy­droxy­lated prolines are of inter­est in this context owing to their ability to inhibit glycosidases and because they are found as substructures of natural bioactive compounds. For example, (2S,3R,4S)-3,4-di­hydroxy­proline (II), see scheme[link], is found as a component of the repeating deca­peptide sequence of the Mefp1 adhesive protein (Mytilus edulis foot protein 1), produced by the marine mussel, Mytilus edulis (Taylor et al., 1994[Taylor, S. W., Waite, J. H., Ross, M. M., Shabanowitz, J. & Hunt, D. F. (1994). J. Am. Chem. Soc. 116, 10803-10804.]; Taylor & Weir, 2000[Taylor, C. M. & Weir, C. A. (2000). J. Org. Chem. 65, 1414-1421.]). This protein is responsible for the fixation of mussels to rocks. As a part of a study into the development of new and flexible methodologies for the efficient synthesis of several natural and synthetic products with important pharmacological properties, using the Heck–Matsuda aryl­ation reaction as a crucial step, (II) was prepared from the title compound, (I)[link], for the purpose of evaluating the best protecting group for use in future syntheses of greater complexity (Garcia, 2008[Garcia, A. L. L. (2008). Ph. D. Thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.]). During the Heck–Matsuda reaction, it was found that the protective group of the nitro­gen atom in (I)[link] exerted some influence on the reaction time, but did not influence the yield of the expected inter­mediate when compared to the Heck–Matsuda reaction applied to the enecarbamate, ethyl 2,3-di­hydro-1H-pyrrole-1-carboxyl­ate (Garcia, 2008[Garcia, A. L. L. (2008). Ph. D. Thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.]). It is noted that the first synthesis of (I)[link] was actually reported nearly 50 years ago (Heine & Mente, 1971[Heine, H. W. & Mente, P. G. (1971). J. Org. Chem. 36, 3076-3078.]). Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the calculated Hirshfeld surfaces.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], is a 1-methyl­ene-4-nitro­benzene ester derived from di­hydro­pyrrole-1-carb­oxy­lic acid. In (I)[link], the di­hydro­pyrrole ring is almost planar with the r.m.s. deviation of the five fitted atoms being 0.0049 Å, and the maximum deviation of any of the constituent atoms being 0.0065 (11) Å for atom C2. The adjacent C2O2 residue (O1,O2,C5,C6) is essentially co-planar, with the dihedral angle between the two planes being 4.56 (9)°. The planarity extends to the 4-nitro­benzene ring, with the dihedral angle between the C2O2 and C6 planes being 4.58 (8)°. However, the mol­ecule is not planar but rather is curved as the outer rings lie to the same side of the central C2O2 residue; the dihedral angle = 8.30 (7)°. To a first approximation, the nitro group is co-planar with the benzene ring to which is connected, as seen in the value of the O4—N2—C10—C9 torsion angle of 173.50 (15)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features a variety of directional inter­actions, Table 1[link]. Thus, nitro­benzene-C12—H⋯O1(carbon­yl) inter­actions occur over a centre of inversion and lead to 14-membered {⋯HC3OCO}2 synthons. The dimeric aggregates are connected into a supra­molecular layer via pyrrole-C4—H⋯O3(nitro) inter­actions. The layers lie parallel to (10[\overline{5}]), Fig. 2[link]a. Two types of inter­actions connect layers into a three-dimensional architecture.Thus, π(N1,C1–C4)–π(C7–C12)i stacking inter­actions occur between pyrrole and nitro­benzene rings: inter-centroid separation = 3.7414 (10) Å and angle of inclination = 7.99 (9)° for symmetry code: (i): [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z. The other inter­actions between layers are of the type nitro-O4⋯π(N1,C1–C4), Table 1[link]. These inter­actions are well known in consolidating the packing of nitro-containing compounds (Huang et al., 2008[Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720-13723.]). A view of the unit-cell contents is shown in Fig. 2[link]b.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.40 3.227 (2) 149
C12—H12⋯O1ii 0.93 2.47 3.318 (2) 152
N2—O4⋯Cg1iii 1.22 (1) 3.42 (1) 3.6327 (16) 90 (1)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of the supra­molecular layer parallel to (10[\overline{5}]) plane and (b) view of the unit-cell contents shown in projection down the b axis. The C—H⋯O, N—O⋯π and ππ contacts are shown as orange, blue and purple dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed as per a recent study (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218-1222.]) and serve to provide additional information on the mol­ecular packing.

In addition to the bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 3[link] near the pyrrole-H4, nitro­benzene-H12, and the nitro-O3 and carbonyl-O1 atoms, representing the respective donors and acceptors of inter­molecular C—H⋯O inter­actions (labelled `1' and `2'), the diminutive red spots appearing near the pyrrole-H3 and nitro-O4 atoms in Fig. 3[link] (labelled `3') also indicate the influence of comparatively weak C—H⋯O contacts in the crystal (Table 2[link]). The nitro­benzene-C9 and C11 atoms form inter-layer short C⋯H/H⋯C and C⋯C contacts (Table 2[link]) with the pyrrole-H1B and ester-C5 atoms, respectively, Fig. 4[link]a. The other short inter­atomic C⋯H/H⋯C contacts between the nitro­benzene-H11 and pyrrole-C2 and C3 atoms (Table 2[link]) are intra-layer, Fig. 4[link]a. The building up of the three-dimensional architecture through ππ-stacking inter­actions and nitro-N—O⋯π(pyrrole) contacts is highlighted in Fig. 4[link]b, showing the Hirshfeld surface mapped over the electrostatic potential.

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
O4⋯H3 2.47 x, −1 + y, z
C5⋯C11 3.37 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C2⋯H11 2.81 x, −1 + y, z
C3⋯H11 2.91 x, − 1 + y, z
C9⋯H1B 2.92 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.225 to +1.393 au, showing inter­molecular C—H⋯O contacts as black dashed lines.
[Figure 4]
Figure 4
Views of Hirshfeld surfaces for (I)[link] mapped: (a) over dnorm in the range −0.225 to + 1.393 au, highlighting inter- and intra-layer C⋯C and C⋯H/H⋯C contacts as black and sky-blue dashed lines, respectively, and (b) over the electrostatic potential in the range ±0.077 au (the red and blue regions represent negative and positive electrostatic potentials, respectively), showing inter­molecular N—O⋯π and ππ contacts as black dotted lines.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]ad, respectively, and the percentage contribution from the identified inter­atomic contacts to the Hirshfeld surface are summarized in Table 3[link]. The comparatively low, i.e. 39.0%, contribution from H⋯H contacts to the overall surface is due to the involvement of many hydrogen atoms in directional inter­molecular inter­actions, e.g. C—H⋯O, π (Tables 1[link] and 2[link]). Hence, the inter­atomic H⋯H contacts have a reduced influence in the crystal as their inter­atomic separations are equal to or greater than sum of their van der Waals radii (Fig. 5[link]b). Conversely, the relatively significant contribution of 33.8% from O⋯H/H⋯O contacts to the Hirshfeld surface is consistent with this observation. The fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 5[link]c) features a pair of green aligned points within the pair of spikes with their tips at de + di ∼2.3 Å superimposed upon a distribution blue points characterizing inter­molecular C—H⋯O inter­actions. The short inter­atomic C⋯H/H⋯C contacts in the inter- and intra-layer regions are represented by the two pairs of short forceps-like spikes at de + di ∼2.8 and 2.9 Å, respectively, in Fig. 5[link]d. The small but discernible contributions from inter­atomic C⋯C and C⋯N/N⋯C contacts (Table 3[link]) result from short inter-layer contacts and ππ stacking inter­actions. The presence of the N—O⋯π contact in the structure is also evident from the contribution of C⋯O/O⋯C and N⋯O/O⋯N contacts to the Hirshfeld surface as summarized in Table 3[link]. The small contributions from the other remaining inter­atomic contacts (Table 3[link]) have a negligible influence on the packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 39.0
O⋯H/H⋯O 33.8
C⋯H/H⋯C 15.2
C⋯O/O⋯C 3.7
C⋯C 2.4
C⋯N/N⋯C 1.7
O⋯O 1.4
N⋯H/H⋯N 1.0
N⋯O/O⋯N 0.9
N⋯N 0.9
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

5. Database survey

Di­hydro­pyrrole rings as found in (I)[link] have rarely been characterized crystallographically and only one structure is deposited in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), namely the adduct, ZnI2(4,5-di­hydro-3H-pyrrole)2 (refcode WAZXAW; Freer et al., 1993[Freer, A. A., McDermott, G., Melville, J. C. & Robins, D. J. (1993). Acta Cryst. C49, 2115-2117.]). Here, despite having sp2-carbon centres as in (I)[link], the rings are planar with one lying on a crystallographic mirror plane and the other disposed across a mirror plane (r.m.s. deviation = 0.007 Å), implying disorder in the latter.

6. Synthesis and crystallization

A solution of (4-nitro­phen­yl)methyl 2-hy­droxy­pyrrolidine-1-carboxyl­ate (2.85 g, 10.704 mmol) in toluene (100 ml) was cooled to 273 K in an ice/water bath. Under an atmosphere of nitro­gen, 2,4-lutidine (6.2 ml, 53.634 mmol) was added to this solution. The solution was stirred for 15 min at 273 K. A tri­fluoro­acetic anhydride (TFAA) solution (13.2 ml of a 0.8 M solution, 10.56 mmol) in dry toluene was then added. The bath was removed and the solution stirred for 2 h at room temperature. Subsequently, the flask was immersed for 20 min in an oil bath preheated to 393–403 K with a reflux condenser. The solution was concentrated in a rotary evaporator and the residue was purified by flash column chromatography on silica gel, using a mixture of EtOAc/n-hexane (1:4) as the eluent. The yield of (I)[link] was 2.103 g (80% based on TFAA). Irregular yellow crystals of (I)[link] were obtained from the slow evaporation of its CH2Cl2 solution.

Spectroscopic characterization. 1H NMR (300 MHz, Py-d5, solution comprises rotamers): δ 8.21 (apparent d, J = 7.3 Hz, 2H, H3′ and H5′), 7.54 (d, J = 8.1 Hz, 2H, H2′ and H6′), 6.80 and 6.68 (2 × m, 1H, H2), 5.35 (s, 2H, CH2), 5.03 (m, 1H, H3), 3.71 (apparent t, J = 9.5 Hz, 2H, H5a,5b), 2.46 (apparent quint., J = 9.5 Hz, 2H, H4a,4b). 13C NMR (75 MHz, Py-d5, solution comprises rotamers): δ = 152.3 (CO2R), 151.5 (CO2R), 147.8 (C4′), 144.9 (C1′), 129.8 (C2), 129.2 (C2), 128.4 (C2′ and C6′), 128.3 (C2′ and C6′), 123.9 (C3′ and C5′), 109.4 (C3), 65.8 (CH2), 65.6 (CH2), 45.8 (C5), 45.4 (C5), 30.1 (C4), 29.0 (C4). ESI–MS (m/z) calculated for C12H12N2O4 248.07971, found 248.07876.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C12H12N2O4
Mr 248.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 290
a, b, c (Å) 9.0385 (3), 12.2518 (4), 10.5452 (3)
β (°) 96.102 (1)
V3) 1161.14 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.52 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.724, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23727, 2394, 2013
Rint 0.023
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.09
No. of reflections 2394
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

(4-Nitrophenyl)methyl 2,3-dihydro-1H-pyrrole-1-carboxylate top
Crystal data top
C12H12N2O4F(000) = 520
Mr = 248.24Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0385 (3) ÅCell parameters from 9984 reflections
b = 12.2518 (4) Åθ = 2.6–26.5°
c = 10.5452 (3) ŵ = 0.11 mm1
β = 96.102 (1)°T = 290 K
V = 1161.14 (6) Å3Irregular, yellow
Z = 40.52 × 0.22 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2013 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
θmax = 26.5°, θmin = 2.6°
Tmin = 0.724, Tmax = 0.745h = 911
23727 measured reflectionsk = 1515
2394 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2394 reflectionsΔρmax = 0.16 e Å3
163 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95640 (13)0.32527 (10)0.51064 (14)0.0665 (4)
O20.73098 (11)0.38092 (8)0.41873 (11)0.0489 (3)
O30.20267 (15)0.75353 (13)0.19648 (17)0.0896 (5)
O40.34938 (16)0.88645 (10)0.24771 (15)0.0720 (4)
N10.77129 (13)0.20438 (10)0.45899 (13)0.0468 (3)
N20.32222 (15)0.78902 (12)0.24108 (13)0.0532 (3)
C10.86033 (17)0.10688 (13)0.49447 (17)0.0514 (4)
H1A0.88880.10460.58580.062*
H1B0.94950.10520.45080.062*
C20.75720 (19)0.01184 (14)0.45210 (19)0.0581 (4)
H2A0.79870.03220.38810.070*
H2B0.74010.03420.52390.070*
C30.61637 (18)0.06612 (14)0.39787 (18)0.0558 (4)
H30.53080.02920.36520.067*
C40.62960 (16)0.17304 (13)0.40258 (16)0.0505 (4)
H40.55490.22160.37250.061*
C50.83046 (16)0.30513 (12)0.46670 (15)0.0443 (3)
C60.78181 (17)0.49186 (12)0.42996 (17)0.0490 (4)
H6A0.86650.50190.38190.059*
H6B0.81270.50890.51860.059*
C70.65706 (15)0.56621 (11)0.37923 (13)0.0400 (3)
C80.51427 (16)0.52938 (12)0.33957 (14)0.0442 (3)
H80.49270.45530.34360.053*
C90.40373 (17)0.60201 (12)0.29406 (15)0.0445 (3)
H90.30820.57740.26720.053*
C100.43818 (16)0.71143 (12)0.28935 (13)0.0414 (3)
C110.57881 (17)0.75032 (12)0.32932 (16)0.0481 (4)
H110.59960.82460.32620.058*
C120.68753 (17)0.67727 (12)0.37385 (16)0.0478 (4)
H120.78280.70250.40070.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (6)0.0487 (7)0.1027 (10)0.0039 (5)0.0220 (6)0.0065 (6)
O20.0409 (6)0.0331 (5)0.0694 (7)0.0014 (4)0.0086 (5)0.0017 (4)
O30.0510 (8)0.0752 (10)0.1334 (14)0.0052 (7)0.0338 (8)0.0061 (9)
O40.0699 (9)0.0433 (7)0.0990 (10)0.0135 (6)0.0083 (7)0.0061 (6)
N10.0352 (6)0.0369 (6)0.0660 (8)0.0025 (5)0.0052 (5)0.0040 (6)
N20.0467 (8)0.0498 (8)0.0610 (8)0.0086 (6)0.0039 (6)0.0025 (6)
C10.0442 (8)0.0408 (8)0.0681 (10)0.0078 (6)0.0017 (7)0.0066 (7)
C20.0561 (10)0.0417 (8)0.0766 (11)0.0010 (7)0.0070 (8)0.0059 (8)
C30.0440 (8)0.0476 (9)0.0752 (11)0.0077 (7)0.0032 (8)0.0010 (8)
C40.0342 (8)0.0459 (8)0.0696 (10)0.0006 (6)0.0026 (7)0.0024 (7)
C50.0363 (7)0.0403 (8)0.0545 (8)0.0023 (6)0.0034 (6)0.0027 (6)
C60.0432 (8)0.0352 (7)0.0660 (10)0.0034 (6)0.0066 (7)0.0011 (7)
C70.0387 (7)0.0369 (7)0.0435 (7)0.0005 (6)0.0006 (6)0.0008 (6)
C80.0447 (8)0.0347 (7)0.0519 (8)0.0042 (6)0.0009 (6)0.0008 (6)
C90.0367 (7)0.0434 (8)0.0516 (8)0.0046 (6)0.0028 (6)0.0015 (6)
C100.0391 (7)0.0406 (8)0.0434 (7)0.0050 (6)0.0007 (6)0.0006 (6)
C110.0461 (8)0.0325 (7)0.0640 (9)0.0023 (6)0.0019 (7)0.0013 (6)
C120.0370 (8)0.0392 (8)0.0647 (9)0.0040 (6)0.0056 (7)0.0029 (7)
Geometric parameters (Å, º) top
O1—C51.2080 (18)C3—H30.9300
O2—C51.3527 (17)C4—H40.9300
O2—C61.4356 (17)C6—C71.503 (2)
O3—N21.2123 (18)C6—H6A0.9700
O4—N21.2193 (18)C6—H6B0.9700
N1—C51.3442 (19)C7—C81.389 (2)
N1—C41.4070 (18)C7—C121.391 (2)
N1—C11.4665 (18)C8—C91.385 (2)
N2—C101.4656 (19)C8—H80.9300
C1—C21.528 (2)C9—C101.378 (2)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—C111.381 (2)
C2—C31.495 (2)C11—C121.374 (2)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—H120.9300
C3—C41.316 (2)
C5—O2—C6115.15 (11)O1—C5—O2124.40 (14)
C5—N1—C4127.92 (13)N1—C5—O2111.31 (12)
C5—N1—C1121.91 (12)O2—C6—C7108.85 (12)
C4—N1—C1109.61 (12)O2—C6—H6A109.9
O3—N2—O4122.62 (15)C7—C6—H6A109.9
O3—N2—C10118.50 (14)O2—C6—H6B109.9
O4—N2—C10118.88 (14)C7—C6—H6B109.9
N1—C1—C2104.18 (12)H6A—C6—H6B108.3
N1—C1—H1A110.9C8—C7—C12119.16 (13)
C2—C1—H1A110.9C8—C7—C6123.24 (13)
N1—C1—H1B110.9C12—C7—C6117.59 (12)
C2—C1—H1B110.9C9—C8—C7120.57 (14)
H1A—C1—H1B108.9C9—C8—H8119.7
C3—C2—C1103.94 (13)C7—C8—H8119.7
C3—C2—H2A111.0C10—C9—C8118.68 (13)
C1—C2—H2A111.0C10—C9—H9120.7
C3—C2—H2B111.0C8—C9—H9120.7
C1—C2—H2B111.0C9—C10—C11121.93 (14)
H2A—C2—H2B109.0C9—C10—N2119.17 (13)
C4—C3—C2110.99 (14)C11—C10—N2118.90 (13)
C4—C3—H3124.5C12—C11—C10118.75 (14)
C2—C3—H3124.5C12—C11—H11120.6
C3—C4—N1111.26 (14)C10—C11—H11120.6
C3—C4—H4124.4C11—C12—C7120.90 (13)
N1—C4—H4124.4C11—C12—H12119.5
O1—C5—N1124.29 (13)C7—C12—H12119.5
C5—N1—C1—C2171.59 (15)O2—C6—C7—C12175.74 (14)
C4—N1—C1—C20.51 (18)C12—C7—C8—C90.6 (2)
N1—C1—C2—C30.98 (18)C6—C7—C8—C9179.78 (14)
C1—C2—C3—C41.2 (2)C7—C8—C9—C100.2 (2)
C2—C3—C4—N10.9 (2)C8—C9—C10—C110.4 (2)
C5—N1—C4—C3171.74 (16)C8—C9—C10—N2179.85 (13)
C1—N1—C4—C30.2 (2)O3—N2—C10—C96.2 (2)
C4—N1—C5—O1175.78 (17)O4—N2—C10—C9173.50 (15)
C1—N1—C5—O15.2 (3)O3—N2—C10—C11174.03 (17)
C4—N1—C5—O24.1 (2)O4—N2—C10—C116.2 (2)
C1—N1—C5—O2174.65 (14)C9—C10—C11—C120.6 (2)
C6—O2—C5—O13.7 (2)N2—C10—C11—C12179.62 (14)
C6—O2—C5—N1176.46 (13)C10—C11—C12—C70.2 (2)
C5—O2—C6—C7176.99 (13)C8—C7—C12—C110.4 (2)
O2—C6—C7—C85.1 (2)C6—C7—C12—C11179.60 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.403.227 (2)149
C12—H12···O1ii0.932.473.318 (2)152
N2—O4···Cg1iii1.22 (1)3.42 (1)3.6327 (16)90 (1)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
O4···H32.47x, -1 + y, z
C5···C113.373/2 - x, -1/2 + y, 1/2 - z
C2···H112.81x, -1 + y, z
C3···H112.91x, - 1 + y, z
C9···H1B2.923/2 - x, 1/2 + y, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H39.0
O···H/H···O33.8
C···H/H···C15.2
C···O/O···C3.7
C···C2.4
C···N/N···C1.7
O···O1.4
N···H/H···N1.0
N···O/O···N0.9
N···N0.9
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Funding information

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES and National Council for Scientific and Technological Development, CNPq, for a fellowship to JZ-S (305626/2013–2) are acknowledged for support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationCheng, A. Y. Y. & Josse, R. G. (2004). Drug Discov. Today: Therapeut. Strat. 1, 201–206.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleet, G. W. J. & Son, J. C. (1988). Tetrahedron, 44, 2637–2647.  CrossRef CAS Google Scholar
First citationFreer, A. A., McDermott, G., Melville, J. C. & Robins, D. J. (1993). Acta Cryst. C49, 2115–2117.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, A. L. L. (2008). Ph. D. Thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeine, H. W. & Mente, P. G. (1971). J. Org. Chem. 36, 3076–3078.  CrossRef CAS Google Scholar
First citationHuang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKordik, C. P. & Reitz, A. B. (1999). J. Med. Chem. 42, 181–201.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNishimura, Y. (2003). Curr. Top. Med. Chem. 3, 575–591.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRule, C. J., Wurzburg, B. A. & Ganem, B. (1985). Tetrahedron Lett. 26, 5379–5380.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, S. W., Waite, J. H., Ross, M. M., Shabanowitz, J. & Hunt, D. F. (1994). J. Am. Chem. Soc. 116, 10803–10804.  CrossRef CAS Google Scholar
First citationTaylor, C. M. & Weir, C. A. (2000). J. Org. Chem. 65, 1414–1421.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, C.-H. (1997). Pure & Appl. Chem. 69, 419–422.  CAS Google Scholar
First citationZukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds