research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the naturally occurring cassane-type diterpenoid, 6β-cinnamoyl-7β-hy­dr­oxy­vouacapen-5α-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria, bH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, cDepartment of Chemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 23 December 2017; accepted 12 February 2018; online 23 February 2018)

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl 3-phenyl­prop-2-enoate}, was isolated from a medicinally important plant, Caesalpinia pulcherrima (Fabaceae). In the mol­ecule, three cyclo­hexane rings are trans-fused and adopt chair, chair and half-chair conformations. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. The tapes are further linked into a double-tape structure through C—H⋯π inter­actions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H⋯H (65.5%), C⋯H (18.7%), O⋯H (14.5%) and C⋯O (0.3%).

1. Chemical context

Caesalpinia pulcherrima (Fabaceae) is a decorative evergreen plant widely used for the treatment of various illnesses (Roach et al., 2003[Roach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378-1381.]). It is commonly known as Gulmohor, Krishnachura and Mayirkonnai, respectively, in Hindi, Bengali and Tamil. Herbalists in the Amazon tropical rain forest have long known some of the medicinal uses of C. pulcherrima, known locally as ayoowiri (Patel et al., 2010[Patel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod, 3, 1-5.]). The plant is also known to be used for the treatment of inflammation, earache, muscular and sore pain and cardiovascular disorders and as an anti­malarial, vermifuge and anti­pyretic agent (Patel et al., 2010[Patel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod, 3, 1-5.]; Roach et al., 2003[Roach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378-1381.]). The natural constituents commonly known as cassane-type diterpenoids extracted from C. pulcherrima have been reported by Pranithanchai et al. (2009[Pranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. & Chantrapromma, K. (2009). Phytochemistry, 70, 300-304.]) and Rao et al. (2005[Rao, Y. K., Fang, S. H. & Tzeng, Y. M. (2005). J. Ethnopharmacol. 100, 249-253.]). Cassane-type diterpenoids represent a class of pharmaceutically important natural products having various biological activities. The current study deals with the isolation, single-crystal X-ray diffraction and Hirshfeld surface analysis of the title compound, a naturally occurring cassane-type diterpenoid.

2. Structural commentary

The title compound is composed of three trans-fused cyclo­hexane rings, A (C1–C5/C10), B (C5–C10) and C (C8/C9/C11–C14), having chair, chair and half-chair conformations, respectively; the puckering parameters are Q = 0.561 (3) Å, θ = 0.0 (3)° and φ = 300 (132)° for ring A, Q = 0.555 (2) Å, θ = 4.4 (2)° and φ = 319 (4)° for ring B, and Q = 0.456 (2) Å, θ = 45.9 (3)° and φ = 17.7 (4)° for ring C (Fig. 1[link]). The fused rings have trans-oriented hydroxyl and methyl groups attached at atoms C5 and C10, respectively, along the junction of rings A and B, with an O1—C5—C10—C19 torsion angle of −174.41 (18)°. The furan (O2/C12/C13/C15/C16) ring is essentially planar with the C12=C13 and C15=C16 double bonds having the same length (1.343 Å). The dihedral angle between the furan ring and the phenyl C24–C29 ring of the cinnamoyl moiety is 82.14 (13)°. The absolute configurations of the stereogenic centers at positions 5, 6, 7, 8, 9, 10 and 14 are established as R, R, R, S, S, R and R, respectively, on the basis of the reported structure by Fun et al. (2010[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059-o2060.]). In the mol­ecule, an intra­molecular C—H⋯O inter­action (C17—H17C⋯O3; Table 1[link]) forms an S(6) ring motif.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the O2/C12–C16 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.84 2.16 2.924 (2) 151
C3—H3ACg1ii 0.98 2.94 3.896 (3) 163
C17—H17C⋯O3 0.98 2.40 3.091 (3) 127
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The mol­ecular structures of the title compound, showing atom-labelling scheme with displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O inter­action is shown as a dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via O—H⋯O hydrogen bonds (O5—H5⋯O2i; symmetry code as in Table 1[link]), forming chains along the b-axis direction (Fig. 2[link]). The chains are further linked into a double-chain structure through C—H⋯π inter­actions (C3—H3ACg1ii; symmetry code as in Table 1[link]) involving the furan ring.

[Figure 2]
Figure 2
A packing diagram of the title compound. The O—H⋯O and C—H⋯O inter­actions are shown as dashed lines. H atoms except for the methyl group involved in the C—H⋯O hydrogen bond and the OH groups have been omitted.

4. Hydrogen bonding and Hirshfeld surface analysis

The Hishfeld surface mapped over dnorm (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for the title compound is depicted in Fig. 3[link]. The red areas on the surface indicate short contacts as compared to the sum of the Van der Waals (vdW) radii, while the blue indicate long contacts and white area indicate contacts with distances equal to the sum of the vdW radii. The red highlighted area shows the O—H⋯O hydrogen bond, which is responsible for connecting mol­ecules to each other. The contribution of the H⋯H contacts to the crystal packing is 65.5%, and C⋯H, O⋯H and C⋯O contributions are 18.7, 14.5 and 0.3%, respectively. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 4[link]. The red region indicates atoms having potential to be hydrogen-bond acceptors with negative electrostatic potential, while the blue shows potential to be hydrogen-bond donors with positive electrostatic potential. Fig. 5[link] shows the Hishfeld surface mapped over shape-index and two-dimensional fingerprint plots are given in Fig. 6[link].

[Figure 3]
Figure 3
Hirshfeld surface over dnorm generated for the title compound and neighbouring mol­ecules linked via O—H⋯O hydrogen bonds (dashed lines). [Symmetry codes: (i) x, y + 1, z; (iii) x, y − 1, z.]
[Figure 4]
Figure 4
Electrostatic potential surface generated incorporated with Hirshfeld surface for compound (I).
[Figure 5]
Figure 5
Hirshfeld surface mapped over shape-index calculated for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for compound (I).

5. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for a common fragment composed of three trans-fused six-membered rings and one planar furan ring shows 12 hits: Refcodes CSLPIN10 (Birnbaum et al., 1969[Birnbaum, K. B. & Ferguson, G. (1969). Acta Cryst. B25, 720-730.]), DUTJIM, DUVCON (Fun et al., 2010[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059-o2060.]), EGAYIU, EGAYUG, EGAZAN, and EGAZER (Jiang et al., 2002[Jiang, R. W., Ma, S. C., He, Z. D., Huang, X. S., But, P. P. H., Wang, H., Chan, S., Ooi, V. E., Xu, H. & Mak, T. C. W. (2002). Bioorg. Med. Chem. 10, 2161-2170.]), MEYREN, MEYRIR, MEYROX and MEYRUD (Jiang et al., 2001[Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. (2001). J. Nat. Prod. 64, 1266-1272.]), and POPNIR (Kitagawa et al., 1994[Kitagawa, I., Simanjuntak, P., Watano, T., Shibuya, H., Fujii, S., Yamagata, Y. & Kobayashi, M. (1994). Chem. Pharm. Bull. 42, 1798-1802.]). All of the hits are of the same class of compounds as the title compound, i.e. cassane-type diterpenoids, with different substitution patterns on the fused rings.

6. Isolation and crystallization

The powdered stem bark (2.5 kg) of C. pulcherrima was extracted with methanol (7.5 l) by cold maceration for four days, followed by filteration and concentration using a rotary evaporator under reduced pressure at 228 K to obtain the crude plant extract (200 g). The crude extract was further fractionated by silica gel chromatography first using n-hexane (9.4 l) and then with increasing polarities of solvents [n-hexa­ne:ethyl­acetate (1:1) (12.5 l), ethyl acetate (8.2 l), ethyl acetate:methanol (1:1) (13 l) and finally with methanol (7 l)]. Concentration of fractions in vacuo gave five major fractions of 0.45, 38.81, 25.75, 127.73 and 4.18 g after elution from n-hexane, n-hexa­ne:ethyl acetate (1:1), ethyl acetate, ethyl acetate:methanol (1:1) and methanol, respectively. The dried n-hexa­ne:ethyl­acetate (1:1) fraction was re-chromatographed by column chromatography over silica gel using increasing proportions of ethyl acetate in n-hexane (starting from 100% n-hexa­ne) as eluents to afford twelve sub-fractions. One sub-fraction, CP93-123 (6 g), obtained after elution from n-hexa­ne:ethyl acetate (9:1), was re-fractionated on silica gel with n-hexa­ne:ethyl acetate (100:0 to 80:20) to give three sub fractions (CP93-123-A, -B and -C). The sub fraction CP93-123A was suspended in n-hexa­ne:ethyl acetate (97:3). A white crystalline product was obtained, which was filtered and dried to give the title compound (yield 74 mg, 3.7 × 10−4%). Single crystals of the title compound were obtained by slow evaporation of an ethanol solution at 296 K.

7. Data collection and Refinement

Crystal data, refinement results are summarized in Table 2[link]. All H atoms were placed geometrically (C—H = 0.95–1.00 Å and O—H = 0.84 Å) and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Since a partial racemic twin of the crystal was suggested from a Flack parameter of 0.17 (7) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), a twin treatment was adopted in the final refinement. The BASF parameter refined to 0.0 (2). It is, therefore, uncertain whether the crystal used was an inversion twin or not.

Table 2
Experimental details

Crystal data
Chemical formula C29H36O5
Mr 464.58
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 12.1129 (3), 7.8973 (2), 12.9253 (3)
β (°) 94.930 (1)
V3) 1231.85 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.67
Crystal size (mm) 0.17 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 21754, 4526, 4183
Rint 0.049
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.00
No. of reflections 4526
No. of parameters 314
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.0 (2)
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-Dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate top
Crystal data top
C29H36O5F(000) = 500
Mr = 464.58Dx = 1.253 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 12.1129 (3) ÅCell parameters from 9975 reflections
b = 7.8973 (2) Åθ = 3.4–68.3°
c = 12.9253 (3) ŵ = 0.67 mm1
β = 94.930 (1)°T = 100 K
V = 1231.85 (5) Å3Plate, colourless
Z = 20.17 × 0.13 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.049
φ and ω scansθmax = 68.3°, θmin = 3.4°
21754 measured reflectionsh = 1414
4526 independent reflectionsk = 99
4183 reflections with I > 2σ(I)l = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2131P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.19 e Å3
4526 reflectionsΔρmin = 0.21 e Å3
314 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.0 (2)
Special details top

Experimental. 1H-NMR (400 MHz C3D6O): 7.71(m), 7.62(m), 7.41(m), 7.41(m), 7.29(d, J = 1.6 Hz), 6.58(d, J = 16 Hz), 6.23(d,J = 1.6Hz), 5.65(d, J = 4Hz), 4.28(m), 3.04(q, J = 12,6.4 Hz), 2.48(m), 2.48(m), 1.97(m), 1.86(T, J = 12.8), 1.02(m), 1.72(m), 1.41(m), 1.65(m), 1.40(m), 1.46(s), 1.19(s), 1.10(m), 1.04(d, J = 7.2). 13C-NMR (300 MHz C3D6O): 166.9, 150.23, 145.11, 141.3, 135.5, 131.1, 129.8,129.0, 120.1, 122.9, 110.5, 78.04, 74.50, 68.93, 41.88, 39.97, 39.10, 38.43, 38.02, 35.52, 28.25, 28.18, 25.81, 22.44, 19.04, 17.77, 17.45. IR: (cm-1) 3592.0, 3058.8, 2934.9, 2866.8, 1713.9, 1639.7, 1577.8, 1503.1, 1456.6, 1391.8, 1310.3, 1280.8, 1168.4, 1058.3, 1008.2, 979.7, 909.7 863.8, 765.9, 723.1, 687.4.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51780 (13)0.1960 (2)0.12545 (11)0.0191 (4)
H10.5836250.1668400.1193660.029*
O20.22809 (14)0.4687 (2)0.01284 (13)0.0223 (4)
O30.31947 (13)0.1907 (2)0.31852 (11)0.0176 (3)
O40.28626 (16)0.4678 (2)0.34903 (15)0.0300 (4)
O50.19074 (13)0.2782 (2)0.14554 (12)0.0190 (4)
H50.1875160.3712320.1139260.029*
C10.5738 (2)0.1463 (3)0.19336 (19)0.0223 (5)
H1A0.5634650.2706100.1912410.027*
H1B0.5969700.1103580.1250980.027*
C20.6658 (2)0.1033 (4)0.2771 (2)0.0281 (6)
H2A0.6466740.1500830.3443710.034*
H2B0.7355650.1575360.2597300.034*
C30.6840 (2)0.0864 (4)0.2882 (2)0.0266 (6)
H3A0.7113270.1305580.2233800.032*
H3B0.7420760.1075360.3453740.032*
C40.57779 (19)0.1850 (3)0.31052 (18)0.0203 (5)
C50.48332 (19)0.1330 (3)0.22378 (17)0.0159 (5)
C60.37500 (19)0.2335 (3)0.22738 (17)0.0157 (5)
H60.3928000.3571870.2293050.019*
C70.29530 (18)0.1976 (3)0.13233 (16)0.0150 (5)
H70.3265590.2471000.0698840.018*
C80.27205 (19)0.0105 (3)0.11248 (17)0.0144 (5)
H80.2322240.0327130.1717720.017*
C90.38119 (18)0.0920 (3)0.11139 (16)0.0141 (5)
H90.4195710.0520080.0504110.017*
C100.46211 (19)0.0615 (3)0.21063 (17)0.0162 (5)
C110.35761 (19)0.2846 (3)0.09546 (18)0.0195 (5)
H11A0.4219880.3397920.0672480.023*
H11B0.3461080.3379650.1630020.023*
C120.25746 (19)0.3084 (3)0.02252 (17)0.0174 (5)
C130.1808 (2)0.1948 (3)0.01287 (18)0.0169 (5)
C140.19243 (19)0.0105 (3)0.01221 (18)0.0170 (5)
H140.1179390.0332020.0270820.020*
C150.09710 (19)0.2868 (3)0.07485 (19)0.0214 (5)
H150.0319270.2412670.1105170.026*
C160.1288 (2)0.4498 (3)0.0727 (2)0.0240 (5)
H160.0885740.5394450.1074080.029*
C170.5565 (2)0.1516 (3)0.42506 (18)0.0252 (6)
H17A0.6129960.2095950.4709120.038*
H17B0.5599080.0295650.4388230.038*
H17C0.4829620.1943710.4380080.038*
C180.6012 (2)0.3760 (3)0.3034 (2)0.0274 (6)
H18A0.5406900.4396040.3308540.041*
H18B0.6067930.4073380.2306690.041*
H18C0.6710400.4026370.3441180.041*
C190.4136 (2)0.1444 (3)0.30596 (17)0.0194 (5)
H19A0.4447070.0887950.3697030.029*
H19B0.4326780.2650200.3086480.029*
H19C0.3328170.1316990.2996260.029*
C200.2289 (2)0.0857 (3)0.08241 (18)0.0218 (5)
H20A0.2250480.2078220.0697870.033*
H20B0.1796610.0563950.1439690.033*
H20C0.3051320.0542000.0938130.033*
C210.2732 (2)0.3200 (3)0.36808 (18)0.0204 (5)
C220.2066 (2)0.2519 (4)0.44928 (18)0.0221 (6)
H220.2056280.1337570.4629530.026*
C230.1479 (2)0.3580 (4)0.50308 (18)0.0235 (6)
H230.1531960.4748470.4867690.028*
C240.0756 (2)0.3140 (4)0.58504 (19)0.0242 (6)
C250.0608 (2)0.1487 (4)0.61904 (19)0.0283 (6)
H250.0987250.0580970.5891450.034*
C260.0092 (2)0.1158 (4)0.6966 (2)0.0329 (7)
H260.0196330.0027870.7190150.039*
C270.0638 (2)0.2486 (5)0.7412 (2)0.0361 (8)
H270.1112760.2261260.7943960.043*
C280.0492 (2)0.4132 (4)0.7086 (2)0.0335 (7)
H280.0865280.5036870.7392640.040*
C290.0199 (2)0.4457 (4)0.6310 (2)0.0290 (6)
H290.0296840.5589440.6086710.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0156 (8)0.0276 (9)0.0152 (8)0.0023 (7)0.0070 (6)0.0042 (7)
O20.0289 (9)0.0153 (9)0.0219 (9)0.0013 (7)0.0027 (7)0.0011 (7)
O30.0202 (8)0.0201 (8)0.0138 (7)0.0030 (7)0.0085 (6)0.0012 (7)
O40.0332 (11)0.0233 (10)0.0361 (10)0.0011 (8)0.0176 (9)0.0085 (8)
O50.0184 (9)0.0168 (8)0.0224 (8)0.0066 (7)0.0055 (7)0.0035 (7)
C10.0210 (13)0.0254 (13)0.0201 (12)0.0091 (10)0.0012 (10)0.0019 (10)
C20.0227 (13)0.0350 (15)0.0256 (13)0.0130 (12)0.0047 (11)0.0087 (12)
C30.0183 (12)0.0369 (16)0.0238 (13)0.0043 (11)0.0027 (10)0.0051 (11)
C40.0183 (11)0.0245 (13)0.0179 (11)0.0006 (11)0.0010 (9)0.0016 (11)
C50.0167 (11)0.0210 (12)0.0107 (10)0.0020 (9)0.0054 (9)0.0020 (9)
C60.0185 (11)0.0159 (12)0.0137 (10)0.0002 (9)0.0078 (9)0.0026 (9)
C70.0151 (11)0.0157 (11)0.0149 (10)0.0051 (10)0.0060 (9)0.0032 (10)
C80.0152 (11)0.0164 (12)0.0122 (10)0.0021 (9)0.0046 (9)0.0040 (9)
C90.0161 (11)0.0156 (11)0.0111 (10)0.0038 (9)0.0039 (8)0.0015 (9)
C100.0189 (12)0.0168 (12)0.0131 (10)0.0042 (9)0.0022 (9)0.0004 (9)
C110.0240 (12)0.0191 (12)0.0151 (10)0.0053 (11)0.0004 (9)0.0017 (10)
C120.0228 (12)0.0160 (11)0.0141 (10)0.0004 (10)0.0049 (9)0.0014 (10)
C130.0164 (11)0.0187 (12)0.0162 (11)0.0003 (9)0.0054 (9)0.0029 (9)
C140.0138 (11)0.0172 (12)0.0201 (11)0.0034 (9)0.0027 (9)0.0017 (9)
C150.0161 (11)0.0239 (13)0.0241 (12)0.0018 (10)0.0007 (9)0.0031 (11)
C160.0242 (13)0.0218 (13)0.0254 (13)0.0047 (11)0.0021 (10)0.0014 (11)
C170.0281 (14)0.0306 (15)0.0165 (11)0.0030 (11)0.0007 (10)0.0044 (10)
C180.0245 (13)0.0267 (15)0.0307 (14)0.0021 (11)0.0010 (11)0.0034 (11)
C190.0291 (13)0.0169 (12)0.0121 (10)0.0043 (10)0.0014 (10)0.0024 (9)
C200.0290 (13)0.0179 (12)0.0175 (12)0.0022 (11)0.0043 (10)0.0042 (9)
C210.0181 (12)0.0257 (14)0.0178 (12)0.0002 (10)0.0038 (10)0.0049 (10)
C220.0197 (12)0.0314 (15)0.0154 (11)0.0009 (10)0.0030 (10)0.0026 (10)
C230.0179 (12)0.0354 (15)0.0172 (12)0.0010 (11)0.0014 (10)0.0058 (11)
C240.0134 (12)0.0434 (17)0.0157 (11)0.0003 (11)0.0001 (10)0.0073 (11)
C250.0214 (13)0.0448 (18)0.0186 (12)0.0038 (11)0.0012 (10)0.0045 (12)
C260.0265 (14)0.0487 (18)0.0235 (13)0.0032 (13)0.0030 (11)0.0043 (13)
C270.0252 (14)0.064 (2)0.0198 (13)0.0011 (14)0.0094 (11)0.0011 (13)
C280.0213 (13)0.054 (2)0.0265 (14)0.0029 (13)0.0071 (11)0.0092 (14)
C290.0194 (13)0.0432 (18)0.0247 (13)0.0005 (12)0.0045 (11)0.0060 (13)
Geometric parameters (Å, º) top
O1—C51.459 (3)C11—H11B0.9900
O1—H10.8400C12—C131.343 (3)
O2—C161.381 (3)C13—C151.435 (3)
O2—C121.383 (3)C13—C141.495 (3)
O3—C211.352 (3)C14—C201.536 (3)
O3—C61.446 (3)C14—H141.0000
O4—C211.206 (3)C15—C161.343 (4)
O5—C71.441 (3)C15—H150.9500
O5—H50.8400C16—H160.9500
C1—C21.524 (3)C17—H17A0.9800
C1—C101.543 (3)C17—H17B0.9800
C1—H1A0.9900C17—H17C0.9800
C1—H1B0.9900C18—H18A0.9800
C2—C31.520 (4)C18—H18B0.9800
C2—H2A0.9900C18—H18C0.9800
C2—H2B0.9900C19—H19A0.9800
C3—C41.552 (3)C19—H19B0.9800
C3—H3A0.9900C19—H19C0.9800
C3—H3B0.9900C20—H20A0.9800
C4—C181.539 (4)C20—H20B0.9800
C4—C171.547 (3)C20—H20C0.9800
C4—C51.586 (3)C21—C221.479 (3)
C5—C61.538 (3)C22—C231.333 (3)
C5—C101.564 (3)C22—H220.9500
C6—C71.522 (3)C23—C241.472 (3)
C6—H61.0000C23—H230.9500
C7—C81.522 (3)C24—C251.394 (4)
C7—H71.0000C24—C291.400 (4)
C8—C91.551 (3)C25—C261.392 (4)
C8—C141.556 (3)C25—H250.9500
C8—H81.0000C26—C271.392 (4)
C9—C111.558 (3)C26—H260.9500
C9—C101.565 (3)C27—C281.383 (5)
C9—H91.0000C27—H270.9500
C10—C191.555 (3)C28—C291.385 (4)
C11—C121.483 (3)C28—H280.9500
C11—H11A0.9900C29—H290.9500
C5—O1—H1109.5C13—C12—O2110.4 (2)
C16—O2—C12105.83 (18)C13—C12—C11129.5 (2)
C21—O3—C6116.78 (18)O2—C12—C11120.0 (2)
C7—O5—H5109.5C12—C13—C15106.7 (2)
C2—C1—C10113.4 (2)C12—C13—C14121.8 (2)
C2—C1—H1A108.9C15—C13—C14131.5 (2)
C10—C1—H1A108.9C13—C14—C20109.7 (2)
C2—C1—H1B108.9C13—C14—C8108.94 (19)
C10—C1—H1B108.9C20—C14—C8114.22 (19)
H1A—C1—H1B107.7C13—C14—H14107.9
C3—C2—C1112.2 (2)C20—C14—H14107.9
C3—C2—H2A109.2C8—C14—H14107.9
C1—C2—H2A109.2C16—C15—C13106.7 (2)
C3—C2—H2B109.2C16—C15—H15126.7
C1—C2—H2B109.2C13—C15—H15126.7
H2A—C2—H2B107.9C15—C16—O2110.4 (2)
C2—C3—C4113.4 (2)C15—C16—H16124.8
C2—C3—H3A108.9O2—C16—H16124.8
C4—C3—H3A108.9C4—C17—H17A109.5
C2—C3—H3B108.9C4—C17—H17B109.5
C4—C3—H3B108.9H17A—C17—H17B109.5
H3A—C3—H3B107.7C4—C17—H17C109.5
C18—C4—C17105.7 (2)H17A—C17—H17C109.5
C18—C4—C3108.7 (2)H17B—C17—H17C109.5
C17—C4—C3107.6 (2)C4—C18—H18A109.5
C18—C4—C5109.7 (2)C4—C18—H18B109.5
C17—C4—C5117.6 (2)H18A—C18—H18B109.5
C3—C4—C5107.32 (19)C4—C18—H18C109.5
O1—C5—C699.16 (17)H18A—C18—H18C109.5
O1—C5—C10107.26 (18)H18B—C18—H18C109.5
C6—C5—C10112.19 (19)C10—C19—H19A109.5
O1—C5—C4106.52 (18)C10—C19—H19B109.5
C6—C5—C4114.24 (19)H19A—C19—H19B109.5
C10—C5—C4115.66 (18)C10—C19—H19C109.5
O3—C6—C7107.87 (17)H19A—C19—H19C109.5
O3—C6—C5111.22 (17)H19B—C19—H19C109.5
C7—C6—C5111.28 (18)C14—C20—H20A109.5
O3—C6—H6108.8C14—C20—H20B109.5
C7—C6—H6108.8H20A—C20—H20B109.5
C5—C6—H6108.8C14—C20—H20C109.5
O5—C7—C8107.28 (18)H20A—C20—H20C109.5
O5—C7—C6108.97 (18)H20B—C20—H20C109.5
C8—C7—C6114.34 (19)O4—C21—O3124.5 (2)
O5—C7—H7108.7O4—C21—C22125.8 (2)
C8—C7—H7108.7O3—C21—C22109.6 (2)
C6—C7—H7108.7C23—C22—C21119.4 (2)
C7—C8—C9111.26 (18)C23—C22—H22120.3
C7—C8—C14109.65 (18)C21—C22—H22120.3
C9—C8—C14113.85 (17)C22—C23—C24127.1 (3)
C7—C8—H8107.3C22—C23—H23116.4
C9—C8—H8107.3C24—C23—H23116.4
C14—C8—H8107.3C25—C24—C29118.9 (2)
C8—C9—C11111.34 (18)C25—C24—C23123.3 (2)
C8—C9—C10112.74 (17)C29—C24—C23117.9 (3)
C11—C9—C10110.70 (18)C26—C25—C24120.3 (3)
C8—C9—H9107.3C26—C25—H25119.8
C11—C9—H9107.3C24—C25—H25119.8
C10—C9—H9107.3C27—C26—C25119.9 (3)
C1—C10—C19109.14 (19)C27—C26—H26120.1
C1—C10—C5107.69 (19)C25—C26—H26120.1
C19—C10—C5113.40 (18)C28—C27—C26120.3 (3)
C1—C10—C9108.06 (17)C28—C27—H27119.9
C19—C10—C9109.40 (18)C26—C27—H27119.9
C5—C10—C9109.01 (18)C27—C28—C29119.8 (3)
C12—C11—C9109.77 (19)C27—C28—H28120.1
C12—C11—H11A109.7C29—C28—H28120.1
C9—C11—H11A109.7C28—C29—C24120.9 (3)
C12—C11—H11B109.7C28—C29—H29119.6
C9—C11—H11B109.7C24—C29—H29119.6
H11A—C11—H11B108.2
C10—C1—C2—C356.4 (3)C4—C5—C10—C9170.95 (17)
C1—C2—C3—C456.2 (3)C8—C9—C10—C1171.20 (19)
C2—C3—C4—C18171.4 (2)C11—C9—C10—C163.3 (2)
C2—C3—C4—C1774.6 (3)C8—C9—C10—C1970.1 (2)
C2—C3—C4—C552.8 (3)C11—C9—C10—C1955.4 (2)
C18—C4—C5—O152.4 (2)C8—C9—C10—C554.4 (2)
C17—C4—C5—O1173.2 (2)C11—C9—C10—C5179.89 (18)
C3—C4—C5—O165.5 (2)C8—C9—C11—C1236.7 (2)
C18—C4—C5—C656.0 (2)C10—C9—C11—C12162.98 (17)
C17—C4—C5—C664.8 (3)C16—O2—C12—C130.1 (2)
C3—C4—C5—C6173.9 (2)C16—O2—C12—C11176.0 (2)
C18—C4—C5—C10171.51 (19)C9—C11—C12—C1312.6 (3)
C17—C4—C5—C1067.7 (3)C9—C11—C12—O2172.36 (19)
C3—C4—C5—C1053.6 (3)O2—C12—C13—C150.1 (3)
C21—O3—C6—C798.4 (2)C11—C12—C13—C15175.5 (2)
C21—O3—C6—C5139.3 (2)O2—C12—C13—C14179.1 (2)
O1—C5—C6—O3178.25 (17)C11—C12—C13—C145.5 (4)
C10—C5—C6—O365.3 (2)C12—C13—C14—C20103.5 (2)
C4—C5—C6—O368.9 (2)C15—C13—C14—C2075.2 (3)
O1—C5—C6—C758.0 (2)C12—C13—C14—C822.2 (3)
C10—C5—C6—C755.0 (2)C15—C13—C14—C8159.1 (2)
C4—C5—C6—C7170.81 (19)C7—C8—C14—C13173.58 (18)
O3—C6—C7—O550.8 (2)C9—C8—C14—C1348.2 (2)
C5—C6—C7—O5173.09 (18)C7—C8—C14—C2050.6 (2)
O3—C6—C7—C869.2 (2)C9—C8—C14—C2074.8 (3)
C5—C6—C7—C853.1 (2)C12—C13—C15—C160.0 (3)
O5—C7—C8—C9172.61 (16)C14—C13—C15—C16178.9 (2)
C6—C7—C8—C951.7 (2)C13—C15—C16—O20.0 (3)
O5—C7—C8—C1460.5 (2)C12—O2—C16—C150.1 (3)
C6—C7—C8—C14178.51 (17)C6—O3—C21—O49.1 (3)
C7—C8—C9—C11177.74 (18)C6—O3—C21—C22171.78 (18)
C14—C8—C9—C1157.7 (2)O4—C21—C22—C235.2 (4)
C7—C8—C9—C1052.6 (2)O3—C21—C22—C23175.7 (2)
C14—C8—C9—C10177.15 (19)C21—C22—C23—C24178.9 (2)
C2—C1—C10—C1970.0 (3)C22—C23—C24—C251.2 (4)
C2—C1—C10—C553.5 (3)C22—C23—C24—C29179.2 (2)
C2—C1—C10—C9171.1 (2)C29—C24—C25—C260.7 (4)
O1—C5—C10—C164.7 (2)C23—C24—C25—C26179.7 (2)
C6—C5—C10—C1172.59 (17)C24—C25—C26—C270.7 (4)
C4—C5—C10—C153.9 (2)C25—C26—C27—C280.3 (4)
O1—C5—C10—C19174.41 (18)C26—C27—C28—C290.1 (4)
C6—C5—C10—C1966.6 (2)C27—C28—C29—C240.1 (4)
C4—C5—C10—C1966.9 (3)C25—C24—C29—C280.3 (4)
O1—C5—C10—C952.3 (2)C23—C24—C29—C28179.9 (2)
C6—C5—C10—C955.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the O2/C12–C16 furan ring.
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.842.162.924 (2)151
C3—H3A···Cg1ii0.982.943.896 (3)163
C17—H17C···O30.982.403.091 (3)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z.
 

Funding information

This research was supported by the University of Benin (URPC 2016 grant), The World Academy of Sciences (TWAS) and the Inter­national Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan (ICCBS–TWAS Postgraduate Fellowship Award to KOO; FR No. 3240287190).

References

First citationBirnbaum, K. B. & Ferguson, G. (1969). Acta Cryst. B25, 720–730.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059–o2060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. (2001). J. Nat. Prod. 64, 1266–1272.  CSD CrossRef CAS Google Scholar
First citationJiang, R. W., Ma, S. C., He, Z. D., Huang, X. S., But, P. P. H., Wang, H., Chan, S., Ooi, V. E., Xu, H. & Mak, T. C. W. (2002). Bioorg. Med. Chem. 10, 2161–2170.  CSD CrossRef CAS Google Scholar
First citationKitagawa, I., Simanjuntak, P., Watano, T., Shibuya, H., Fujii, S., Yamagata, Y. & Kobayashi, M. (1994). Chem. Pharm. Bull. 42, 1798–1802.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod, 3, 1–5.  CAS Google Scholar
First citationPranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. & Chantrapromma, K. (2009). Phytochemistry, 70, 300–304.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, Y. K., Fang, S. H. & Tzeng, Y. M. (2005). J. Ethnopharmacol. 100, 249–253.  CrossRef CAS Google Scholar
First citationRoach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds