research communications
of dimethyl 1-oxo-2,4-diphenyl-1,2-dihydronaphthalene-2,3-dicarboxylate
aDepartment of Physics, Jeppiaar Engineering College, Jeppiaar Nagar, OMR, Chennai 600 119, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: g.jagan85@gmail.com
In the title compound, C26H20O5, a 1,2-dihydronaphthalene derivative, the cyclohexa-1,3-diene ring of the 1,2-dihydronaphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-dihydronapthalene ring system makes dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. The carbonyl O atom attached to the dihydronaphthalene ring system deviates from the mean plane of the 1,2-dihydronaphthalene ring system by 0.618 (1) Å. In the crystal, the molecules are linked into layers parallel to the bc plane via two kinds of C—H⋯O interactions, one of which forms a C(10) chain motif running along the c-axis direction and the other forms an R22(6) ring motif. Adjacent layers are further connected by C—H⋯π and offset π–π interactions [centroid–centroid distance = 3.6318 (9) Å].
CCDC reference: 1823056
1. Chemical context
Naphthalene derivatives have manifested applications in many fields, for example, as colorants, explosives, disinfectants, insecticides and the plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). Naphthalene derivatives have been identified as a new range of potent anti-microbials that are effective against a wide range of human pathogens and have diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al., 2010). Compounds with non-coplanarly accumulated aromatic rings have received attention from organic chemists and materials chemists as unique structural building blocks, because they provide characteristic optical and electronic properties originating from their structural features. For example, biphenyl and binaphthyl are applied to optically active molecular catalysts and polymer materials on the basis of their axial chiralities (Deria et al., 2013). The structures of similar 1-oxo-1,2-dihydronaphtalene derivatives, namely, dimethyl 4-(4-methoxyphenyl)-2-(4-methylphenyl)-1-oxo-1,2-dihydronaphthalene-2,3-dicarboxylate, dimethyl 1-oxo-2-(pyren-4-yl)-4-(thiophen-2-yl)-1,2-dihydronaphthalene-2,3-dicarboxylate and ethyl 1-oxo-2-phenyl-2,4-bis(thiophen-2-yl)-1,2-dihydronaphthalene-3-carboxylate, have been reported by Gopinath et al. (2017).
2. Structural commentary
In the title compound (Fig. 1), the 1,2-dihydronaphthalene C1–C10 ring system is not strictly planar and the cyclohexa-1,3-diene C5–C10 ring adopts a half-chair conformation with puckering and smallest displacement parameters q2 = 0.3091 (14) Å, q3 = 0.1461 (14) Å, φ2 = 155.9 (3)° and θ = 64.7 (2)° and ΔCs = 4.41 (19). The dihedral angle between the C1–C6 and C5–C10 rings is 10.15 (6)°. The C11–C16 phenyl ring is almost perpendicular to the 1,2-dihydronaphthalene C1–C10 ring system with a dihedral angle of 83.83 (7)° between them. The other phenyl ring (C21–C26) makes dihedral angles of 64.80 (7) and 29.06 (8)° with the mean plane of C1–C10 ring system and the C11–C16 phenyl ring, respectively. Atom O1 of the carbonyl group deviates from the mean plane of the 1,2-dihydronaphthalene ring system by 0.647 (1) Å.
3. Supramolecular features
In the crystal, the molecules are linked via C—H⋯O hydrogen bonds (C24—H24⋯O2i; symmetry code as in Table 1), which generates C(10) zigzag chains running along the c-axis direction (Fig. 2). In addition, the chains are linked via pairs of C—H⋯O interactions (C20—H20B⋯O5ii; Table 2) with an R22(6) ring motif (Fig. 3), forming layers parallel to the bc plane. Between the layers there are also C—H⋯π (C3—H3⋯Cg3iii; Table 1) and π–π stacking interactions (Fig. 4) [Cg1⋯Cg1iii = 3.6318 (9) Å, interplanar distance = 3.343 (1) Å and offset distance = 1.419 (1) Å; symmetry code: (iii) −x, 1 − y, −z; Cg1 and Cg3 are the centroids of the C1–C6 and C11–C16 rings, respectively].
|
4. Synthesis and crystallization
To a solution of 1,3-diphenylisobenzofuran (1 g, 3.70 mmol) in dry dichloromethane, dimethyl acetylenedicarboxylate (0.58 g, 4.07 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexane) afforded isobenzofurandimethyl acetylenedicarboxylate adduct as a colourless solid (1.10 g, 72%). To a solution of the adduct (0.50 g, 1.21 mmol) in dry dichloromethane, BF3·OEt2 (0.075 g, 0.52 mmol) was added and the reaction mixture was stirred at room temperature for 5 min. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexane) gave the title compound as a colourless solid (0.45 g, 94%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the title compound at room temperature (m.p. = 454–456 K).
5. Refinement
Crystal data, data collection and structure . H atoms were localized in a difference-Fourier map and then were treated as riding atoms, with C—H = 0.93 and 0.96 Å for aryl and methyl groups, respectively, and with Uiso(H) = 1.2Ueq(aryl C) and 1.5Ueq(methyl C), allowing for of the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1823056
https://doi.org/10.1107/S2056989018002360/is5487sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002360/is5487Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C26H20O5 | F(000) = 864 |
Mr = 412.42 | Dx = 1.308 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3375 reflections |
a = 15.8021 (8) Å | θ = 2.3–27.1° |
b = 7.4706 (4) Å | µ = 0.09 mm−1 |
c = 17.8599 (9) Å | T = 296 K |
β = 96.581 (2)° | Block, colourless |
V = 2094.49 (19) Å3 | 0.35 × 0.30 × 0.25 mm |
Z = 4 |
Bruker Kappa APEXII diffractometer | 4614 independent reflections |
Radiation source: fine-focus sealed tube | 3375 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω & φ scans | θmax = 27.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −20→13 |
Tmin = 0.969, Tmax = 0.978 | k = −9→8 |
21819 measured reflections | l = −22→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4036P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.017 |
4614 reflections | Δρmax = 0.22 e Å−3 |
283 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0033 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.05662 (10) | 0.2111 (2) | 0.01264 (8) | 0.0463 (4) | |
H1 | 0.0388 | 0.1135 | 0.0391 | 0.056* | |
C2 | 0.00596 (10) | 0.2750 (2) | −0.04963 (8) | 0.0512 (4) | |
H2 | −0.0464 | 0.2217 | −0.0648 | 0.061* | |
C3 | 0.03304 (10) | 0.4172 (2) | −0.08905 (8) | 0.0488 (4) | |
H3 | −0.0011 | 0.4600 | −0.1311 | 0.059* | |
C4 | 0.11058 (9) | 0.4978 (2) | −0.06695 (7) | 0.0433 (3) | |
H4 | 0.1284 | 0.5932 | −0.0947 | 0.052* | |
C5 | 0.16244 (8) | 0.43761 (18) | −0.00354 (7) | 0.0354 (3) | |
C6 | 0.13411 (8) | 0.29249 (18) | 0.03586 (7) | 0.0368 (3) | |
C7 | 0.18723 (9) | 0.22355 (19) | 0.10317 (7) | 0.0384 (3) | |
C8 | 0.24887 (8) | 0.35947 (17) | 0.14498 (6) | 0.0338 (3) | |
C9 | 0.28722 (8) | 0.48058 (18) | 0.08927 (7) | 0.0336 (3) | |
C10 | 0.24565 (8) | 0.52183 (18) | 0.02146 (7) | 0.0338 (3) | |
C11 | 0.19360 (8) | 0.46192 (18) | 0.19635 (6) | 0.0344 (3) | |
C12 | 0.18236 (8) | 0.64551 (18) | 0.19151 (7) | 0.0368 (3) | |
H12 | 0.2110 | 0.7110 | 0.1580 | 0.044* | |
C13 | 0.12938 (9) | 0.7325 (2) | 0.23568 (8) | 0.0447 (3) | |
H13 | 0.1228 | 0.8560 | 0.2319 | 0.054* | |
C14 | 0.08630 (10) | 0.6384 (2) | 0.28520 (8) | 0.0530 (4) | |
H14 | 0.0499 | 0.6971 | 0.3145 | 0.064* | |
C15 | 0.09745 (11) | 0.4569 (3) | 0.29111 (9) | 0.0595 (5) | |
H15 | 0.0691 | 0.3926 | 0.3252 | 0.071* | |
C16 | 0.15022 (10) | 0.3687 (2) | 0.24720 (8) | 0.0505 (4) | |
H16 | 0.1568 | 0.2453 | 0.2517 | 0.061* | |
C17 | 0.31896 (9) | 0.24874 (19) | 0.19065 (8) | 0.0430 (3) | |
C18 | 0.44438 (13) | 0.0867 (3) | 0.17834 (12) | 0.0857 (7) | |
H18A | 0.4743 | 0.1552 | 0.2185 | 0.129* | |
H18B | 0.4820 | 0.0603 | 0.1412 | 0.129* | |
H18C | 0.4246 | −0.0231 | 0.1982 | 0.129* | |
C19 | 0.37168 (9) | 0.55771 (19) | 0.11799 (7) | 0.0387 (3) | |
C20 | 0.50781 (11) | 0.6419 (3) | 0.08805 (11) | 0.0783 (6) | |
H20A | 0.5019 | 0.7671 | 0.0983 | 0.117* | |
H20B | 0.5429 | 0.6268 | 0.0480 | 0.117* | |
H20C | 0.5338 | 0.5825 | 0.1325 | 0.117* | |
C21 | 0.27693 (8) | 0.6601 (2) | −0.02840 (7) | 0.0398 (3) | |
C22 | 0.28407 (11) | 0.8357 (2) | −0.00451 (10) | 0.0593 (4) | |
H22 | 0.2708 | 0.8659 | 0.0433 | 0.071* | |
C23 | 0.31073 (13) | 0.9673 (3) | −0.05105 (14) | 0.0824 (6) | |
H23 | 0.3156 | 1.0851 | −0.0344 | 0.099* | |
C24 | 0.33002 (12) | 0.9242 (4) | −0.12164 (13) | 0.0846 (7) | |
H24 | 0.3474 | 1.0127 | −0.1531 | 0.102* | |
C25 | 0.32355 (11) | 0.7507 (4) | −0.14553 (9) | 0.0723 (6) | |
H25 | 0.3375 | 0.7214 | −0.1932 | 0.087* | |
C26 | 0.29671 (9) | 0.6184 (3) | −0.10003 (8) | 0.0531 (4) | |
H26 | 0.2918 | 0.5010 | −0.1173 | 0.064* | |
O1 | 0.18036 (7) | 0.07330 (14) | 0.12689 (6) | 0.0561 (3) | |
O2 | 0.32467 (8) | 0.21704 (16) | 0.25637 (6) | 0.0629 (3) | |
O3 | 0.37245 (7) | 0.18860 (15) | 0.14387 (6) | 0.0548 (3) | |
O4 | 0.38995 (7) | 0.60087 (17) | 0.18244 (5) | 0.0600 (3) | |
O5 | 0.42502 (6) | 0.56566 (15) | 0.06595 (5) | 0.0508 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0517 (8) | 0.0388 (8) | 0.0475 (8) | −0.0064 (7) | 0.0016 (6) | −0.0088 (6) |
C2 | 0.0441 (8) | 0.0553 (10) | 0.0514 (8) | −0.0034 (7) | −0.0068 (7) | −0.0165 (7) |
C3 | 0.0473 (8) | 0.0566 (10) | 0.0394 (7) | 0.0071 (7) | −0.0084 (6) | −0.0076 (7) |
C4 | 0.0447 (8) | 0.0500 (9) | 0.0340 (7) | 0.0043 (7) | −0.0011 (6) | 0.0003 (6) |
C5 | 0.0384 (7) | 0.0373 (8) | 0.0300 (6) | 0.0046 (6) | 0.0016 (5) | −0.0049 (5) |
C6 | 0.0422 (7) | 0.0334 (7) | 0.0338 (6) | 0.0010 (6) | 0.0006 (5) | −0.0076 (5) |
C7 | 0.0466 (8) | 0.0326 (8) | 0.0359 (7) | 0.0017 (6) | 0.0044 (6) | −0.0022 (6) |
C8 | 0.0398 (7) | 0.0326 (7) | 0.0281 (6) | 0.0019 (5) | −0.0006 (5) | 0.0004 (5) |
C9 | 0.0361 (6) | 0.0361 (7) | 0.0288 (6) | 0.0026 (5) | 0.0041 (5) | −0.0029 (5) |
C10 | 0.0362 (6) | 0.0370 (7) | 0.0285 (6) | 0.0045 (6) | 0.0052 (5) | −0.0026 (5) |
C11 | 0.0385 (7) | 0.0366 (8) | 0.0275 (6) | −0.0022 (6) | 0.0013 (5) | −0.0001 (5) |
C12 | 0.0380 (7) | 0.0380 (8) | 0.0342 (6) | −0.0032 (6) | 0.0041 (5) | 0.0007 (5) |
C13 | 0.0464 (8) | 0.0421 (9) | 0.0454 (8) | 0.0010 (6) | 0.0047 (6) | −0.0078 (6) |
C14 | 0.0490 (9) | 0.0658 (12) | 0.0463 (8) | −0.0050 (8) | 0.0146 (7) | −0.0155 (8) |
C15 | 0.0701 (11) | 0.0657 (12) | 0.0475 (9) | −0.0119 (9) | 0.0272 (8) | 0.0014 (8) |
C16 | 0.0668 (10) | 0.0416 (9) | 0.0452 (8) | −0.0066 (7) | 0.0155 (7) | 0.0035 (7) |
C17 | 0.0506 (8) | 0.0381 (8) | 0.0383 (7) | 0.0050 (6) | −0.0036 (6) | 0.0008 (6) |
C18 | 0.0694 (13) | 0.0904 (16) | 0.0951 (15) | 0.0431 (11) | 0.0000 (11) | 0.0129 (12) |
C19 | 0.0384 (7) | 0.0431 (8) | 0.0344 (7) | 0.0035 (6) | 0.0030 (5) | −0.0026 (6) |
C20 | 0.0424 (9) | 0.1093 (17) | 0.0855 (13) | −0.0188 (10) | 0.0176 (9) | −0.0311 (12) |
C21 | 0.0363 (7) | 0.0489 (9) | 0.0343 (7) | 0.0033 (6) | 0.0039 (5) | 0.0079 (6) |
C22 | 0.0679 (11) | 0.0505 (11) | 0.0622 (10) | 0.0009 (8) | 0.0191 (8) | 0.0096 (8) |
C23 | 0.0831 (14) | 0.0603 (13) | 0.1064 (17) | −0.0032 (10) | 0.0224 (12) | 0.0306 (12) |
C24 | 0.0596 (12) | 0.1074 (19) | 0.0883 (15) | −0.0008 (12) | 0.0150 (10) | 0.0621 (14) |
C25 | 0.0470 (9) | 0.128 (2) | 0.0429 (9) | 0.0034 (11) | 0.0090 (7) | 0.0312 (11) |
C26 | 0.0438 (8) | 0.0809 (12) | 0.0347 (7) | 0.0026 (8) | 0.0045 (6) | 0.0059 (7) |
O1 | 0.0767 (8) | 0.0338 (6) | 0.0554 (6) | −0.0059 (5) | −0.0029 (5) | 0.0052 (5) |
O2 | 0.0806 (8) | 0.0670 (8) | 0.0383 (6) | 0.0193 (6) | −0.0058 (5) | 0.0116 (5) |
O3 | 0.0531 (6) | 0.0581 (7) | 0.0521 (6) | 0.0213 (5) | 0.0011 (5) | −0.0005 (5) |
O4 | 0.0472 (6) | 0.0932 (9) | 0.0387 (5) | −0.0121 (6) | 0.0013 (4) | −0.0186 (6) |
O5 | 0.0362 (5) | 0.0741 (8) | 0.0430 (5) | −0.0041 (5) | 0.0081 (4) | −0.0076 (5) |
C1—C2 | 1.379 (2) | C14—H14 | 0.9300 |
C1—C6 | 1.3873 (19) | C15—C16 | 1.376 (2) |
C1—H1 | 0.9300 | C15—H15 | 0.9300 |
C2—C3 | 1.370 (2) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—O2 | 1.1905 (16) |
C3—C4 | 1.381 (2) | C17—O3 | 1.3328 (18) |
C3—H3 | 0.9300 | C18—O3 | 1.4456 (19) |
C4—C5 | 1.3942 (17) | C18—H18A | 0.9600 |
C4—H4 | 0.9300 | C18—H18B | 0.9600 |
C5—C6 | 1.3940 (19) | C18—H18C | 0.9600 |
C5—C10 | 1.4796 (18) | C19—O4 | 1.1985 (15) |
C6—C7 | 1.4777 (18) | C19—O5 | 1.3256 (17) |
C7—O1 | 1.2090 (17) | C20—O5 | 1.4399 (19) |
C7—C8 | 1.5397 (18) | C20—H20A | 0.9600 |
C8—C9 | 1.5212 (18) | C20—H20B | 0.9600 |
C8—C17 | 1.5392 (17) | C20—H20C | 0.9600 |
C8—C11 | 1.5408 (18) | C21—C22 | 1.380 (2) |
C9—C10 | 1.3457 (16) | C21—C26 | 1.3867 (19) |
C9—C19 | 1.4897 (18) | C22—C23 | 1.384 (2) |
C10—C21 | 1.4852 (18) | C22—H22 | 0.9300 |
C11—C12 | 1.3844 (19) | C23—C24 | 1.369 (3) |
C11—C16 | 1.3866 (19) | C23—H23 | 0.9300 |
C12—C13 | 1.3774 (19) | C24—C25 | 1.365 (3) |
C12—H12 | 0.9300 | C24—H24 | 0.9300 |
C13—C14 | 1.371 (2) | C25—C26 | 1.377 (3) |
C13—H13 | 0.9300 | C25—H25 | 0.9300 |
C14—C15 | 1.369 (2) | C26—H26 | 0.9300 |
C2—C1—C6 | 120.04 (15) | C14—C15—C16 | 120.74 (15) |
C2—C1—H1 | 120.0 | C14—C15—H15 | 119.6 |
C6—C1—H1 | 120.0 | C16—C15—H15 | 119.6 |
C3—C2—C1 | 119.74 (14) | C15—C16—C11 | 120.65 (15) |
C3—C2—H2 | 120.1 | C15—C16—H16 | 119.7 |
C1—C2—H2 | 120.1 | C11—C16—H16 | 119.7 |
C2—C3—C4 | 120.68 (13) | O2—C17—O3 | 124.69 (13) |
C2—C3—H3 | 119.7 | O2—C17—C8 | 126.72 (14) |
C4—C3—H3 | 119.7 | O3—C17—C8 | 108.57 (11) |
C3—C4—C5 | 120.74 (14) | O3—C18—H18A | 109.5 |
C3—C4—H4 | 119.6 | O3—C18—H18B | 109.5 |
C5—C4—H4 | 119.6 | H18A—C18—H18B | 109.5 |
C6—C5—C4 | 117.90 (12) | O3—C18—H18C | 109.5 |
C6—C5—C10 | 120.27 (11) | H18A—C18—H18C | 109.5 |
C4—C5—C10 | 121.82 (12) | H18B—C18—H18C | 109.5 |
C1—C6—C5 | 120.89 (12) | O4—C19—O5 | 123.97 (13) |
C1—C6—C7 | 119.35 (13) | O4—C19—C9 | 122.85 (13) |
C5—C6—C7 | 119.76 (12) | O5—C19—C9 | 113.11 (11) |
O1—C7—C6 | 122.90 (12) | O5—C20—H20A | 109.5 |
O1—C7—C8 | 121.30 (11) | O5—C20—H20B | 109.5 |
C6—C7—C8 | 115.69 (11) | H20A—C20—H20B | 109.5 |
C9—C8—C17 | 110.48 (11) | O5—C20—H20C | 109.5 |
C9—C8—C7 | 110.63 (10) | H20A—C20—H20C | 109.5 |
C17—C8—C7 | 106.22 (10) | H20B—C20—H20C | 109.5 |
C9—C8—C11 | 112.92 (10) | C22—C21—C26 | 118.68 (14) |
C17—C8—C11 | 111.96 (10) | C22—C21—C10 | 119.79 (12) |
C7—C8—C11 | 104.24 (10) | C26—C21—C10 | 121.49 (14) |
C10—C9—C19 | 123.16 (12) | C21—C22—C23 | 120.60 (17) |
C10—C9—C8 | 122.34 (11) | C21—C22—H22 | 119.7 |
C19—C9—C8 | 114.40 (10) | C23—C22—H22 | 119.7 |
C9—C10—C5 | 119.96 (12) | C24—C23—C22 | 120.1 (2) |
C9—C10—C21 | 122.49 (12) | C24—C23—H23 | 119.9 |
C5—C10—C21 | 117.40 (10) | C22—C23—H23 | 119.9 |
C12—C11—C16 | 117.97 (13) | C25—C24—C23 | 119.64 (18) |
C12—C11—C8 | 122.16 (11) | C25—C24—H24 | 120.2 |
C16—C11—C8 | 119.81 (12) | C23—C24—H24 | 120.2 |
C13—C12—C11 | 120.92 (13) | C24—C25—C26 | 120.94 (18) |
C13—C12—H12 | 119.5 | C24—C25—H25 | 119.5 |
C11—C12—H12 | 119.5 | C26—C25—H25 | 119.5 |
C14—C13—C12 | 120.45 (14) | C25—C26—C21 | 120.02 (18) |
C14—C13—H13 | 119.8 | C25—C26—H26 | 120.0 |
C12—C13—H13 | 119.8 | C21—C26—H26 | 120.0 |
C15—C14—C13 | 119.25 (14) | C17—O3—C18 | 115.77 (13) |
C15—C14—H14 | 120.4 | C19—O5—C20 | 117.16 (12) |
C13—C14—H14 | 120.4 | ||
C6—C1—C2—C3 | 1.0 (2) | C9—C8—C11—C16 | 176.27 (12) |
C1—C2—C3—C4 | −0.1 (2) | C17—C8—C11—C16 | −58.27 (16) |
C2—C3—C4—C5 | −0.8 (2) | C7—C8—C11—C16 | 56.13 (14) |
C3—C4—C5—C6 | 1.0 (2) | C16—C11—C12—C13 | −0.28 (18) |
C3—C4—C5—C10 | −179.82 (13) | C8—C11—C12—C13 | 176.90 (12) |
C2—C1—C6—C5 | −0.8 (2) | C11—C12—C13—C14 | −0.3 (2) |
C2—C1—C6—C7 | 179.38 (13) | C12—C13—C14—C15 | 1.0 (2) |
C4—C5—C6—C1 | −0.2 (2) | C13—C14—C15—C16 | −1.0 (2) |
C10—C5—C6—C1 | −179.37 (12) | C14—C15—C16—C11 | 0.4 (2) |
C4—C5—C6—C7 | 179.65 (12) | C12—C11—C16—C15 | 0.2 (2) |
C10—C5—C6—C7 | 0.44 (18) | C8—C11—C16—C15 | −177.00 (13) |
C1—C6—C7—O1 | 21.7 (2) | C9—C8—C17—O2 | 138.57 (16) |
C5—C6—C7—O1 | −158.09 (14) | C7—C8—C17—O2 | −101.40 (17) |
C1—C6—C7—C8 | −154.54 (12) | C11—C8—C17—O2 | 11.8 (2) |
C5—C6—C7—C8 | 25.65 (18) | C9—C8—C17—O3 | −42.97 (14) |
O1—C7—C8—C9 | 145.22 (13) | C7—C8—C17—O3 | 77.06 (14) |
C6—C7—C8—C9 | −38.46 (15) | C11—C8—C17—O3 | −169.76 (11) |
O1—C7—C8—C17 | 25.29 (17) | C10—C9—C19—O4 | 140.82 (15) |
C6—C7—C8—C17 | −158.39 (11) | C8—C9—C19—O4 | −35.58 (19) |
O1—C7—C8—C11 | −93.12 (15) | C10—C9—C19—O5 | −42.04 (18) |
C6—C7—C8—C11 | 83.21 (13) | C8—C9—C19—O5 | 141.56 (12) |
C17—C8—C9—C10 | 146.53 (12) | C9—C10—C21—C22 | −62.17 (19) |
C7—C8—C9—C10 | 29.18 (17) | C5—C10—C21—C22 | 113.49 (15) |
C11—C8—C9—C10 | −87.22 (15) | C9—C10—C21—C26 | 120.02 (15) |
C17—C8—C9—C19 | −37.04 (15) | C5—C10—C21—C26 | −64.33 (17) |
C7—C8—C9—C19 | −154.38 (11) | C26—C21—C22—C23 | −0.2 (2) |
C11—C8—C9—C19 | 89.22 (13) | C10—C21—C22—C23 | −178.11 (15) |
C19—C9—C10—C5 | 179.15 (12) | C21—C22—C23—C24 | 0.3 (3) |
C8—C9—C10—C5 | −4.73 (19) | C22—C23—C24—C25 | −0.6 (3) |
C19—C9—C10—C21 | −5.3 (2) | C23—C24—C25—C26 | 0.9 (3) |
C8—C9—C10—C21 | 170.82 (12) | C24—C25—C26—C21 | −0.9 (2) |
C6—C5—C10—C9 | −11.87 (19) | C22—C21—C26—C25 | 0.6 (2) |
C4—C5—C10—C9 | 168.95 (13) | C10—C21—C26—C25 | 178.39 (13) |
C6—C5—C10—C21 | 172.36 (12) | O2—C17—O3—C18 | −3.7 (2) |
C4—C5—C10—C21 | −6.82 (18) | C8—C17—O3—C18 | 177.83 (14) |
C9—C8—C11—C12 | −0.86 (16) | O4—C19—O5—C20 | −4.2 (2) |
C17—C8—C11—C12 | 124.60 (13) | C9—C19—O5—C20 | 178.73 (14) |
C7—C8—C11—C12 | −121.00 (12) |
Cg3 is the centroid of the phenyl C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24···O2i | 0.93 | 2.59 | 3.449 (3) | 155 |
C20—H20B···O5ii | 0.96 | 2.59 | 3.430 (2) | 146 |
C3—H3···Cg3iii | 0.93 | 2.77 | 3.6338 (16) | 154 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z. |
Acknowledgements
The authors thank Dr P. K. Sudhadevi Antharjanam, Technical Officer, SAIF, IIT Madras, Chennai, India, for the data collection. GJ thanks Jeppiaar Engineering College, Rajiv Gandhi Salai, Chennai, India for their support.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deria, P., Von Bargen, C. D., Olivier, J. H., Kumbhar, A. S., Saven, J. G. & Therien, M. J. (2013). J. Am. Chem. Soc. 135, 16220–16234. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gopinath, S., Narayanan, P., Sethusankar, K., Karunakaran, J., Nandakumar, M. & Mohanakrishnan, A. K. (2017). Acta Cryst. E73, 177–182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867. Web of Science CrossRef CAS PubMed Google Scholar
Wiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936–940. Web of Science CrossRef CAS Google Scholar
Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.