research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Design of new anti-Alzheimer drugs: ring-expansion synthesis and synchrotron X-ray diffraction study of di­methyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexa­hydro­azonino[5,6-b]indole-2,3-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, bOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cChemistry and Biology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and eNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 21 January 2018; accepted 21 January 2018; online 7 February 2018)

The title compound, C20H23FN2O4, is the product of a ring-expansion reaction from a seven-membered fluorinated hexa­hydro­azepine to a nine-membered azonine. The nine-membered azonine ring of the mol­ecule adopts a chair–boat conformation. The C=C and C—N bond lengths [1.366 (3) and 1.407 (3) Å, respectively] indicate the presence of conjugation within the enamine CH2—C=C—N—CH2 fragment. The substituent planes at the C=C double bond of this fragment are twisted by 16.0 (3)° as a result of steric effects. The amine N(Et) N atom has a trigonal–pyramidal configuration (sum of the bond angles = 346.3°). The inter­planar angle between the two carboxyl­ate substituents is 60.39 (8)°. In the crystal, mol­ecules form zigzag chains along [010] by inter­molecular N—H⋯O hydrogen-bonding inter­actions, which are further packed in stacks toward [100]. The title azonino­indole might be considered as a candidate for the design of new Alzheimer drugs.

1. Chemical context

Eight-, nine-, and ten-membered heterocycles, often referred to as medium-sized rings, remain largely unexplored because of the lack of general convenient routes for their synthesis. Meanwhile, such medium-sized heterocycles, in particular azonine, frequently occur in natural products, such as alkaloids (Neuss et al., 1959[Neuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. (1959). J. Am. Chem. Soc. 81, 4754-4755.], 1962[Neuss, N., Gorman, M., Boaz, H. E. & Cone, N. J. (1962). J. Am. Chem. Soc. 84, 1509-1510.]; Uprety & Bhakuni, 1975[Uprety, H. & Bhakuni, D. S. (1975). Tetrahedron Lett. 16, 1201-1204.]), and thus they are considered to be promising fragments in drug design.

Voskressensky and his group have pioneered the tandem transformation of fused tetra­hydro­pyridines into azines bearing an enamine moiety in the eight-membered ring under the action of activated alkynes. Based on this reaction, convenient preparative routes to tetra­hydro­pyrrolo­[2,3-d]azocines (Varlamov et al., 2002[Varlamov, A. V., Borisova, T. N., Voskressensky, L. G., Soklakova, T. A., Kulikova, L. N., Chernyshev, A. V. & Alexandrov, G. G. (2002). Tetrahedron Lett. 43, 6767-6769.]), tetra­hydro­azocino[5,4-b]indoles, and tetra­hydro­azocino[4,5-b]indoles (Voskressensky et al., 2004[Voskressensky, L. G., Borisova, T. N., Kulikova, L. N., Varlamov, A. V., Catto, M., Altomare, C. & Carotti, A. (2004). Eur. J. Org. Chem. pp. 3128-3135.]) have been elaborated. The application of a similar approach to hexa­hydro­azepine gives rise to azonino­indoles (Nguyen et al., 2017[Nguyen, V. T., Sorokina, E. A., Listratova, A. V., Voskressensky, L. G., Lobanov, N. N., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 338-340.]), which are otherwise hard to obtain.

Azonino­indole I was successfully synthesized from the initial 2-ethyl-9-fluoro-1,2,3,4,5,6-hexa­hydro­azepino[4,3-b]indole via a domino reaction under the action of dimethyl acetyl­enedi­carboxyl­ate in methanol at room temperature (Fig. 1[link]). The domino reaction results in the expansion of the hexa­hydro­azepine ring to the azonine viz. dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexa­hydro­azonino[5,6-b]indole-2,3-dicarb­oxyl­ate (I). 3-Meth­oxy­methyl-substituted indole II was isolated as a by-product of this reaction.

[Figure 1]
Figure 1
The synthesis of dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexa­hydro­azonino[5,6-b]indole-2,3-dicarboxyl­ate I in methanol.

The azonine systems, as a result of their specific structure, are known to act as ligands towards different receptors, thus demonstrating diverse types of biological activity (Magnus et al., 1987[Magnus, P., Ladlow, M. & Elliott, J. (1987). J. Am. Chem. Soc. 109, 7929-7930.]; Kuehne, Bornman et al., 2003[Kuehne, M. E., Bornmann, W. G., Markó, I., Qin, Y., LeBoulluec, K. L., Frasier, D. A., Xu, F., Mulamba, T., Ensinger, C. L., Borman, L. S., Huot, A. E., Exon, C., Bizzarro, F. T., Cheung, J. B. & Bane, S. L. (2003). Org. Biomol. Chem. 1, 2120-2136.]; Kuehne, He et al., 2003[Kuehne, M., He, L., Jokiel, P., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716-2730.]; Afsah et al., 2009[Afsah, E. M., Fadda, A. A., Bondock, S. & Hammouda, M. M. (2009). Z. Naturforsch. Teil B, 64, 415-422.]; Rostom, 2010[Rostom, S. A. F. (2010). Arch. Pharm. Chem. Life Sci. 343, 73-80.]; Tanaka et al., 2014[Tanaka, Y., Gamo, K., Oyama, T., Ohashi, M., Waki, M., Matsuno, K., Matsuura, N., Tokiwa, H. & Miyachi, H. (2014). Bioorg. Med. Chem. Lett. 24, 4001-4005.]; Soldi et al., 2015[Soldi, R., Horrigan, S. K., Cholody, M. W., Padia, J., Sorna, V., Bearss, J., Gilcrease, G., Bhalla, K., Verma, A., Vankayalapati, H. & Sharma, S. (2015). J. Med. Chem. 58, 5854-5862.]; Hartman & Kuduk, 2016[Hartman, G. D. & Kuduk, S. (2016). Patent US2016/272599A1. Novira Therapeutics, Inc., USA.]), including anti-Alzheimer's disease activity (Nguyen et al., 2017[Nguyen, V. T., Sorokina, E. A., Listratova, A. V., Voskressensky, L. G., Lobanov, N. N., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 338-340.]).

The title compound I, C20H23FN2O4, is the product of a ring expansion reaction from a seven-membered fluorinated hexa­hydro­azepine to a nine-membered azonine. The mol­ecular structure of I is unambiguously confirmed by the X-ray diffraction study (Fig. 2[link]).

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

2. Structural commentary

Compound I is isostructural to the non-fluorinated analog published by us very recently (Nguyen et al., 2017[Nguyen, V. T., Sorokina, E. A., Listratova, A. V., Voskressensky, L. G., Lobanov, N. N., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 338-340.]). The nine-membered azonine ring of the mol­ecule adopts a chair–boat conformation (the basal planes are N4–C5/C1–C12B and C5–C6/C7A–C12B, respectively). It should be noted that the analogous nine-membered azonine ring in the related compound methyl 4-ethyl-11-methyl-1,4,5,6,7,8-hexa­hydro­azonino[5,6-b]indole-2-carboxyl­ate adopts a twisted boat conformation (Voskressensky, et al., 2006[Voskressensky, L. G., Akbulatov, S. V., Borisova, T. N. & Varlamov, A. V. (2006). Tetrahedron, 62, 12392-12397.]). The C2=C3 and C3—N4 bond lengths [1.366 (3) and 1.407 (3) Å, respectively] indicate the presence of conjugation within the enamine C2=C3—N4 fragment. The substituent planes at the C2=C3 double bond are twisted by 16.0 (3)° because of steric effects. The N4 nitro­gen atom has a trigonal–pyramidal configuration (sum of the bond angles is 346.3°). The inter­planar angle between the two carboxyl­ate substituents is 60.39 (8)°.

3. Supra­molecular features

In the crystal, mol­ecules of I form zigzag chains along [010] by inter­molecular N—H⋯Oi hydrogen-bonding inter­actions (Table 1[link], Fig. 3[link]), which are further packed in stacks towards [100].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1i 0.93 (3) 2.17 (3) 3.025 (3) 153 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal packing of I viewed along the a-axis direction showing the zigzag chains along [010]. Dashed lines indicate inter­molecular N—H⋯O hydrogen bonds.

4. Synthesis and crystallization

Dimethyl acetyl­enedi­carboxyl­ate (170 mg, 1.2 mmol) was added to 2-ethyl-9-fluoro-1,2,3,4,5,6-hexa­hydro­azepino[4,3-b]indole (232 mg, 1 mmol) dissolved in methanol (10 ml). The reaction mixture was stirred for 2 h at room temperature with the TLC real-time control. Then the solvent was removed in vacuo and the residue was chromatographed over silica with ethyl­acetate:hexane as eluent to yield the target fluorinated azonino­indole I (22%) and 3-meth­oxy­methyl­indole II. Light-yellow crystals of azonino­indole I suitable for X-ray crystallographic analysis were grown by slow evaporation of an ethyl­acetate:hexane (1:1) solution, m.p. 456–458 K.

1H NMR (CDCl3, δ/ppm, J/Hz): 0.98 (t, 3H, J = 7.2, CH3CH2), 1.78 (m, 2H, 6-CH2), 2.74 (q, 2H, J = 7.2, CH3CH2), 2.93 (m, 2H, 7-CH2), 3.06 (m, 2H, 5-CH2), 3.96 (s, 2H, 1-CH2), 3.74 (s, 3H, CO2CH3), 3.77 (s, 3H, CO2CH3), 6.82 (ddd, 2H, 1,3J = 9.0, 1,3J = 9.0, 1,4J = 2.3, CH-Ar), 7.13 (m, 2H, CH-Ar), 7.74 (br s 1H, NH). 13C NMR (DMSO-d6, δ/ppm, J/Hz): 15.2 (CH3), 21.9 (CH2), 23.8 (CH2), 27.1 (CH2), 44.5 (CH2), 52.3 (CH3), 52.3 (CH3), 55.5 (CH2), 102.5 (d, J = 22, CH), 108.2 (d, J = 26, CH), 108.6 (C), 111.8 (d, J = 9, CH), 122.3 (C), 128.3 (C), 132.2 (C), 137.9 (C), 151.7 (C), 157.1 (d, J = 231, C), 166.4 (C), 169.3 (C). IR (KBr): ν (cm−1) = 1723, 3373. Found (%): C, 64.16; H, 6.19; N, 7.48. C20H23FN2O4. Calculated (%): C, 64.46; H, 6.86; N, 7.82. Mass-spectrometry, m/z [Irel(%)]: 374 [M+] (100), 345 (20), 315 (100), 285 (30), 227 (10), 198 (20), 174 (30), 161 (30), 148 (10), 58 (40), 45 (10).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The X-ray diffraction study was carried out on the "Belok" beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program suite (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 2
Experimental details

Crystal data
Chemical formula C20H23FN2O4
Mr 374.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.4632 (17), 10.993 (2), 20.520 (4)
β (°) 99.60 (3)
V3) 1882.4 (7)
Z 4
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.21
Crystal size (mm) 0.22 × 0.02 × 0.02
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.940, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 21117, 3850, 2463
Rint 0.086
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.184, 1.01
No. of reflections 3850
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.43
Computer programs: MarCCD (Doyle, 2011[Doyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.]), iMOSFLM (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The hydrogen atoms of the amino groups were localized in the difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Supporting information


Computing details top

Data collection: MarCCD (Doyle, 2011); cell refinement: iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexahydroazonino[5,6-b]indole-2,3-dicarboxylate top
Crystal data top
C20H23FN2O4F(000) = 792
Mr = 374.40Dx = 1.321 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.96990 Å
a = 8.4632 (17) ÅCell parameters from 600 reflections
b = 10.993 (2) Åθ = 3.3–33.0°
c = 20.520 (4) ŵ = 0.21 mm1
β = 99.60 (3)°T = 100 K
V = 1882.4 (7) Å3Needle, yellow
Z = 40.22 × 0.02 × 0.02 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2463 reflections with I > 2σ(I)
/f scanRint = 0.086
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.3°
Tmin = 0.940, Tmax = 0.980h = 1010
21117 measured reflectionsk = 1210
3850 independent reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3850 reflectionsΔρmax = 0.34 e Å3
251 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.016 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11330 (17)0.18565 (15)0.14176 (8)0.0428 (5)
O10.35878 (18)0.12235 (17)0.40043 (8)0.0254 (5)
O20.13856 (17)0.24026 (16)0.37589 (8)0.0256 (5)
O30.72767 (18)0.17340 (16)0.45020 (8)0.0265 (5)
O40.54751 (18)0.24913 (16)0.50997 (7)0.0245 (5)
C10.3100 (3)0.4423 (2)0.33722 (11)0.0220 (6)
H1A0.19610.44240.34300.026*
H1B0.35920.51740.35810.026*
C20.3917 (3)0.3338 (2)0.37585 (11)0.0197 (6)
C30.5500 (3)0.3353 (2)0.40360 (11)0.0197 (6)
N40.6592 (2)0.41914 (19)0.38442 (9)0.0215 (5)
C50.7014 (3)0.3978 (2)0.31780 (11)0.0225 (6)
H5A0.61790.34590.29200.027*
H5B0.80410.35280.32290.027*
C60.7174 (3)0.5148 (2)0.27897 (12)0.0265 (6)
H6A0.74610.49330.23560.032*
H6B0.80600.56420.30320.032*
C70.5632 (3)0.5921 (3)0.26769 (12)0.0249 (6)
H7A0.54260.62370.31070.030*
H7B0.57830.66250.23930.030*
C7A0.4212 (3)0.5196 (2)0.23562 (11)0.0214 (6)
N80.3906 (2)0.5038 (2)0.16787 (9)0.0229 (5)
H80.437 (3)0.547 (2)0.1368 (12)0.028*
C8A0.2622 (3)0.4257 (2)0.15110 (11)0.0225 (6)
C90.1871 (3)0.3838 (2)0.08913 (12)0.0268 (6)
H90.22200.40980.04970.032*
C100.0602 (3)0.3033 (3)0.08712 (13)0.0299 (7)
H100.00700.27220.04610.036*
C110.0114 (3)0.2683 (3)0.14629 (13)0.0283 (6)
C120.0805 (3)0.3085 (2)0.20795 (12)0.0248 (6)
H120.04240.28280.24670.030*
C12A0.2112 (2)0.3900 (2)0.21103 (11)0.0214 (6)
C12B0.3143 (3)0.4501 (2)0.26446 (11)0.0201 (6)
C130.2988 (3)0.2225 (3)0.38597 (11)0.0221 (6)
C140.0434 (3)0.1308 (3)0.38115 (13)0.0292 (7)
H14A0.06420.07130.34800.044*
H14B0.07070.15190.37350.044*
H14C0.07300.09580.42540.044*
C150.6182 (3)0.2417 (2)0.45594 (11)0.0212 (6)
C160.5946 (3)0.1559 (3)0.55942 (12)0.0295 (7)
H16A0.55290.07690.54220.044*
H16B0.55090.17550.59950.044*
H16C0.71180.15220.57000.044*
C170.7970 (3)0.4562 (3)0.43429 (11)0.0248 (6)
H17A0.86870.50870.41310.030*
H17B0.85830.38290.45140.030*
C180.7454 (3)0.5244 (3)0.49167 (13)0.0317 (7)
H18A0.68430.59690.47500.048*
H18B0.84040.54890.52300.048*
H18C0.67820.47140.51400.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0287 (8)0.0431 (12)0.0508 (10)0.0170 (7)0.0099 (7)0.0069 (8)
O10.0152 (8)0.0275 (12)0.0328 (10)0.0029 (8)0.0016 (7)0.0025 (8)
O20.0108 (8)0.0301 (12)0.0356 (10)0.0008 (7)0.0034 (7)0.0043 (8)
O30.0172 (8)0.0318 (12)0.0300 (10)0.0066 (7)0.0024 (7)0.0008 (8)
O40.0215 (9)0.0338 (12)0.0189 (9)0.0030 (7)0.0052 (6)0.0043 (8)
C10.0127 (11)0.0284 (17)0.0241 (13)0.0018 (10)0.0003 (9)0.0018 (11)
C20.0133 (11)0.0260 (16)0.0195 (12)0.0001 (10)0.0016 (9)0.0000 (10)
C30.0147 (11)0.0262 (16)0.0181 (11)0.0016 (10)0.0020 (8)0.0007 (10)
N40.0135 (9)0.0308 (14)0.0194 (10)0.0041 (9)0.0006 (7)0.0001 (9)
C50.0147 (11)0.0326 (17)0.0198 (12)0.0000 (10)0.0018 (9)0.0001 (11)
C60.0165 (12)0.0375 (18)0.0243 (13)0.0068 (11)0.0005 (9)0.0023 (12)
C70.0205 (12)0.0309 (17)0.0222 (13)0.0044 (11)0.0004 (10)0.0032 (11)
C7A0.0182 (12)0.0251 (16)0.0196 (13)0.0021 (10)0.0007 (9)0.0005 (11)
N80.0173 (10)0.0313 (15)0.0190 (11)0.0035 (9)0.0000 (8)0.0028 (10)
C8A0.0137 (11)0.0286 (17)0.0235 (13)0.0018 (10)0.0016 (9)0.0001 (11)
C90.0201 (12)0.0321 (19)0.0267 (14)0.0026 (11)0.0000 (10)0.0002 (12)
C100.0194 (12)0.0363 (19)0.0295 (14)0.0012 (12)0.0088 (10)0.0024 (12)
C110.0147 (12)0.0284 (18)0.0377 (15)0.0034 (11)0.0073 (10)0.0043 (13)
C120.0150 (11)0.0277 (17)0.0299 (14)0.0019 (10)0.0015 (9)0.0073 (12)
C12A0.0122 (11)0.0267 (17)0.0237 (13)0.0035 (10)0.0019 (9)0.0048 (11)
C12B0.0143 (11)0.0261 (16)0.0193 (12)0.0040 (10)0.0009 (9)0.0045 (11)
C130.0116 (11)0.0356 (19)0.0182 (12)0.0015 (11)0.0000 (8)0.0008 (11)
C140.0144 (11)0.0300 (18)0.0441 (16)0.0057 (11)0.0076 (10)0.0043 (13)
C150.0141 (11)0.0280 (17)0.0204 (12)0.0026 (10)0.0001 (9)0.0015 (11)
C160.0231 (13)0.0402 (19)0.0229 (13)0.0009 (12)0.0027 (10)0.0095 (12)
C170.0159 (11)0.0321 (17)0.0248 (13)0.0033 (11)0.0013 (9)0.0019 (11)
C180.0208 (12)0.0424 (19)0.0305 (14)0.0068 (12)0.0002 (10)0.0059 (13)
Geometric parameters (Å, º) top
F1—C111.383 (3)C7A—N81.382 (3)
O1—C131.228 (3)C7A—C12B1.390 (3)
O2—C131.352 (3)N8—C8A1.383 (3)
O2—C141.461 (3)N8—H80.93 (3)
O3—C151.213 (3)C8A—C91.401 (3)
O4—C151.347 (3)C8A—C12A1.425 (3)
O4—C161.451 (3)C9—C101.388 (3)
C1—C12B1.502 (3)C9—H90.9500
C1—C21.532 (3)C10—C111.400 (4)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—C121.376 (3)
C2—C31.366 (3)C12—C12A1.417 (3)
C2—C131.487 (4)C12—H120.9500
C3—N41.407 (3)C12A—C12B1.442 (3)
C3—C151.530 (3)C14—H14A0.9800
N4—C171.475 (3)C14—H14B0.9800
N4—C51.488 (3)C14—H14C0.9800
C5—C61.531 (4)C16—H16A0.9800
C5—H5A0.9900C16—H16B0.9800
C5—H5B0.9900C16—H16C0.9800
C6—C71.542 (3)C17—C181.520 (4)
C6—H6A0.9900C17—H17A0.9900
C6—H6B0.9900C17—H17B0.9900
C7—C7A1.499 (3)C18—H18A0.9800
C7—H7A0.9900C18—H18B0.9800
C7—H7B0.9900C18—H18C0.9800
C13—O2—C14114.88 (19)C8A—C9—H9121.0
C15—O4—C16115.13 (19)C9—C10—C11119.3 (2)
C12B—C1—C2118.4 (2)C9—C10—H10120.4
C12B—C1—H1A107.7C11—C10—H10120.4
C2—C1—H1A107.7C12—C11—F1118.4 (2)
C12B—C1—H1B107.7C12—C11—C10124.6 (2)
C2—C1—H1B107.7F1—C11—C10117.0 (2)
H1A—C1—H1B107.1C11—C12—C12A117.0 (2)
C3—C2—C13117.2 (2)C11—C12—H12121.5
C3—C2—C1122.2 (2)C12A—C12—H12121.5
C13—C2—C1120.61 (19)C12—C12A—C8A118.8 (2)
C2—C3—N4122.4 (2)C12—C12A—C12B133.8 (2)
C2—C3—C15120.9 (2)C8A—C12A—C12B107.3 (2)
N4—C3—C15116.65 (18)C7A—C12B—C12A106.40 (19)
C3—N4—C17117.83 (18)C7A—C12B—C1125.5 (2)
C3—N4—C5115.06 (19)C12A—C12B—C1128.1 (2)
C17—N4—C5113.43 (16)O1—C13—O2122.0 (2)
N4—C5—C6113.7 (2)O1—C13—C2124.4 (2)
N4—C5—H5A108.8O2—C13—C2113.6 (2)
C6—C5—H5A108.8O2—C14—H14A109.5
N4—C5—H5B108.8O2—C14—H14B109.5
C6—C5—H5B108.8H14A—C14—H14B109.5
H5A—C5—H5B107.7O2—C14—H14C109.5
C5—C6—C7113.24 (19)H14A—C14—H14C109.5
C5—C6—H6A108.9H14B—C14—H14C109.5
C7—C6—H6A108.9O3—C15—O4124.7 (2)
C5—C6—H6B108.9O3—C15—C3123.6 (2)
C7—C6—H6B108.9O4—C15—C3111.68 (19)
H6A—C6—H6B107.7O4—C16—H16A109.5
C7A—C7—C6111.7 (2)O4—C16—H16B109.5
C7A—C7—H7A109.3H16A—C16—H16B109.5
C6—C7—H7A109.3O4—C16—H16C109.5
C7A—C7—H7B109.3H16A—C16—H16C109.5
C6—C7—H7B109.3H16B—C16—H16C109.5
H7A—C7—H7B107.9N4—C17—C18112.19 (18)
N8—C7A—C12B109.5 (2)N4—C17—H17A109.2
N8—C7A—C7120.7 (2)C18—C17—H17A109.2
C12B—C7A—C7129.5 (2)N4—C17—H17B109.2
C7A—N8—C8A109.62 (19)C18—C17—H17B109.2
C7A—N8—H8126.5 (15)H17A—C17—H17B107.9
C8A—N8—H8123.3 (15)C17—C18—H18A109.5
N8—C8A—C9130.4 (2)C17—C18—H18B109.5
N8—C8A—C12A107.2 (2)H18A—C18—H18B109.5
C9—C8A—C12A122.4 (2)C17—C18—H18C109.5
C10—C9—C8A117.9 (2)H18A—C18—H18C109.5
C10—C9—H9121.0H18B—C18—H18C109.5
C12B—C1—C2—C388.1 (3)N8—C8A—C12A—C12179.6 (2)
C12B—C1—C2—C1393.4 (3)C9—C8A—C12A—C120.4 (4)
C13—C2—C3—N4163.5 (2)N8—C8A—C12A—C12B0.1 (3)
C1—C2—C3—N418.0 (3)C9—C8A—C12A—C12B179.9 (2)
C13—C2—C3—C1514.3 (3)N8—C7A—C12B—C12A0.9 (3)
C1—C2—C3—C15164.2 (2)C7—C7A—C12B—C12A174.2 (2)
C2—C3—N4—C17150.5 (2)N8—C7A—C12B—C1179.6 (2)
C15—C3—N4—C1731.6 (3)C7—C7A—C12B—C16.3 (4)
C2—C3—N4—C571.5 (3)C12—C12A—C12B—C7A179.9 (2)
C15—C3—N4—C5106.4 (2)C8A—C12A—C12B—C7A0.5 (3)
C3—N4—C5—C6141.0 (2)C12—C12A—C12B—C10.4 (4)
C17—N4—C5—C679.1 (2)C8A—C12A—C12B—C1180.0 (2)
N4—C5—C6—C758.9 (2)C2—C1—C12B—C7A98.2 (3)
C5—C6—C7—C7A54.3 (3)C2—C1—C12B—C12A82.3 (3)
C6—C7—C7A—N883.2 (3)C14—O2—C13—O12.1 (3)
C6—C7—C7A—C12B89.4 (3)C14—O2—C13—C2176.11 (18)
C12B—C7A—N8—C8A1.0 (3)C3—C2—C13—O121.2 (3)
C7—C7A—N8—C8A174.9 (2)C1—C2—C13—O1160.2 (2)
C7A—N8—C8A—C9179.3 (3)C3—C2—C13—O2160.6 (2)
C7A—N8—C8A—C12A0.6 (3)C1—C2—C13—O218.0 (3)
N8—C8A—C9—C10179.1 (2)C16—O4—C15—O38.8 (3)
C12A—C8A—C9—C101.0 (4)C16—O4—C15—C3174.42 (19)
C8A—C9—C10—C110.7 (4)C2—C3—C15—O3122.1 (3)
C9—C10—C11—C120.2 (4)N4—C3—C15—O355.9 (3)
C9—C10—C11—F1178.6 (2)C2—C3—C15—O461.1 (3)
F1—C11—C12—C12A178.0 (2)N4—C3—C15—O4121.0 (2)
C10—C11—C12—C12A0.7 (4)C3—N4—C17—C1864.2 (3)
C11—C12—C12A—C8A0.4 (3)C5—N4—C17—C18157.2 (2)
C11—C12—C12A—C12B179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.93 (3)2.17 (3)3.025 (3)153 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Funding information

This work was supported by the RUDN Program "5–100". X-ray crystallographic studies using synchrotron radiation were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007).

References

First citationAfsah, E. M., Fadda, A. A., Bondock, S. & Hammouda, M. M. (2009). Z. Naturforsch. Teil B, 64, 415–422.  CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHartman, G. D. & Kuduk, S. (2016). Patent US2016/272599A1. Novira Therapeutics, Inc., USA.  Google Scholar
First citationKuehne, M. E., Bornmann, W. G., Markó, I., Qin, Y., LeBoulluec, K. L., Frasier, D. A., Xu, F., Mulamba, T., Ensinger, C. L., Borman, L. S., Huot, A. E., Exon, C., Bizzarro, F. T., Cheung, J. B. & Bane, S. L. (2003). Org. Biomol. Chem. 1, 2120–2136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuehne, M., He, L., Jokiel, P., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716–2730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMagnus, P., Ladlow, M. & Elliott, J. (1987). J. Am. Chem. Soc. 109, 7929–7930.  CrossRef CAS Web of Science Google Scholar
First citationNeuss, N., Gorman, M., Boaz, H. E. & Cone, N. J. (1962). J. Am. Chem. Soc. 84, 1509–1510.  CrossRef CAS Web of Science Google Scholar
First citationNeuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. (1959). J. Am. Chem. Soc. 81, 4754–4755.  CrossRef CAS Web of Science Google Scholar
First citationNguyen, V. T., Sorokina, E. A., Listratova, A. V., Voskressensky, L. G., Lobanov, N. N., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 338–340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRostom, S. A. F. (2010). Arch. Pharm. Chem. Life Sci. 343, 73–80.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoldi, R., Horrigan, S. K., Cholody, M. W., Padia, J., Sorna, V., Bearss, J., Gilcrease, G., Bhalla, K., Verma, A., Vankayalapati, H. & Sharma, S. (2015). J. Med. Chem. 58, 5854–5862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTanaka, Y., Gamo, K., Oyama, T., Ohashi, M., Waki, M., Matsuno, K., Matsuura, N., Tokiwa, H. & Miyachi, H. (2014). Bioorg. Med. Chem. Lett. 24, 4001–4005.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUprety, H. & Bhakuni, D. S. (1975). Tetrahedron Lett. 16, 1201–1204.  CrossRef Google Scholar
First citationVarlamov, A. V., Borisova, T. N., Voskressensky, L. G., Soklakova, T. A., Kulikova, L. N., Chernyshev, A. V. & Alexandrov, G. G. (2002). Tetrahedron Lett. 43, 6767–6769.  Web of Science CSD CrossRef CAS Google Scholar
First citationVoskressensky, L. G., Akbulatov, S. V., Borisova, T. N. & Varlamov, A. V. (2006). Tetrahedron, 62, 12392–12397.  Web of Science CSD CrossRef CAS Google Scholar
First citationVoskressensky, L. G., Borisova, T. N., Kulikova, L. N., Varlamov, A. V., Catto, M., Altomare, C. & Carotti, A. (2004). Eur. J. Org. Chem. pp. 3128–3135.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds