research communications
Design of new anti-Alzheimer drugs: ring-expansion synthesis and synchrotron X-ray diffraction study of dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexahydroazonino[5,6-b]indole-2,3-dicarboxylate
aDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, bOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cChemistry and Biology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and eNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr
The title compound, C20H23FN2O4, is the product of a ring-expansion reaction from a seven-membered fluorinated hexahydroazepine to a nine-membered azonine. The nine-membered azonine ring of the molecule adopts a chair–boat conformation. The C=C and C—N bond lengths [1.366 (3) and 1.407 (3) Å, respectively] indicate the presence of conjugation within the enamine CH2—C=C—N—CH2 fragment. The substituent planes at the C=C double bond of this fragment are twisted by 16.0 (3)° as a result of steric effects. The amine N(Et) N atom has a trigonal–pyramidal configuration (sum of the bond angles = 346.3°). The interplanar angle between the two carboxylate substituents is 60.39 (8)°. In the crystal, molecules form zigzag chains along [010] by intermolecular N—H⋯O hydrogen-bonding interactions, which are further packed in stacks toward [100]. The title azoninoindole might be considered as a candidate for the design of new Alzheimer drugs.
Keywords: crystal structure; natural alkaloids; azoninoindoles; Alzheimer disease; synchrotron radiation.
CCDC reference: 1818381
1. Chemical context
Eight-, nine-, and ten-membered heterocycles, often referred to as medium-sized rings, remain largely unexplored because of the lack of general convenient routes for their synthesis. Meanwhile, such medium-sized heterocycles, in particular azonine, frequently occur in natural products, such as et al., 1959, 1962; Uprety & Bhakuni, 1975), and thus they are considered to be promising fragments in drug design.
(NeussVoskressensky and his group have pioneered the tandem transformation of fused tetrahydropyridines into d]azocines (Varlamov et al., 2002), tetrahydroazocino[5,4-b]indoles, and tetrahydroazocino[4,5-b]indoles (Voskressensky et al., 2004) have been elaborated. The application of a similar approach to hexahydroazepine gives rise to azoninoindoles (Nguyen et al., 2017), which are otherwise hard to obtain.
bearing an enamine moiety in the eight-membered ring under the action of activated Based on this reaction, convenient preparative routes to tetrahydropyrrolo[2,3-Azoninoindole I was successfully synthesized from the initial 2-ethyl-9-fluoro-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole via a domino reaction under the action of dimethyl acetylenedicarboxylate in methanol at room temperature (Fig. 1). The domino reaction results in the expansion of the hexahydroazepine ring to the azonine viz. dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexahydroazonino[5,6-b]indole-2,3-dicarboxylate (I). 3-Methoxymethyl-substituted indole II was isolated as a by-product of this reaction.
The azonine systems, as a result of their specific structure, are known to act as ligands towards different receptors, thus demonstrating diverse types of biological activity (Magnus et al., 1987; Kuehne, Bornman et al., 2003; Kuehne, He et al., 2003; Afsah et al., 2009; Rostom, 2010; Tanaka et al., 2014; Soldi et al., 2015; Hartman & Kuduk, 2016), including anti-Alzheimer's disease activity (Nguyen et al., 2017).
The title compound I, C20H23FN2O4, is the product of a ring expansion reaction from a seven-membered fluorinated hexahydroazepine to a nine-membered azonine. The molecular structure of I is unambiguously confirmed by the X-ray diffraction study (Fig. 2).
2. Structural commentary
Compound I is isostructural to the non-fluorinated analog published by us very recently (Nguyen et al., 2017). The nine-membered azonine ring of the molecule adopts a chair–boat conformation (the basal planes are N4–C5/C1–C12B and C5–C6/C7A–C12B, respectively). It should be noted that the analogous nine-membered azonine ring in the related compound methyl 4-ethyl-11-methyl-1,4,5,6,7,8-hexahydroazonino[5,6-b]indole-2-carboxylate adopts a twisted boat conformation (Voskressensky, et al., 2006). The C2=C3 and C3—N4 bond lengths [1.366 (3) and 1.407 (3) Å, respectively] indicate the presence of conjugation within the enamine C2=C3—N4 fragment. The substituent planes at the C2=C3 double bond are twisted by 16.0 (3)° because of steric effects. The N4 nitrogen atom has a trigonal–pyramidal configuration (sum of the bond angles is 346.3°). The interplanar angle between the two carboxylate substituents is 60.39 (8)°.
3. Supramolecular features
In the crystal, molecules of I form zigzag chains along [010] by intermolecular N—H⋯Oi hydrogen-bonding interactions (Table 1, Fig. 3), which are further packed in stacks towards [100].
4. Synthesis and crystallization
Dimethyl acetylenedicarboxylate (170 mg, 1.2 mmol) was added to 2-ethyl-9-fluoro-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (232 mg, 1 mmol) dissolved in methanol (10 ml). The reaction mixture was stirred for 2 h at room temperature with the TLC real-time control. Then the solvent was removed in vacuo and the residue was chromatographed over silica with ethylacetate:hexane as to yield the target fluorinated azoninoindole I (22%) and 3-methoxymethylindole II. Light-yellow crystals of azoninoindole I suitable for X-ray crystallographic analysis were grown by slow evaporation of an ethylacetate:hexane (1:1) solution, m.p. 456–458 K.
1H NMR (CDCl3, δ/ppm, J/Hz): 0.98 (t, 3H, J = 7.2, CH3CH2), 1.78 (m, 2H, 6-CH2), 2.74 (q, 2H, J = 7.2, CH3CH2), 2.93 (m, 2H, 7-CH2), 3.06 (m, 2H, 5-CH2), 3.96 (s, 2H, 1-CH2), 3.74 (s, 3H, CO2CH3), 3.77 (s, 3H, CO2CH3), 6.82 (ddd, 2H, 1,3J = 9.0, 1,3J = 9.0, 1,4J = 2.3, CH-Ar), 7.13 (m, 2H, CH-Ar), 7.74 (br s 1H, NH). 13C NMR (DMSO-d6, δ/ppm, J/Hz): 15.2 (CH3), 21.9 (CH2), 23.8 (CH2), 27.1 (CH2), 44.5 (CH2), 52.3 (CH3), 52.3 (CH3), 55.5 (CH2), 102.5 (d, J = 22, CH), 108.2 (d, J = 26, CH), 108.6 (C), 111.8 (d, J = 9, CH), 122.3 (C), 128.3 (C), 132.2 (C), 137.9 (C), 151.7 (C), 157.1 (d, J = 231, C), 166.4 (C), 169.3 (C). IR (KBr): ν (cm−1) = 1723, 3373. Found (%): C, 64.16; H, 6.19; N, 7.48. C20H23FN2O4. Calculated (%): C, 64.46; H, 6.86; N, 7.82. Mass-spectrometry, m/z [Irel(%)]: 374 [M+] (100), 345 (20), 315 (100), 285 (30), 227 (10), 198 (20), 174 (30), 161 (30), 148 (10), 58 (40), 45 (10).
5. Refinement
Crystal data, data collection and structure . The X-ray diffraction study was carried out on the "Belok" beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program suite (Battye et al., 2011).
details are summarized in Table 2The hydrogen atoms of the amino groups were localized in the difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
Supporting information
CCDC reference: 1818381
https://doi.org/10.1107/S2056989018001329/kq2018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001329/kq2018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018001329/kq2018Isup3.cml
Data collection: MarCCD (Doyle, 2011); cell
iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C20H23FN2O4 | F(000) = 792 |
Mr = 374.40 | Dx = 1.321 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 8.4632 (17) Å | Cell parameters from 600 reflections |
b = 10.993 (2) Å | θ = 3.3–33.0° |
c = 20.520 (4) Å | µ = 0.21 mm−1 |
β = 99.60 (3)° | T = 100 K |
V = 1882.4 (7) Å3 | Needle, yellow |
Z = 4 | 0.22 × 0.02 × 0.02 mm |
Rayonix SX165 CCD diffractometer | 2463 reflections with I > 2σ(I) |
/f scan | Rint = 0.086 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.4°, θmin = 3.3° |
Tmin = 0.940, Tmax = 0.980 | h = −10→10 |
21117 measured reflections | k = −12→10 |
3850 independent reflections | l = −26→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.184 | w = 1/[σ2(Fo2) + (0.090P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3850 reflections | Δρmax = 0.34 e Å−3 |
251 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.016 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | −0.11330 (17) | 0.18565 (15) | 0.14176 (8) | 0.0428 (5) | |
O1 | 0.35878 (18) | 0.12235 (17) | 0.40043 (8) | 0.0254 (5) | |
O2 | 0.13856 (17) | 0.24026 (16) | 0.37589 (8) | 0.0256 (5) | |
O3 | 0.72767 (18) | 0.17340 (16) | 0.45020 (8) | 0.0265 (5) | |
O4 | 0.54751 (18) | 0.24913 (16) | 0.50997 (7) | 0.0245 (5) | |
C1 | 0.3100 (3) | 0.4423 (2) | 0.33722 (11) | 0.0220 (6) | |
H1A | 0.1961 | 0.4424 | 0.3430 | 0.026* | |
H1B | 0.3592 | 0.5174 | 0.3581 | 0.026* | |
C2 | 0.3917 (3) | 0.3338 (2) | 0.37585 (11) | 0.0197 (6) | |
C3 | 0.5500 (3) | 0.3353 (2) | 0.40360 (11) | 0.0197 (6) | |
N4 | 0.6592 (2) | 0.41914 (19) | 0.38442 (9) | 0.0215 (5) | |
C5 | 0.7014 (3) | 0.3978 (2) | 0.31780 (11) | 0.0225 (6) | |
H5A | 0.6179 | 0.3459 | 0.2920 | 0.027* | |
H5B | 0.8041 | 0.3528 | 0.3229 | 0.027* | |
C6 | 0.7174 (3) | 0.5148 (2) | 0.27897 (12) | 0.0265 (6) | |
H6A | 0.7461 | 0.4933 | 0.2356 | 0.032* | |
H6B | 0.8060 | 0.5642 | 0.3032 | 0.032* | |
C7 | 0.5632 (3) | 0.5921 (3) | 0.26769 (12) | 0.0249 (6) | |
H7A | 0.5426 | 0.6237 | 0.3107 | 0.030* | |
H7B | 0.5783 | 0.6625 | 0.2393 | 0.030* | |
C7A | 0.4212 (3) | 0.5196 (2) | 0.23562 (11) | 0.0214 (6) | |
N8 | 0.3906 (2) | 0.5038 (2) | 0.16787 (9) | 0.0229 (5) | |
H8 | 0.437 (3) | 0.547 (2) | 0.1368 (12) | 0.028* | |
C8A | 0.2622 (3) | 0.4257 (2) | 0.15110 (11) | 0.0225 (6) | |
C9 | 0.1871 (3) | 0.3838 (2) | 0.08913 (12) | 0.0268 (6) | |
H9 | 0.2220 | 0.4098 | 0.0497 | 0.032* | |
C10 | 0.0602 (3) | 0.3033 (3) | 0.08712 (13) | 0.0299 (7) | |
H10 | 0.0070 | 0.2722 | 0.0461 | 0.036* | |
C11 | 0.0114 (3) | 0.2683 (3) | 0.14629 (13) | 0.0283 (6) | |
C12 | 0.0805 (3) | 0.3085 (2) | 0.20795 (12) | 0.0248 (6) | |
H12 | 0.0424 | 0.2828 | 0.2467 | 0.030* | |
C12A | 0.2112 (2) | 0.3900 (2) | 0.21103 (11) | 0.0214 (6) | |
C12B | 0.3143 (3) | 0.4501 (2) | 0.26446 (11) | 0.0201 (6) | |
C13 | 0.2988 (3) | 0.2225 (3) | 0.38597 (11) | 0.0221 (6) | |
C14 | 0.0434 (3) | 0.1308 (3) | 0.38115 (13) | 0.0292 (7) | |
H14A | 0.0642 | 0.0713 | 0.3480 | 0.044* | |
H14B | −0.0707 | 0.1519 | 0.3735 | 0.044* | |
H14C | 0.0730 | 0.0958 | 0.4254 | 0.044* | |
C15 | 0.6182 (3) | 0.2417 (2) | 0.45594 (11) | 0.0212 (6) | |
C16 | 0.5946 (3) | 0.1559 (3) | 0.55942 (12) | 0.0295 (7) | |
H16A | 0.5529 | 0.0769 | 0.5422 | 0.044* | |
H16B | 0.5509 | 0.1755 | 0.5995 | 0.044* | |
H16C | 0.7118 | 0.1522 | 0.5700 | 0.044* | |
C17 | 0.7970 (3) | 0.4562 (3) | 0.43429 (11) | 0.0248 (6) | |
H17A | 0.8687 | 0.5087 | 0.4131 | 0.030* | |
H17B | 0.8583 | 0.3829 | 0.4514 | 0.030* | |
C18 | 0.7454 (3) | 0.5244 (3) | 0.49167 (13) | 0.0317 (7) | |
H18A | 0.6843 | 0.5969 | 0.4750 | 0.048* | |
H18B | 0.8404 | 0.5489 | 0.5230 | 0.048* | |
H18C | 0.6782 | 0.4714 | 0.5140 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0287 (8) | 0.0431 (12) | 0.0508 (10) | −0.0170 (7) | −0.0099 (7) | 0.0069 (8) |
O1 | 0.0152 (8) | 0.0275 (12) | 0.0328 (10) | 0.0029 (8) | 0.0016 (7) | 0.0025 (8) |
O2 | 0.0108 (8) | 0.0301 (12) | 0.0356 (10) | −0.0008 (7) | 0.0034 (7) | 0.0043 (8) |
O3 | 0.0172 (8) | 0.0318 (12) | 0.0300 (10) | 0.0066 (7) | 0.0024 (7) | 0.0008 (8) |
O4 | 0.0215 (9) | 0.0338 (12) | 0.0189 (9) | 0.0030 (7) | 0.0052 (6) | 0.0043 (8) |
C1 | 0.0127 (11) | 0.0284 (17) | 0.0241 (13) | 0.0018 (10) | 0.0003 (9) | 0.0018 (11) |
C2 | 0.0133 (11) | 0.0260 (16) | 0.0195 (12) | −0.0001 (10) | 0.0016 (9) | 0.0000 (10) |
C3 | 0.0147 (11) | 0.0262 (16) | 0.0181 (11) | 0.0016 (10) | 0.0020 (8) | −0.0007 (10) |
N4 | 0.0135 (9) | 0.0308 (14) | 0.0194 (10) | −0.0041 (9) | 0.0006 (7) | 0.0001 (9) |
C5 | 0.0147 (11) | 0.0326 (17) | 0.0198 (12) | 0.0000 (10) | 0.0018 (9) | −0.0001 (11) |
C6 | 0.0165 (12) | 0.0375 (18) | 0.0243 (13) | −0.0068 (11) | 0.0005 (9) | 0.0023 (12) |
C7 | 0.0205 (12) | 0.0309 (17) | 0.0222 (13) | −0.0044 (11) | 0.0004 (10) | 0.0032 (11) |
C7A | 0.0182 (12) | 0.0251 (16) | 0.0196 (13) | 0.0021 (10) | −0.0007 (9) | 0.0005 (11) |
N8 | 0.0173 (10) | 0.0313 (15) | 0.0190 (11) | −0.0035 (9) | 0.0000 (8) | 0.0028 (10) |
C8A | 0.0137 (11) | 0.0286 (17) | 0.0235 (13) | 0.0018 (10) | −0.0016 (9) | 0.0001 (11) |
C9 | 0.0201 (12) | 0.0321 (19) | 0.0267 (14) | 0.0026 (11) | 0.0000 (10) | 0.0002 (12) |
C10 | 0.0194 (12) | 0.0363 (19) | 0.0295 (14) | 0.0012 (12) | −0.0088 (10) | −0.0024 (12) |
C11 | 0.0147 (12) | 0.0284 (18) | 0.0377 (15) | −0.0034 (11) | −0.0073 (10) | 0.0043 (13) |
C12 | 0.0150 (11) | 0.0277 (17) | 0.0299 (14) | 0.0019 (10) | −0.0015 (9) | 0.0073 (12) |
C12A | 0.0122 (11) | 0.0267 (17) | 0.0237 (13) | 0.0035 (10) | −0.0019 (9) | 0.0048 (11) |
C12B | 0.0143 (11) | 0.0261 (16) | 0.0193 (12) | 0.0040 (10) | 0.0009 (9) | 0.0045 (11) |
C13 | 0.0116 (11) | 0.0356 (19) | 0.0182 (12) | 0.0015 (11) | 0.0000 (8) | −0.0008 (11) |
C14 | 0.0144 (11) | 0.0300 (18) | 0.0441 (16) | −0.0057 (11) | 0.0076 (10) | 0.0043 (13) |
C15 | 0.0141 (11) | 0.0280 (17) | 0.0204 (12) | −0.0026 (10) | −0.0001 (9) | −0.0015 (11) |
C16 | 0.0231 (13) | 0.0402 (19) | 0.0229 (13) | −0.0009 (12) | −0.0027 (10) | 0.0095 (12) |
C17 | 0.0159 (11) | 0.0321 (17) | 0.0248 (13) | −0.0033 (11) | −0.0013 (9) | 0.0019 (11) |
C18 | 0.0208 (12) | 0.0424 (19) | 0.0305 (14) | −0.0068 (12) | −0.0002 (10) | −0.0059 (13) |
F1—C11 | 1.383 (3) | C7A—N8 | 1.382 (3) |
O1—C13 | 1.228 (3) | C7A—C12B | 1.390 (3) |
O2—C13 | 1.352 (3) | N8—C8A | 1.383 (3) |
O2—C14 | 1.461 (3) | N8—H8 | 0.93 (3) |
O3—C15 | 1.213 (3) | C8A—C9 | 1.401 (3) |
O4—C15 | 1.347 (3) | C8A—C12A | 1.425 (3) |
O4—C16 | 1.451 (3) | C9—C10 | 1.388 (3) |
C1—C12B | 1.502 (3) | C9—H9 | 0.9500 |
C1—C2 | 1.532 (3) | C10—C11 | 1.400 (4) |
C1—H1A | 0.9900 | C10—H10 | 0.9500 |
C1—H1B | 0.9900 | C11—C12 | 1.376 (3) |
C2—C3 | 1.366 (3) | C12—C12A | 1.417 (3) |
C2—C13 | 1.487 (4) | C12—H12 | 0.9500 |
C3—N4 | 1.407 (3) | C12A—C12B | 1.442 (3) |
C3—C15 | 1.530 (3) | C14—H14A | 0.9800 |
N4—C17 | 1.475 (3) | C14—H14B | 0.9800 |
N4—C5 | 1.488 (3) | C14—H14C | 0.9800 |
C5—C6 | 1.531 (4) | C16—H16A | 0.9800 |
C5—H5A | 0.9900 | C16—H16B | 0.9800 |
C5—H5B | 0.9900 | C16—H16C | 0.9800 |
C6—C7 | 1.542 (3) | C17—C18 | 1.520 (4) |
C6—H6A | 0.9900 | C17—H17A | 0.9900 |
C6—H6B | 0.9900 | C17—H17B | 0.9900 |
C7—C7A | 1.499 (3) | C18—H18A | 0.9800 |
C7—H7A | 0.9900 | C18—H18B | 0.9800 |
C7—H7B | 0.9900 | C18—H18C | 0.9800 |
C13—O2—C14 | 114.88 (19) | C8A—C9—H9 | 121.0 |
C15—O4—C16 | 115.13 (19) | C9—C10—C11 | 119.3 (2) |
C12B—C1—C2 | 118.4 (2) | C9—C10—H10 | 120.4 |
C12B—C1—H1A | 107.7 | C11—C10—H10 | 120.4 |
C2—C1—H1A | 107.7 | C12—C11—F1 | 118.4 (2) |
C12B—C1—H1B | 107.7 | C12—C11—C10 | 124.6 (2) |
C2—C1—H1B | 107.7 | F1—C11—C10 | 117.0 (2) |
H1A—C1—H1B | 107.1 | C11—C12—C12A | 117.0 (2) |
C3—C2—C13 | 117.2 (2) | C11—C12—H12 | 121.5 |
C3—C2—C1 | 122.2 (2) | C12A—C12—H12 | 121.5 |
C13—C2—C1 | 120.61 (19) | C12—C12A—C8A | 118.8 (2) |
C2—C3—N4 | 122.4 (2) | C12—C12A—C12B | 133.8 (2) |
C2—C3—C15 | 120.9 (2) | C8A—C12A—C12B | 107.3 (2) |
N4—C3—C15 | 116.65 (18) | C7A—C12B—C12A | 106.40 (19) |
C3—N4—C17 | 117.83 (18) | C7A—C12B—C1 | 125.5 (2) |
C3—N4—C5 | 115.06 (19) | C12A—C12B—C1 | 128.1 (2) |
C17—N4—C5 | 113.43 (16) | O1—C13—O2 | 122.0 (2) |
N4—C5—C6 | 113.7 (2) | O1—C13—C2 | 124.4 (2) |
N4—C5—H5A | 108.8 | O2—C13—C2 | 113.6 (2) |
C6—C5—H5A | 108.8 | O2—C14—H14A | 109.5 |
N4—C5—H5B | 108.8 | O2—C14—H14B | 109.5 |
C6—C5—H5B | 108.8 | H14A—C14—H14B | 109.5 |
H5A—C5—H5B | 107.7 | O2—C14—H14C | 109.5 |
C5—C6—C7 | 113.24 (19) | H14A—C14—H14C | 109.5 |
C5—C6—H6A | 108.9 | H14B—C14—H14C | 109.5 |
C7—C6—H6A | 108.9 | O3—C15—O4 | 124.7 (2) |
C5—C6—H6B | 108.9 | O3—C15—C3 | 123.6 (2) |
C7—C6—H6B | 108.9 | O4—C15—C3 | 111.68 (19) |
H6A—C6—H6B | 107.7 | O4—C16—H16A | 109.5 |
C7A—C7—C6 | 111.7 (2) | O4—C16—H16B | 109.5 |
C7A—C7—H7A | 109.3 | H16A—C16—H16B | 109.5 |
C6—C7—H7A | 109.3 | O4—C16—H16C | 109.5 |
C7A—C7—H7B | 109.3 | H16A—C16—H16C | 109.5 |
C6—C7—H7B | 109.3 | H16B—C16—H16C | 109.5 |
H7A—C7—H7B | 107.9 | N4—C17—C18 | 112.19 (18) |
N8—C7A—C12B | 109.5 (2) | N4—C17—H17A | 109.2 |
N8—C7A—C7 | 120.7 (2) | C18—C17—H17A | 109.2 |
C12B—C7A—C7 | 129.5 (2) | N4—C17—H17B | 109.2 |
C7A—N8—C8A | 109.62 (19) | C18—C17—H17B | 109.2 |
C7A—N8—H8 | 126.5 (15) | H17A—C17—H17B | 107.9 |
C8A—N8—H8 | 123.3 (15) | C17—C18—H18A | 109.5 |
N8—C8A—C9 | 130.4 (2) | C17—C18—H18B | 109.5 |
N8—C8A—C12A | 107.2 (2) | H18A—C18—H18B | 109.5 |
C9—C8A—C12A | 122.4 (2) | C17—C18—H18C | 109.5 |
C10—C9—C8A | 117.9 (2) | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 121.0 | H18B—C18—H18C | 109.5 |
C12B—C1—C2—C3 | 88.1 (3) | N8—C8A—C12A—C12 | −179.6 (2) |
C12B—C1—C2—C13 | −93.4 (3) | C9—C8A—C12A—C12 | 0.4 (4) |
C13—C2—C3—N4 | 163.5 (2) | N8—C8A—C12A—C12B | 0.1 (3) |
C1—C2—C3—N4 | −18.0 (3) | C9—C8A—C12A—C12B | −179.9 (2) |
C13—C2—C3—C15 | −14.3 (3) | N8—C7A—C12B—C12A | −0.9 (3) |
C1—C2—C3—C15 | 164.2 (2) | C7—C7A—C12B—C12A | −174.2 (2) |
C2—C3—N4—C17 | 150.5 (2) | N8—C7A—C12B—C1 | 179.6 (2) |
C15—C3—N4—C17 | −31.6 (3) | C7—C7A—C12B—C1 | 6.3 (4) |
C2—C3—N4—C5 | −71.5 (3) | C12—C12A—C12B—C7A | −179.9 (2) |
C15—C3—N4—C5 | 106.4 (2) | C8A—C12A—C12B—C7A | 0.5 (3) |
C3—N4—C5—C6 | 141.0 (2) | C12—C12A—C12B—C1 | −0.4 (4) |
C17—N4—C5—C6 | −79.1 (2) | C8A—C12A—C12B—C1 | −180.0 (2) |
N4—C5—C6—C7 | −58.9 (2) | C2—C1—C12B—C7A | −98.2 (3) |
C5—C6—C7—C7A | −54.3 (3) | C2—C1—C12B—C12A | 82.3 (3) |
C6—C7—C7A—N8 | −83.2 (3) | C14—O2—C13—O1 | −2.1 (3) |
C6—C7—C7A—C12B | 89.4 (3) | C14—O2—C13—C2 | 176.11 (18) |
C12B—C7A—N8—C8A | 1.0 (3) | C3—C2—C13—O1 | −21.2 (3) |
C7—C7A—N8—C8A | 174.9 (2) | C1—C2—C13—O1 | 160.2 (2) |
C7A—N8—C8A—C9 | 179.3 (3) | C3—C2—C13—O2 | 160.6 (2) |
C7A—N8—C8A—C12A | −0.6 (3) | C1—C2—C13—O2 | −18.0 (3) |
N8—C8A—C9—C10 | 179.1 (2) | C16—O4—C15—O3 | −8.8 (3) |
C12A—C8A—C9—C10 | −1.0 (4) | C16—O4—C15—C3 | 174.42 (19) |
C8A—C9—C10—C11 | 0.7 (4) | C2—C3—C15—O3 | 122.1 (3) |
C9—C10—C11—C12 | 0.2 (4) | N4—C3—C15—O3 | −55.9 (3) |
C9—C10—C11—F1 | −178.6 (2) | C2—C3—C15—O4 | −61.1 (3) |
F1—C11—C12—C12A | 178.0 (2) | N4—C3—C15—O4 | 121.0 (2) |
C10—C11—C12—C12A | −0.7 (4) | C3—N4—C17—C18 | −64.2 (3) |
C11—C12—C12A—C8A | 0.4 (3) | C5—N4—C17—C18 | 157.2 (2) |
C11—C12—C12A—C12B | −179.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8···O1i | 0.93 (3) | 2.17 (3) | 3.025 (3) | 153 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Funding information
This work was supported by the RUDN Program "5–100". X-ray crystallographic studies using synchrotron radiation were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007).
References
Afsah, E. M., Fadda, A. A., Bondock, S. & Hammouda, M. M. (2009). Z. Naturforsch. Teil B, 64, 415–422. CAS Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hartman, G. D. & Kuduk, S. (2016). Patent US2016/272599A1. Novira Therapeutics, Inc., USA. Google Scholar
Kuehne, M. E., Bornmann, W. G., Markó, I., Qin, Y., LeBoulluec, K. L., Frasier, D. A., Xu, F., Mulamba, T., Ensinger, C. L., Borman, L. S., Huot, A. E., Exon, C., Bizzarro, F. T., Cheung, J. B. & Bane, S. L. (2003). Org. Biomol. Chem. 1, 2120–2136. Web of Science CrossRef PubMed CAS Google Scholar
Kuehne, M., He, L., Jokiel, P., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716–2730. Web of Science CrossRef PubMed CAS Google Scholar
Magnus, P., Ladlow, M. & Elliott, J. (1987). J. Am. Chem. Soc. 109, 7929–7930. CrossRef CAS Web of Science Google Scholar
Neuss, N., Gorman, M., Boaz, H. E. & Cone, N. J. (1962). J. Am. Chem. Soc. 84, 1509–1510. CrossRef CAS Web of Science Google Scholar
Neuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. (1959). J. Am. Chem. Soc. 81, 4754–4755. CrossRef CAS Web of Science Google Scholar
Nguyen, V. T., Sorokina, E. A., Listratova, A. V., Voskressensky, L. G., Lobanov, N. N., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 338–340. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rostom, S. A. F. (2010). Arch. Pharm. Chem. Life Sci. 343, 73–80. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soldi, R., Horrigan, S. K., Cholody, M. W., Padia, J., Sorna, V., Bearss, J., Gilcrease, G., Bhalla, K., Verma, A., Vankayalapati, H. & Sharma, S. (2015). J. Med. Chem. 58, 5854–5862. Web of Science CrossRef CAS PubMed Google Scholar
Tanaka, Y., Gamo, K., Oyama, T., Ohashi, M., Waki, M., Matsuno, K., Matsuura, N., Tokiwa, H. & Miyachi, H. (2014). Bioorg. Med. Chem. Lett. 24, 4001–4005. Web of Science CrossRef CAS PubMed Google Scholar
Uprety, H. & Bhakuni, D. S. (1975). Tetrahedron Lett. 16, 1201–1204. CrossRef Google Scholar
Varlamov, A. V., Borisova, T. N., Voskressensky, L. G., Soklakova, T. A., Kulikova, L. N., Chernyshev, A. V. & Alexandrov, G. G. (2002). Tetrahedron Lett. 43, 6767–6769. Web of Science CSD CrossRef CAS Google Scholar
Voskressensky, L. G., Akbulatov, S. V., Borisova, T. N. & Varlamov, A. V. (2006). Tetrahedron, 62, 12392–12397. Web of Science CSD CrossRef CAS Google Scholar
Voskressensky, L. G., Borisova, T. N., Kulikova, L. N., Varlamov, A. V., Catto, M., Altomare, C. & Carotti, A. (2004). Eur. J. Org. Chem. pp. 3128–3135. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.