research communications
κO)cobalt(II) bis[trichlorido(quinoline-κN)cobaltate(II)]
of hexakis(dimethyl sulfoxide-aDepartment of Chemistry and Physical Sciences, Pace, University, New York, NY 10038, USA, and bDepartment of Chemistry, Columbia University, New York, NY 10027, USA
*Correspondence e-mail: rupmacis@pace.edu
There are few reports that describe crystal structures of compounds containing cobalt complexed to either dimethyl sulfoxide (Me2SO) or quinoline (C9H7N). The title compound, [Co(C2H6OS)6][CoCl3(C9H7N)]2, is a cobalt salt in which the metal ion is complexed to both Me2SO and quinoline. In particular, we observed that anhydrous cobalt(II) chloride reacts with quinoline in Me2SO to form a salt that is to be formulated as [CoII(Me2SO)6]2+{[CoIICl3quinoline]2−}. The CoII atom in the cation portion of this molecule lies on a inversion center and is bound to the O atoms of six Me2SO moieties in an octahedral configuration, while the CoII atom in the anion is attached to three chloride ligands and one quinoline moiety in a tetrahedral arrangement.
Keywords: crystal; cobalt; quinoline; dimethyl sulfoxide.
CCDC reference: 1820336
1. Chemical context
Quinoline-based molecules have shown significant promise in the development of clinically viable anti-cancer drugs (Afzal et al., 2015). Metal complexes containing quinoline include: (i) square-planar palladium- and platinum-quinoline compounds, such as trans-[Pd(II)Cl2(quinoline)2], cis-[Pt(II)Cl2(quinoline)2] and trans-[Pd(II)(N3)2(quinoline)2] (Ha, 2012; Klapötke et al., 2000; Raven et al., 2012; Davies et al., 2001), as well as (ii) tetrahedral cobalt-, nickel- and zinc-quinoline compounds, of the form [MIICl2(quinoline)2] (Golic & Mirceva, 1988). Interestingly, despite the fact that the interaction of dimethyl sulfoxide (Me2SO) with metal ions has been studied for many years (Cotton & Francis, 1960), metal compounds that incorporate both coordinated quinoline and Me2SO are rare, as illustrated by the fact that only one structurally characterized example is listed in the Cambridge Structural Database (Groom et al., 2016), Zn(O2CC6H4C2HN3CO2CH3)2·(quinoline)·Me2SO (Ma et al., 2012). Herein, we describe the structure of the complex salt [CoII(Me2SO)6][CoIICl3quinoline]2, which can be obtained by the reaction of anhydrous cobalt(II) chloride with quinoline in Me2SO.
2. Structural commentary
The molecular structures of the cation and anion portions of the title complex are shown in Fig. 1a and 1b, respectively. In the cation portion of this compound, the cobalt atom lies on a crystallographic inversion center and is coordinated to oxygen atoms of six Me2SO groups in an octahedral configuration. The cation is not rigorously octahedral, as the Co—O bond distances are slightly elongated in the axial positions [2.1258 (17) Å] compared to the equatorial positions [2.0606 (17)–2.0819 (18) Å], giving an average Co—O distance of 2.089 Å. A closely related complex, [Co(Me2SO)6][CoCl4], contains a cobalt cation that is similarly surrounded by six oxygen atoms in a slightly distorted octahedral configuration with Co—O distances between 2.06 (1) and 2.10 (1) Å, with a mean Co—O distance of 2.08Å (Ciccarese et al., 1993). The O—Co—O (cis) bond angles in the title complex are close to 90°, ranging from 86.29 (7) to 93.71 (7)°, compared to 87.9 (5) to 90.8 (4)° in [Co(Me2SO)6][CoCl4] (Ciccarese et al., 1993).
The cobalt atom in the anion portion of the title complex is attached to three chloro ligands and one quinoline moiety in a tetrahedral arrangement. The Co—Cl bond distances range from 2.2517 (10) to 2.2534 (10) Å, with an average Co—Cl distance of 2.252 Å, while the Co—N distance is 2.054 (3) Å. The Cl—Co—Cl angles range from 108.21 (5) to 114.26 (4)°, giving an average of 110.98°, and the average N—Co—Cl angle is 107.88° [range 107.09 (9) to 108.80 (8)°], indicating that while the anion is close to tetrahedral, there is some distortion. Interestingly, the [CoCl4]2− anion in [Co(Me2SO)6][CoCl4] also showed some distortion with Co—Cl distances ranging from 2.265 (6) to 2.305 (7) Å, giving an average Co—Cl distance of 2.284 (6) Å, and the Cl—Co—Cl angles ranging from 107.1 (2) to 112.4 (2)° (Ciccarese et al., 1993). The deviations from 109.5° in [Co(Me2SO)6][CoCl4] were ascribed to disorder, as indicated by the high anisotropic motion (Ciccarese et al., 1993).
The degree of distortion from a tetrahedral arrangement can be readily quantified by the τ4 index that is reported and discussed elsewhere (Yang et al., 2007, Palmer et al., 2015). Briefly, τ4 is obtained from the expression, τ4 = [360 − (α + β)]/141, where α and β represent the two largest angles; a τ4 value of 1.00 indicates an idealized tetrahedral geometry, whereas a value of 0.00 indicates an idealized square-planar geometry. In the title complex, α = 114.26 (4)° and β = 110.46 (4)°, such that τ4 is 0.96, which indicates very little deviation from a tetrahedral geometry. For comparison, τ4 for the [CoCl4]2− anion in [Co(Me2SO)6][CoCl4] is 0.98 (where α = 112.38° and β = 108.81°; Ciccarese et al., 1993).
3. Supramolecular features
Fig. 2 shows the packing in the There are no significant intermolecular interactions between the [CoII(Me2SO)6]2+ and [CoIICl3quinoline]− ions, with the exception of very weak C—H⋯Cl interactions. The distances between the Cl and the carbon atoms of the methyl groups of the Me2SO ligands are, for example, Cl1⋯C32—S3 (symmetry code: x, y, z) [3.525 (3) Å], Cl1⋯C31—S3 (symmetry code: x, y, z) [3.736 (4) Å], Cl2⋯C22—S2 (symmetry code: 1 + x, 1 + y, z) [3.633 (4) Å], Cl2⋯C21—S2 (symmetry code: 1 + x, 1 + y, z) [3.770 (4) Å], Cl3⋯C12—S1 (symmetry code: 1 + x, y, z) [3.638 (4) Å] and Cl3⋯C32—S3 (symmetry code: x, 1 + y, z) [3.819 (4) Å] and are comparable to the sum of the van der Waals radii of Cl and CH3 of 3.80 Å (Pauling, 1986).
4. Database survey
The structure reported herein is closely related to the previously reported [Co(Me2SO)6][CoCl4] complex as discussed above (Ciccarese et al., 1993). Interestingly, as long ago as 1960, and based on spectral and magnetic evidence only, Cotton & Francis reported that a complex having the CoCl2·3Me2SO is more correctly formulated as [Co(Me2SO)6][CoCl4] (Cotton & Francis, 1960).
In addition to [Co(Me2SO)6][CoCl4], there are a few other examples of cobalt complexes solvated by Me2SO that are listed in the Cambridge Database (CSD Version 5.38; Groom et al., 2016). For example, there are two reports for [Co(Me2SO)6][ClO4]2, one of which possesses Co—O distances in the range 2.0833 (17)–2.0934 (15) Å, giving a mean Co—O distance of 2.088 (5) Å, with O—Co—O (cis) angles between 90.11 (6) and 92.31 (6)° (Comuzzi et al., 2002), while a subsequent report lists Co—O distances in the range 2.088 (2)–2.110 (2) Å, with O—Co—O (cis) angles between 85.26 (7) and 93.67 (8)° (Chan et al., 2004). In [Co(Me2SO)6][SnCl6], both the cobalt and tin metal ions display an octahedral environments, with the Co—O bond lengths reported between 2.093 (4) and 2.113 (5) Å (White et al., 2007). The O—Co—O (cis) angles vary between 89.0 (2) and 90.0 (2)° (White et al., 2007).
In addition to the above CoII compounds, the octahedral CoIII complex [Co(Me2SO)6][NO3]3 is also known and possesses six equivalent Co—O bond lengths of 2.005 (2) Å, which are shorter than the values in the CoII complexes (Li & Ng, 2010).
Although Me2SO is typically coordinated to a metal via the oxygen atom (Sipos et al., 2015; Calligaris, 2004; Calligaris & Carugo, 1996), there are examples in which Me2SO serves as an S-donor, as illustrated by the ruthenium complex [mer-RuCl3(acv)(Me2SO-S)(C2H5OH)]·C2H5OH (acv = acyclovir) (Turel et al., 2004). With regard to cobalt, it has been noted that CoII is a hard acceptor preferring hard-donor atoms like oxygen in Me2SO, the bonds being mainly electrostatic in nature (Comuzzi et al., 2002). Nevertheless, while Me2SO coordination to cobalt through the soft-donor sulfur atom (rather than the oxygen atom) is rare, there are some notable examples. For example, the compound bis(dimethyl sulfoxide)hydridobis(triphenylphosphane)cobalt(I), [CoH(C18H15P)2(Me2SO)2], contains CoI coordinating a hydride anion, two phosphine ligands and two Me2SO moieties that are bound through the sulfur atom in a distorted trigonal–bipyramidal structure (Hapke et al., 2010). Interestingly, there is an example of a cobalt(III) porphyrin complex that contains both oxygen- and sulfur-bound Me2SO moieties, i.e. bis(dimethyl sulfoxide-κO)-(5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato)-cobalt(III) bis(dimethyl sulfoxide-κS)-(5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato)cobalt(III) bis(hexafluoroantimonate) dimethyl sulfoxide solvate (Venkatasubbaiah et al., 2011). The existence of both forms of Me2SO bonding to CoIII in this latter complex cannot be predicted readily by the application of traditional hard/soft-acid/base theory.
The Co—N bond length in the anion [CoIICl3(quinoline)2]− of the title compound is 2.037 (5) Å while the Co–Cl bond lengths are 2.2517 (10)–2.2534 (10) Å, and the Cl—Co—Cl and Cl—Co—N angles range between 108.21 (5) and 114.26 (4)°, and 107.09 (9) and 108.80 (8)°, respectively. For comparison, the Co—N bond lengths in the CoIICl2(quinoline)2 complex are 2.061 (3) and 2.037 (5) Å and the Co—Cl bond lengths are 2.246 (2) and 2.241 (1) Å (Golic & Mirceva, 1988), while the Cl—Co—Cl angle is 114.5 (1)° and the Cl—Co—N angles range between 106.2 (1) and 108.9 (1)°.
5. Synthesis and crystallization
Anhydrous cobalt(II) chloride (97%; 0.1301 g, 0.0010 mol) was mixed with quinoline, C9H7N, (99%; 0.2595 g, 0.0020 mol) in Me2SO (20 mL) and refluxed for one h. After cooling down, the mixture was transferred to a beaker and placed in a desiccator containing anhydrous calcium chloride pellets (4–20 mesh) to crystallize over a period of four months. Deep-blue crystals of [Co(Me2SO)6]2+{[CoCl3quinoline]2}− suitable for X-ray diffraction were obtained from this process of slow evaporation. Notably, when the reaction between anhydrous cobalt(II) chloride and quinoline is conducted in EtOH, rather than Me2SO, the previously reported [CoIICl2(quinoline)2] complex is obtained (Golic & Mirceva, 1988).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3).
details are summarized in Table 1Supporting information
CCDC reference: 1820336
https://doi.org/10.1107/S2056989018001652/lh5868sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001652/lh5868Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(C2H6OS)6][CoCl3(C9H7N)]2 | Z = 1 |
Mr = 1116.57 | F(000) = 571 |
Triclinic, P1 | Dx = 1.515 Mg m−3 |
a = 8.3182 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6130 (15) Å | Cell parameters from 7471 reflections |
c = 15.595 (2) Å | θ = 2.4–30.1° |
α = 81.767 (2)° | µ = 1.63 mm−1 |
β = 82.776 (2)° | T = 230 K |
γ = 87.183 (2)° | Block, blue |
V = 1223.7 (3) Å3 | 0.39 × 0.12 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4839 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.035 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 30.5°, θmin = 1.3° |
Tmin = 0.626, Tmax = 0.746 | h = −11→11 |
19375 measured reflections | k = −13→13 |
7447 independent reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.7087P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
7447 reflections | Δρmax = 0.77 e Å−3 |
247 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.56334 (6) | 0.57989 (4) | 0.70199 (3) | 0.04816 (13) | |
Co2 | 0.0000 | 0.0000 | 1.0000 | 0.02575 (11) | |
Cl1 | 0.56412 (18) | 0.34385 (10) | 0.71205 (7) | 0.0874 (4) | |
Cl2 | 0.81055 (11) | 0.65246 (10) | 0.64138 (7) | 0.0647 (2) | |
Cl3 | 0.48261 (13) | 0.64884 (10) | 0.83322 (6) | 0.0659 (3) | |
N | 0.3997 (3) | 0.6584 (3) | 0.61758 (17) | 0.0502 (6) | |
S1 | −0.13554 (8) | 0.28530 (7) | 0.90892 (5) | 0.04024 (17) | |
S2 | −0.09070 (8) | −0.10708 (7) | 0.82809 (5) | 0.03584 (16) | |
S3 | 0.31946 (7) | 0.11911 (7) | 0.89997 (4) | 0.03205 (15) | |
O1 | −0.0198 (2) | 0.22294 (17) | 0.97373 (12) | 0.0334 (4) | |
O2 | −0.0073 (2) | 0.00114 (19) | 0.86695 (12) | 0.0366 (4) | |
O3 | 0.2483 (2) | 0.01632 (18) | 0.97778 (12) | 0.0340 (4) | |
C1 | 0.3345 (5) | 0.5732 (4) | 0.5722 (3) | 0.0657 (10) | |
H1A | 0.3652 | 0.4773 | 0.5809 | 0.079* | |
C2 | 0.2274 (6) | 0.6144 (7) | 0.5145 (3) | 0.0948 (17) | |
H2A | 0.1791 | 0.5472 | 0.4885 | 0.114* | |
C3 | 0.1909 (5) | 0.7490 (7) | 0.4948 (3) | 0.0865 (15) | |
H3A | 0.1210 | 0.7776 | 0.4522 | 0.104* | |
C4 | 0.2547 (4) | 0.8511 (5) | 0.5364 (2) | 0.0667 (11) | |
C5 | 0.2245 (6) | 1.0016 (6) | 0.5210 (3) | 0.0875 (15) | |
H5A | 0.1511 | 1.0396 | 0.4821 | 0.105* | |
C6 | 0.2971 (4) | 1.0822 (5) | 0.5601 (2) | 0.0621 (10) | |
H6A | 0.2807 | 1.1796 | 0.5447 | 0.074* | |
C7 | 0.3967 (5) | 1.0394 (4) | 0.6224 (3) | 0.0706 (11) | |
H7A | 0.4403 | 1.1045 | 0.6519 | 0.085* | |
C8 | 0.4309 (4) | 0.8990 (4) | 0.6405 (2) | 0.0610 (9) | |
H8A | 0.5021 | 0.8674 | 0.6820 | 0.073* | |
C9 | 0.3626 (4) | 0.8004 (4) | 0.5987 (2) | 0.0534 (8) | |
C11 | −0.0084 (5) | 0.3546 (4) | 0.8131 (2) | 0.0638 (10) | |
H11A | −0.0742 | 0.4082 | 0.7720 | 0.096* | |
H11B | 0.0482 | 0.2779 | 0.7866 | 0.096* | |
H11C | 0.0699 | 0.4154 | 0.8286 | 0.096* | |
C12 | −0.2066 (4) | 0.4461 (3) | 0.9459 (3) | 0.0588 (9) | |
H12A | −0.2738 | 0.4975 | 0.9047 | 0.088* | |
H12B | −0.1149 | 0.5020 | 0.9504 | 0.088* | |
H12C | −0.2699 | 0.4266 | 1.0026 | 0.088* | |
C21 | 0.0638 (5) | −0.2325 (4) | 0.8012 (2) | 0.0618 (9) | |
H21A | 0.0252 | −0.2929 | 0.7638 | 0.093* | |
H21B | 0.0920 | −0.2890 | 0.8542 | 0.093* | |
H21C | 0.1587 | −0.1844 | 0.7708 | 0.093* | |
C22 | −0.1126 (5) | −0.0229 (4) | 0.7210 (2) | 0.0601 (9) | |
H22A | −0.1599 | −0.0871 | 0.6892 | 0.090* | |
H22B | −0.0071 | 0.0041 | 0.6910 | 0.090* | |
H22C | −0.1828 | 0.0602 | 0.7242 | 0.090* | |
C31 | 0.3992 (4) | 0.2550 (3) | 0.9467 (2) | 0.0536 (8) | |
H31A | 0.4504 | 0.3230 | 0.9006 | 0.080* | |
H31B | 0.4788 | 0.2149 | 0.9844 | 0.080* | |
H31C | 0.3121 | 0.3012 | 0.9805 | 0.080* | |
C32 | 0.5044 (3) | 0.0349 (3) | 0.8624 (2) | 0.0442 (7) | |
H32A | 0.5610 | 0.0958 | 0.8142 | 0.066* | |
H32B | 0.4817 | −0.0527 | 0.8429 | 0.066* | |
H32C | 0.5715 | 0.0156 | 0.9095 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0638 (3) | 0.0365 (2) | 0.0456 (3) | −0.00097 (19) | −0.0139 (2) | −0.00423 (18) |
Co2 | 0.0226 (2) | 0.0228 (2) | 0.0314 (3) | −0.00025 (17) | −0.00292 (18) | −0.00259 (18) |
Cl1 | 0.1588 (12) | 0.0370 (5) | 0.0626 (6) | −0.0162 (6) | −0.0005 (6) | −0.0004 (4) |
Cl2 | 0.0591 (5) | 0.0601 (5) | 0.0769 (6) | −0.0037 (4) | −0.0140 (4) | −0.0104 (4) |
Cl3 | 0.0886 (7) | 0.0612 (5) | 0.0506 (5) | 0.0280 (5) | −0.0216 (4) | −0.0151 (4) |
N | 0.0579 (16) | 0.0548 (17) | 0.0405 (14) | −0.0099 (13) | −0.0111 (12) | −0.0073 (12) |
S1 | 0.0376 (4) | 0.0294 (3) | 0.0545 (4) | 0.0028 (3) | −0.0158 (3) | −0.0006 (3) |
S2 | 0.0322 (3) | 0.0401 (4) | 0.0366 (4) | −0.0029 (3) | −0.0049 (3) | −0.0090 (3) |
S3 | 0.0250 (3) | 0.0296 (3) | 0.0396 (4) | −0.0002 (2) | −0.0032 (3) | 0.0012 (3) |
O1 | 0.0318 (9) | 0.0231 (8) | 0.0447 (11) | 0.0014 (7) | −0.0088 (8) | 0.0001 (7) |
O2 | 0.0448 (11) | 0.0338 (10) | 0.0317 (10) | −0.0067 (8) | −0.0041 (8) | −0.0049 (8) |
O3 | 0.0232 (8) | 0.0339 (10) | 0.0420 (10) | −0.0012 (7) | −0.0027 (7) | 0.0039 (8) |
C1 | 0.061 (2) | 0.066 (2) | 0.079 (3) | −0.0140 (18) | −0.024 (2) | −0.022 (2) |
C2 | 0.082 (3) | 0.143 (5) | 0.074 (3) | −0.030 (3) | −0.008 (2) | −0.056 (3) |
C3 | 0.069 (3) | 0.147 (5) | 0.050 (2) | −0.008 (3) | −0.023 (2) | −0.023 (3) |
C4 | 0.051 (2) | 0.112 (3) | 0.0344 (18) | −0.003 (2) | −0.0007 (15) | −0.0031 (19) |
C5 | 0.078 (3) | 0.110 (4) | 0.059 (3) | 0.031 (3) | −0.009 (2) | 0.030 (3) |
C6 | 0.056 (2) | 0.083 (3) | 0.0409 (19) | −0.0063 (19) | −0.0049 (16) | 0.0146 (18) |
C7 | 0.074 (3) | 0.057 (2) | 0.077 (3) | −0.0079 (19) | −0.005 (2) | 0.000 (2) |
C8 | 0.062 (2) | 0.061 (2) | 0.059 (2) | −0.0091 (17) | −0.0185 (17) | 0.0077 (17) |
C9 | 0.0495 (18) | 0.073 (2) | 0.0360 (17) | −0.0071 (16) | −0.0040 (14) | −0.0008 (16) |
C11 | 0.078 (2) | 0.053 (2) | 0.054 (2) | 0.0094 (18) | −0.0079 (18) | 0.0151 (16) |
C12 | 0.0554 (19) | 0.0396 (17) | 0.083 (3) | 0.0199 (15) | −0.0223 (18) | −0.0105 (17) |
C21 | 0.074 (2) | 0.0475 (19) | 0.068 (2) | 0.0225 (17) | −0.0182 (19) | −0.0216 (17) |
C22 | 0.082 (3) | 0.060 (2) | 0.0423 (18) | 0.0125 (18) | −0.0244 (17) | −0.0116 (16) |
C31 | 0.065 (2) | 0.0356 (16) | 0.060 (2) | −0.0148 (15) | 0.0069 (16) | −0.0121 (15) |
C32 | 0.0398 (15) | 0.0405 (16) | 0.0468 (17) | 0.0067 (12) | 0.0089 (13) | −0.0023 (13) |
Co1—N | 2.054 (3) | C4—C5 | 1.446 (6) |
Co1—Cl1 | 2.2517 (10) | C5—C6 | 1.269 (6) |
Co1—Cl2 | 2.2521 (11) | C5—H5A | 0.9400 |
Co1—Cl3 | 2.2534 (10) | C6—C7 | 1.362 (5) |
Co2—O3 | 2.0606 (17) | C6—H6A | 0.9400 |
Co2—O3i | 2.0607 (17) | C7—C8 | 1.362 (5) |
Co2—O2i | 2.0818 (18) | C7—H7A | 0.9400 |
Co2—O2 | 2.0819 (18) | C8—C9 | 1.404 (5) |
Co2—O1i | 2.1258 (17) | C8—H8A | 0.9400 |
Co2—O1 | 2.1258 (17) | C11—H11A | 0.9700 |
N—C1 | 1.331 (4) | C11—H11B | 0.9700 |
N—C9 | 1.383 (4) | C11—H11C | 0.9700 |
S1—O1 | 1.5236 (18) | C12—H12A | 0.9700 |
S1—C12 | 1.775 (3) | C12—H12B | 0.9700 |
S1—C11 | 1.784 (4) | C12—H12C | 0.9700 |
S2—O2 | 1.5127 (19) | C21—H21A | 0.9700 |
S2—C21 | 1.772 (3) | C21—H21B | 0.9700 |
S2—C22 | 1.776 (3) | C21—H21C | 0.9700 |
S3—O3 | 1.5273 (19) | C22—H22A | 0.9700 |
S3—C32 | 1.775 (3) | C22—H22B | 0.9700 |
S3—C31 | 1.776 (3) | C22—H22C | 0.9700 |
C1—C2 | 1.351 (6) | C31—H31A | 0.9700 |
C1—H1A | 0.9400 | C31—H31B | 0.9700 |
C2—C3 | 1.316 (7) | C31—H31C | 0.9700 |
C2—H2A | 0.9400 | C32—H32A | 0.9700 |
C3—C4 | 1.410 (6) | C32—H32B | 0.9700 |
C3—H3A | 0.9400 | C32—H32C | 0.9700 |
C4—C9 | 1.424 (5) | ||
N—Co1—Cl1 | 107.09 (9) | C4—C5—H5A | 120.0 |
N—Co1—Cl2 | 107.76 (8) | C5—C6—C7 | 125.4 (4) |
Cl1—Co1—Cl2 | 108.21 (5) | C5—C6—H6A | 117.3 |
N—Co1—Cl3 | 108.80 (8) | C7—C6—H6A | 117.3 |
Cl1—Co1—Cl3 | 110.46 (4) | C6—C7—C8 | 117.8 (4) |
Cl2—Co1—Cl3 | 114.26 (4) | C6—C7—H7A | 121.1 |
O3—Co2—O3i | 180.0 | C8—C7—H7A | 121.1 |
O3—Co2—O2i | 90.17 (7) | C7—C8—C9 | 121.6 (4) |
O3i—Co2—O2i | 89.83 (7) | C7—C8—H8A | 119.2 |
O3—Co2—O2 | 89.83 (7) | C9—C8—H8A | 119.2 |
O3i—Co2—O2 | 90.17 (7) | N—C9—C8 | 120.7 (3) |
O2i—Co2—O2 | 180.00 (10) | N—C9—C4 | 121.2 (3) |
O3—Co2—O1i | 91.82 (7) | C8—C9—C4 | 118.0 (4) |
O3i—Co2—O1i | 88.19 (7) | S1—C11—H11A | 109.5 |
O2i—Co2—O1i | 86.29 (7) | S1—C11—H11B | 109.5 |
O2—Co2—O1i | 93.71 (7) | H11A—C11—H11B | 109.5 |
O3—Co2—O1 | 88.18 (7) | S1—C11—H11C | 109.5 |
O3i—Co2—O1 | 91.81 (7) | H11A—C11—H11C | 109.5 |
O2i—Co2—O1 | 93.71 (7) | H11B—C11—H11C | 109.5 |
O2—Co2—O1 | 86.29 (7) | S1—C12—H12A | 109.5 |
O1i—Co2—O1 | 180.000 (19) | S1—C12—H12B | 109.5 |
C1—N—C9 | 116.5 (3) | H12A—C12—H12B | 109.5 |
C1—N—Co1 | 120.2 (3) | S1—C12—H12C | 109.5 |
C9—N—Co1 | 123.0 (2) | H12A—C12—H12C | 109.5 |
O1—S1—C12 | 103.99 (14) | H12B—C12—H12C | 109.5 |
O1—S1—C11 | 105.22 (15) | S2—C21—H21A | 109.5 |
C12—S1—C11 | 98.78 (18) | S2—C21—H21B | 109.5 |
O2—S2—C21 | 105.12 (15) | H21A—C21—H21B | 109.5 |
O2—S2—C22 | 103.28 (15) | S2—C21—H21C | 109.5 |
C21—S2—C22 | 98.54 (18) | H21A—C21—H21C | 109.5 |
O3—S3—C32 | 103.92 (12) | H21B—C21—H21C | 109.5 |
O3—S3—C31 | 104.93 (13) | S2—C22—H22A | 109.5 |
C32—S3—C31 | 98.99 (16) | S2—C22—H22B | 109.5 |
S1—O1—Co2 | 117.12 (10) | H22A—C22—H22B | 109.5 |
S2—O2—Co2 | 124.52 (11) | S2—C22—H22C | 109.5 |
S3—O3—Co2 | 118.17 (10) | H22A—C22—H22C | 109.5 |
N—C1—C2 | 124.9 (4) | H22B—C22—H22C | 109.5 |
N—C1—H1A | 117.6 | S3—C31—H31A | 109.5 |
C2—C1—H1A | 117.6 | S3—C31—H31B | 109.5 |
C3—C2—C1 | 119.7 (4) | H31A—C31—H31B | 109.5 |
C3—C2—H2A | 120.2 | S3—C31—H31C | 109.5 |
C1—C2—H2A | 120.2 | H31A—C31—H31C | 109.5 |
C2—C3—C4 | 121.2 (4) | H31B—C31—H31C | 109.5 |
C2—C3—H3A | 119.4 | S3—C32—H32A | 109.5 |
C4—C3—H3A | 119.4 | S3—C32—H32B | 109.5 |
C3—C4—C9 | 116.3 (4) | H32A—C32—H32B | 109.5 |
C3—C4—C5 | 126.7 (4) | S3—C32—H32C | 109.5 |
C9—C4—C5 | 117.0 (4) | H32A—C32—H32C | 109.5 |
C6—C5—C4 | 120.0 (4) | H32B—C32—H32C | 109.5 |
C6—C5—H5A | 120.0 | ||
C12—S1—O1—Co2 | 148.84 (16) | C4—C5—C6—C7 | −5.0 (7) |
C11—S1—O1—Co2 | −107.81 (16) | C5—C6—C7—C8 | 4.8 (6) |
C21—S2—O2—Co2 | −95.18 (18) | C6—C7—C8—C9 | −1.9 (6) |
C22—S2—O2—Co2 | 162.00 (16) | C1—N—C9—C8 | −177.3 (3) |
C32—S3—O3—Co2 | −145.35 (14) | Co1—N—C9—C8 | −3.1 (4) |
C31—S3—O3—Co2 | 111.19 (15) | C1—N—C9—C4 | 2.5 (5) |
C9—N—C1—C2 | −4.9 (6) | Co1—N—C9—C4 | 176.7 (2) |
Co1—N—C1—C2 | −179.3 (4) | C7—C8—C9—N | 179.6 (3) |
N—C1—C2—C3 | 5.5 (7) | C7—C8—C9—C4 | −0.3 (5) |
C1—C2—C3—C4 | −3.5 (8) | C3—C4—C9—N | −0.9 (5) |
C2—C3—C4—C9 | 1.4 (6) | C5—C4—C9—N | −179.7 (3) |
C2—C3—C4—C5 | −180.0 (4) | C3—C4—C9—C8 | 178.9 (3) |
C3—C4—C5—C6 | −176.3 (4) | C5—C4—C9—C8 | 0.2 (5) |
C9—C4—C5—C6 | 2.3 (6) |
Symmetry code: (i) −x, −y, −z+2. |
Acknowledgements
Gerard Parkin (Columbia University) is thanked for helpful discussions.
Funding information
RKU and KM would like to thank Pace University for research support (Pace Undergraduate Student & Faculty Research Award). SG thanks the University Grants Commission, New Delhi, India, for a Raman Fellowship for postdoctoral research.
References
Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calligaris, M. & Carugo, O. (1996). Coord. Chem. Rev. 153, 83–154. CrossRef CAS Web of Science Google Scholar
Calligaris, M. (2004). Coord. Chem. Rev. 248, 351–375. Web of Science CrossRef CAS Google Scholar
Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. I., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2373. Web of Science CSD CrossRef CAS Google Scholar
Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223–229. CSD CrossRef CAS Web of Science Google Scholar
Comuzzi, C., Melchior, A., Polese, P., Portanova, R. & Tolazzi, M. (2002). Eur. J. Inorg. Chem. pp. 2194–2201. CrossRef Google Scholar
Cotton, F. A. & Francis, R. (1960). J. Am. Chem. Soc. 82, 2986–2991. CrossRef CAS Web of Science Google Scholar
Davies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048–3054. Web of Science CSD CrossRef PubMed CAS Google Scholar
Golič, L. & Mirčeva, A. (1988). Acta Cryst. C44, 820–822. CSD CrossRef Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ha, K. (2012). Acta Cryst. E68, m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hapke, M., Weding, N. & Spannenberg, A. (2010). Acta Cryst. E66, m1031. Web of Science CSD CrossRef IUCr Journals Google Scholar
Klapötke, T. M., Polborn, K. & Schütt, T. (2000). Z. Anorg. Allg. Chem. 626, 1444–1447. Google Scholar
Li, Q. & Ng, S. W. (2010). Acta Cryst. E66, m21. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, Z. B., Han, S. B., Hopson, R., Wei, Y. H. & Moulton, B. (2012). Inorg. Chim. Acta, 388, 135–139. Web of Science CSD CrossRef CAS Google Scholar
Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182. Web of Science CSD CrossRef CAS Google Scholar
Pauling, L. (1986). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press. Google Scholar
Raven, W., Kalf, I. & Englert, U. (2012). Acta Cryst. C68, m223–m225. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sipos, G., Drinkel, E. E. & Dorta, R. (2015). Chem. Soc. Rev. 44, 3834–3860. Web of Science CrossRef CAS PubMed Google Scholar
Turel, I., Pečanac, M., Golobič, A., Alessio, E., Serli, B., Bergamo, A. & Sava, G. (2004). J. Inorg. Biochem. 98, 393–401. Web of Science CSD CrossRef PubMed CAS Google Scholar
Venkatasubbaiah, K., Zhu, X. J., Kays, E., Hardcastle, K. I. & Jones, C. W. (2011). ACS Catal. 1, 489–492. Web of Science CSD CrossRef CAS Google Scholar
White, A. P., Robertson, K. N., Cameron, T. S., Liengme, B. V., Leznoff, D. B., Trudel, S. & Aquino, M. A. S. (2007). Can. J. Chem. 85, 372–378. Web of Science CSD CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.