research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(di­methyl sulfoxide-κO)cobalt(II) bis­­[tri­chlorido­(quinoline-κN)cobaltate(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physical Sciences, Pace, University, New York, NY 10038, USA, and bDepartment of Chemistry, Columbia University, New York, NY 10027, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 18 January 2018; accepted 28 January 2018; online 7 February 2018)

There are few reports that describe crystal structures of compounds containing cobalt complexed to either dimethyl sulfoxide (Me2SO) or quinoline (C9H7N). The title compound, [Co(C2H6OS)6][CoCl3(C9H7N)]2, is a cobalt salt in which the metal ion is complexed to both Me2SO and quinoline. In particular, we observed that anhydrous cobalt(II) chloride reacts with quinoline in Me2SO to form a salt that is to be formulated as [CoII(Me2SO)6]2+{[CoIICl3quinoline]2}. The CoII atom in the cation portion of this mol­ecule lies on a inversion center and is bound to the O atoms of six Me2SO moieties in an octa­hedral configuration, while the CoII atom in the anion is attached to three chloride ligands and one quinoline moiety in a tetra­hedral arrangement.

1. Chemical context

Quinoline-based mol­ecules have shown significant promise in the development of clinically viable anti-cancer drugs (Afzal et al., 2015[Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.]). Metal complexes containing quinoline include: (i) square-planar palladium- and platinum-quinoline compounds, such as trans-[Pd(II)Cl2(quinoline)2], cis-[Pt(II)Cl2(quinoline)2] and trans-[Pd(II)(N3)2(quinoline)2] (Ha, 2012[Ha, K. (2012). Acta Cryst. E68, m143.]; Klapötke et al., 2000[Klapötke, T. M., Polborn, K. & Schütt, T. (2000). Z. Anorg. Allg. Chem. 626, 1444-1447.]; Raven et al., 2012[Raven, W., Kalf, I. & Englert, U. (2012). Acta Cryst. C68, m223-m225.]; Davies et al., 2001[Davies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048-3054.]), as well as (ii) tetra­hedral cobalt-, nickel- and zinc-quinoline compounds, of the form [MIICl2(quinoline)2] (Golic & Mirceva, 1988[Golič, L. & Mirčeva, A. (1988). Acta Cryst. C44, 820-822.]). Inter­estingly, despite the fact that the inter­action of dimethyl sulfoxide (Me2SO) with metal ions has been studied for many years (Cotton & Francis, 1960[Cotton, F. A. & Francis, R. (1960). J. Am. Chem. Soc. 82, 2986-2991.]), metal compounds that incorporate both coordinated quinoline and Me2SO are rare, as illustrated by the fact that only one structurally characterized example is listed in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), Zn(O2CC6H4C2HN3CO2CH3)2·(quinoline)·Me2SO (Ma et al., 2012[Ma, Z. B., Han, S. B., Hopson, R., Wei, Y. H. & Moulton, B. (2012). Inorg. Chim. Acta, 388, 135-139.]). Herein, we describe the structure of the complex salt [CoII(Me2SO)6][CoIICl3quinoline]2, which can be obtained by the reaction of anhydrous cobalt(II) chloride with quinoline in Me2SO.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the cation and anion portions of the title complex are shown in Fig. 1[link]a and 1b, respectively. In the cation portion of this compound, the cobalt atom lies on a crystallographic inversion center and is coordinated to oxygen atoms of six Me2SO groups in an octa­hedral configuration. The cation is not rigorously octa­hedral, as the Co—O bond distances are slightly elongated in the axial positions [2.1258 (17) Å] compared to the equatorial positions [2.0606 (17)–2.0819 (18) Å], giving an average Co—O distance of 2.089 Å. A closely related complex, [Co(Me2SO)6][CoCl4], contains a cobalt cation that is similarly surrounded by six oxygen atoms in a slightly distorted octa­hedral configuration with Co—O distances between 2.06 (1) and 2.10 (1) Å, with a mean Co—O distance of 2.08Å (Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]). The O—Co—O (cis) bond angles in the title complex are close to 90°, ranging from 86.29 (7) to 93.71 (7)°, compared to 87.9 (5) to 90.8 (4)° in [Co(Me2SO)6][CoCl4] (Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]).

[Figure 1]
Figure 1
The mol­ecular structure of the complex salt [CoII(Me2SO)6][CoIICl3quinoline]2, showing (a) the [CoII(Me2SO)6]2+ cation (primed labels are related by the symmetry code: −x, −y, −z + 2), and (b) the symmetry-unique [CoIICl3quinoline] anion.

The cobalt atom in the anion portion of the title complex is attached to three chloro ligands and one quinoline moiety in a tetra­hedral arrangement. The Co—Cl bond distances range from 2.2517 (10) to 2.2534 (10) Å, with an average Co—Cl distance of 2.252 Å, while the Co—N distance is 2.054 (3) Å. The Cl—Co—Cl angles range from 108.21 (5) to 114.26 (4)°, giving an average of 110.98°, and the average N—Co—Cl angle is 107.88° [range 107.09 (9) to 108.80 (8)°], indicating that while the anion is close to tetra­hedral, there is some distortion. Inter­estingly, the [CoCl4]2− anion in [Co(Me2SO)6][CoCl4] also showed some distortion with Co—Cl distances ranging from 2.265 (6) to 2.305 (7) Å, giving an average Co—Cl distance of 2.284 (6) Å, and the Cl—Co—Cl angles ranging from 107.1 (2) to 112.4 (2)° (Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]). The deviations from 109.5° in [Co(Me2SO)6][CoCl4] were ascribed to disorder, as indicated by the high anisotropic motion (Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]).

The degree of distortion from a tetra­hedral arrangement can be readily qu­anti­fied by the τ4 index that is reported and discussed elsewhere (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.], Palmer et al., 2015[Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.]). Briefly, τ4 is obtained from the expression, τ4 = [360 − (α + β)]/141, where α and β represent the two largest angles; a τ4 value of 1.00 indicates an idealized tetra­hedral geometry, whereas a value of 0.00 indicates an idealized square-planar geometry. In the title complex, α = 114.26 (4)° and β = 110.46 (4)°, such that τ4 is 0.96, which indicates very little deviation from a tetra­hedral geometry. For comparison, τ4 for the [CoCl4]2− anion in [Co(Me2SO)6][CoCl4] is 0.98 (where α = 112.38° and β = 108.81°; Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]).

3. Supra­molecular features

Fig. 2[link] shows the packing in the unit cell. There are no significant inter­molecular inter­actions between the [CoII(Me2SO)6]2+ and [CoIICl3quinoline] ions, with the exception of very weak C—H⋯Cl interactions. The distances between the Cl and the carbon atoms of the methyl groups of the Me2SO ligands are, for example, Cl1⋯C32—S3 (symmetry code: x, y, z) [3.525 (3) Å], Cl1⋯C31—S3 (symmetry code: x, y, z) [3.736 (4) Å], Cl2⋯C22—S2 (symmetry code: 1 + x, 1 + y, z) [3.633 (4) Å], Cl2⋯C21—S2 (symmetry code: 1 + x, 1 + y, z) [3.770 (4) Å], Cl3⋯C12—S1 (symmetry code: 1 + x, y, z) [3.638 (4) Å] and Cl3⋯C32—S3 (symmetry code: x, 1 + y, z) [3.819 (4) Å] and are comparable to the sum of the van der Waals radii of Cl and CH3 of 3.80 Å (Pauling, 1986[Pauling, L. (1986). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.]).

[Figure 2]
Figure 2
The packing of [CoII(Me2SO)6][CoIICl3quinoline]2. H atoms have been omitted for clarity.

4. Database survey

The structure reported herein is closely related to the previously reported [Co(Me2SO)6][CoCl4] complex as discussed above (Ciccarese et al., 1993[Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223-229.]). Inter­estingly, as long ago as 1960, and based on spectral and magnetic evidence only, Cotton & Francis reported that a complex having the empirical formula CoCl2·3Me2SO is more correctly formulated as [Co(Me2SO)6][CoCl4] (Cotton & Francis, 1960[Cotton, F. A. & Francis, R. (1960). J. Am. Chem. Soc. 82, 2986-2991.]).

In addition to [Co(Me2SO)6][CoCl4], there are a few other examples of cobalt complexes solvated by Me2SO that are listed in the Cambridge Database (CSD Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). For example, there are two reports for [Co(Me2SO)6][ClO4]2, one of which possesses Co—O distances in the range 2.0833 (17)–2.0934 (15) Å, giving a mean Co—O distance of 2.088 (5) Å, with O—Co—O (cis) angles between 90.11 (6) and 92.31 (6)° (Comuzzi et al., 2002[Comuzzi, C., Melchior, A., Polese, P., Portanova, R. & Tolazzi, M. (2002). Eur. J. Inorg. Chem. pp. 2194-2201.]), while a subsequent report lists Co—O distances in the range 2.088 (2)–2.110 (2) Å, with O—Co—O (cis) angles between 85.26 (7) and 93.67 (8)° (Chan et al., 2004[Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. I., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365-2373.]). In [Co(Me2SO)6][SnCl6], both the cobalt and tin metal ions display an octa­hedral environments, with the Co—O bond lengths reported between 2.093 (4) and 2.113 (5) Å (White et al., 2007[White, A. P., Robertson, K. N., Cameron, T. S., Liengme, B. V., Leznoff, D. B., Trudel, S. & Aquino, M. A. S. (2007). Can. J. Chem. 85, 372-378.]). The O—Co—O (cis) angles vary between 89.0 (2) and 90.0 (2)° (White et al., 2007[White, A. P., Robertson, K. N., Cameron, T. S., Liengme, B. V., Leznoff, D. B., Trudel, S. & Aquino, M. A. S. (2007). Can. J. Chem. 85, 372-378.]).

In addition to the above CoII compounds, the octa­hedral CoIII complex [Co(Me2SO)6][NO3]3 is also known and possesses six equivalent Co—O bond lengths of 2.005 (2) Å, which are shorter than the values in the CoII complexes (Li & Ng, 2010[Li, Q. & Ng, S. W. (2010). Acta Cryst. E66, m21.]).

Although Me2SO is typically coordinated to a metal via the oxygen atom (Sipos et al., 2015[Sipos, G., Drinkel, E. E. & Dorta, R. (2015). Chem. Soc. Rev. 44, 3834-3860.]; Calligaris, 2004[Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.]; Calligaris & Carugo, 1996[Calligaris, M. & Carugo, O. (1996). Coord. Chem. Rev. 153, 83-154.]), there are examples in which Me2SO serves as an S-donor, as illustrated by the ruthenium complex [mer-RuCl3(acv)(Me2SO-S)(C2H5OH)]·C2H5OH (acv = a­cyclo­vir) (Turel et al., 2004[Turel, I., Pečanac, M., Golobič, A., Alessio, E., Serli, B., Bergamo, A. & Sava, G. (2004). J. Inorg. Biochem. 98, 393-401.]). With regard to cobalt, it has been noted that CoII is a hard acceptor preferring hard-donor atoms like oxygen in Me2SO, the bonds being mainly electrostatic in nature (Comuzzi et al., 2002[Comuzzi, C., Melchior, A., Polese, P., Portanova, R. & Tolazzi, M. (2002). Eur. J. Inorg. Chem. pp. 2194-2201.]). Nevertheless, while Me2SO coordination to cobalt through the soft-donor sulfur atom (rather than the oxygen atom) is rare, there are some notable examples. For example, the compound bis­(dimethyl sulfoxide)­hydridobis(tri­phenyl­phosphane)cobalt(I), [CoH(C18H15P)2(Me2SO)2], contains CoI coordinating a hydride anion, two phosphine ligands and two Me2SO moieties that are bound through the sulfur atom in a distorted trigonal–bipyramidal structure (Hapke et al., 2010[Hapke, M., Weding, N. & Spannenberg, A. (2010). Acta Cryst. E66, m1031.]). Inter­estingly, there is an example of a cobalt(III) porphyrin complex that contains both oxygen- and sulfur-bound Me2SO moieties, i.e. bis­(dimethyl sulfoxide-κO)-(5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porphyrinato)-cobalt(III) bis­(dimethyl sulfoxide-κS)-(5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porph­yr­inato)cobalt(III) bis­(hexa­fluoro­anti­monate) dimethyl sulfoxide solvate (Venkatasubbaiah et al., 2011[Venkatasubbaiah, K., Zhu, X. J., Kays, E., Hardcastle, K. I. & Jones, C. W. (2011). ACS Catal. 1, 489-492.]). The existence of both forms of Me2SO bonding to CoIII in this latter complex cannot be predicted readily by the application of traditional hard/soft-acid/base theory.

The Co—N bond length in the anion [CoIICl3(quinoline)2] of the title compound is 2.037 (5) Å while the Co–Cl bond lengths are 2.2517 (10)–2.2534 (10) Å, and the Cl—Co—Cl and Cl—Co—N angles range between 108.21 (5) and 114.26 (4)°, and 107.09 (9) and 108.80 (8)°, respectively. For comparison, the Co—N bond lengths in the CoIICl2(quinoline)2 complex are 2.061 (3) and 2.037 (5) Å and the Co—Cl bond lengths are 2.246 (2) and 2.241 (1) Å (Golic & Mirceva, 1988[Golič, L. & Mirčeva, A. (1988). Acta Cryst. C44, 820-822.]), while the Cl—Co—Cl angle is 114.5 (1)° and the Cl—Co—N angles range between 106.2 (1) and 108.9 (1)°.

5. Synthesis and crystallization

Anhydrous cobalt(II) chloride (97%; 0.1301 g, 0.0010 mol) was mixed with quinoline, C9H7N, (99%; 0.2595 g, 0.0020 mol) in Me2SO (20 mL) and refluxed for one h. After cooling down, the mixture was transferred to a beaker and placed in a desiccator containing anhydrous calcium chloride pellets (4–20 mesh) to crystallize over a period of four months. Deep-blue crystals of [Co(Me2SO)6]2+{[CoCl3quinoline]2} suitable for X-ray diffraction were obtained from this process of slow evaporation. Notably, when the reaction between anhydrous cobalt(II) chloride and quinoline is conducted in EtOH, rather than Me2SO, the previously reported [CoIICl2(quinoline)2] complex is obtained (Golic & Mirceva, 1988[Golič, L. & Mirčeva, A. (1988). Acta Cryst. C44, 820-822.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3).

Table 1
Experimental details

Crystal data
Chemical formula [Co(C2H6OS)6][CoCl3(C9H7N)]2
Mr 1116.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 230
a, b, c (Å) 8.3182 (13), 9.6130 (15), 15.595 (2)
α, β, γ (°) 81.767 (2), 82.776 (2), 87.183 (2)
V3) 1223.7 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.63
Crystal size (mm) 0.39 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19375, 7447, 4839
Rint 0.035
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.02
No. of reflections 7447
No. of parameters 247
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexakis(dimethyl sulfoxide-κO)cobalt(II) bis[trichlorido(quinoline-κN)cobaltate(II)] top
Crystal data top
[Co(C2H6OS)6][CoCl3(C9H7N)]2Z = 1
Mr = 1116.57F(000) = 571
Triclinic, P1Dx = 1.515 Mg m3
a = 8.3182 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6130 (15) ÅCell parameters from 7471 reflections
c = 15.595 (2) Åθ = 2.4–30.1°
α = 81.767 (2)°µ = 1.63 mm1
β = 82.776 (2)°T = 230 K
γ = 87.183 (2)°Block, blue
V = 1223.7 (3) Å30.39 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4839 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 30.5°, θmin = 1.3°
Tmin = 0.626, Tmax = 0.746h = 1111
19375 measured reflectionsk = 1313
7447 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.7087P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7447 reflectionsΔρmax = 0.77 e Å3
247 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.56334 (6)0.57989 (4)0.70199 (3)0.04816 (13)
Co20.00000.00001.00000.02575 (11)
Cl10.56412 (18)0.34385 (10)0.71205 (7)0.0874 (4)
Cl20.81055 (11)0.65246 (10)0.64138 (7)0.0647 (2)
Cl30.48261 (13)0.64884 (10)0.83322 (6)0.0659 (3)
N0.3997 (3)0.6584 (3)0.61758 (17)0.0502 (6)
S10.13554 (8)0.28530 (7)0.90892 (5)0.04024 (17)
S20.09070 (8)0.10708 (7)0.82809 (5)0.03584 (16)
S30.31946 (7)0.11911 (7)0.89997 (4)0.03205 (15)
O10.0198 (2)0.22294 (17)0.97373 (12)0.0334 (4)
O20.0073 (2)0.00114 (19)0.86695 (12)0.0366 (4)
O30.2483 (2)0.01632 (18)0.97778 (12)0.0340 (4)
C10.3345 (5)0.5732 (4)0.5722 (3)0.0657 (10)
H1A0.36520.47730.58090.079*
C20.2274 (6)0.6144 (7)0.5145 (3)0.0948 (17)
H2A0.17910.54720.48850.114*
C30.1909 (5)0.7490 (7)0.4948 (3)0.0865 (15)
H3A0.12100.77760.45220.104*
C40.2547 (4)0.8511 (5)0.5364 (2)0.0667 (11)
C50.2245 (6)1.0016 (6)0.5210 (3)0.0875 (15)
H5A0.15111.03960.48210.105*
C60.2971 (4)1.0822 (5)0.5601 (2)0.0621 (10)
H6A0.28071.17960.54470.074*
C70.3967 (5)1.0394 (4)0.6224 (3)0.0706 (11)
H7A0.44031.10450.65190.085*
C80.4309 (4)0.8990 (4)0.6405 (2)0.0610 (9)
H8A0.50210.86740.68200.073*
C90.3626 (4)0.8004 (4)0.5987 (2)0.0534 (8)
C110.0084 (5)0.3546 (4)0.8131 (2)0.0638 (10)
H11A0.07420.40820.77200.096*
H11B0.04820.27790.78660.096*
H11C0.06990.41540.82860.096*
C120.2066 (4)0.4461 (3)0.9459 (3)0.0588 (9)
H12A0.27380.49750.90470.088*
H12B0.11490.50200.95040.088*
H12C0.26990.42661.00260.088*
C210.0638 (5)0.2325 (4)0.8012 (2)0.0618 (9)
H21A0.02520.29290.76380.093*
H21B0.09200.28900.85420.093*
H21C0.15870.18440.77080.093*
C220.1126 (5)0.0229 (4)0.7210 (2)0.0601 (9)
H22A0.15990.08710.68920.090*
H22B0.00710.00410.69100.090*
H22C0.18280.06020.72420.090*
C310.3992 (4)0.2550 (3)0.9467 (2)0.0536 (8)
H31A0.45040.32300.90060.080*
H31B0.47880.21490.98440.080*
H31C0.31210.30120.98050.080*
C320.5044 (3)0.0349 (3)0.8624 (2)0.0442 (7)
H32A0.56100.09580.81420.066*
H32B0.48170.05270.84290.066*
H32C0.57150.01560.90950.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0638 (3)0.0365 (2)0.0456 (3)0.00097 (19)0.0139 (2)0.00423 (18)
Co20.0226 (2)0.0228 (2)0.0314 (3)0.00025 (17)0.00292 (18)0.00259 (18)
Cl10.1588 (12)0.0370 (5)0.0626 (6)0.0162 (6)0.0005 (6)0.0004 (4)
Cl20.0591 (5)0.0601 (5)0.0769 (6)0.0037 (4)0.0140 (4)0.0104 (4)
Cl30.0886 (7)0.0612 (5)0.0506 (5)0.0280 (5)0.0216 (4)0.0151 (4)
N0.0579 (16)0.0548 (17)0.0405 (14)0.0099 (13)0.0111 (12)0.0073 (12)
S10.0376 (4)0.0294 (3)0.0545 (4)0.0028 (3)0.0158 (3)0.0006 (3)
S20.0322 (3)0.0401 (4)0.0366 (4)0.0029 (3)0.0049 (3)0.0090 (3)
S30.0250 (3)0.0296 (3)0.0396 (4)0.0002 (2)0.0032 (3)0.0012 (3)
O10.0318 (9)0.0231 (8)0.0447 (11)0.0014 (7)0.0088 (8)0.0001 (7)
O20.0448 (11)0.0338 (10)0.0317 (10)0.0067 (8)0.0041 (8)0.0049 (8)
O30.0232 (8)0.0339 (10)0.0420 (10)0.0012 (7)0.0027 (7)0.0039 (8)
C10.061 (2)0.066 (2)0.079 (3)0.0140 (18)0.024 (2)0.022 (2)
C20.082 (3)0.143 (5)0.074 (3)0.030 (3)0.008 (2)0.056 (3)
C30.069 (3)0.147 (5)0.050 (2)0.008 (3)0.023 (2)0.023 (3)
C40.051 (2)0.112 (3)0.0344 (18)0.003 (2)0.0007 (15)0.0031 (19)
C50.078 (3)0.110 (4)0.059 (3)0.031 (3)0.009 (2)0.030 (3)
C60.056 (2)0.083 (3)0.0409 (19)0.0063 (19)0.0049 (16)0.0146 (18)
C70.074 (3)0.057 (2)0.077 (3)0.0079 (19)0.005 (2)0.000 (2)
C80.062 (2)0.061 (2)0.059 (2)0.0091 (17)0.0185 (17)0.0077 (17)
C90.0495 (18)0.073 (2)0.0360 (17)0.0071 (16)0.0040 (14)0.0008 (16)
C110.078 (2)0.053 (2)0.054 (2)0.0094 (18)0.0079 (18)0.0151 (16)
C120.0554 (19)0.0396 (17)0.083 (3)0.0199 (15)0.0223 (18)0.0105 (17)
C210.074 (2)0.0475 (19)0.068 (2)0.0225 (17)0.0182 (19)0.0216 (17)
C220.082 (3)0.060 (2)0.0423 (18)0.0125 (18)0.0244 (17)0.0116 (16)
C310.065 (2)0.0356 (16)0.060 (2)0.0148 (15)0.0069 (16)0.0121 (15)
C320.0398 (15)0.0405 (16)0.0468 (17)0.0067 (12)0.0089 (13)0.0023 (13)
Geometric parameters (Å, º) top
Co1—N2.054 (3)C4—C51.446 (6)
Co1—Cl12.2517 (10)C5—C61.269 (6)
Co1—Cl22.2521 (11)C5—H5A0.9400
Co1—Cl32.2534 (10)C6—C71.362 (5)
Co2—O32.0606 (17)C6—H6A0.9400
Co2—O3i2.0607 (17)C7—C81.362 (5)
Co2—O2i2.0818 (18)C7—H7A0.9400
Co2—O22.0819 (18)C8—C91.404 (5)
Co2—O1i2.1258 (17)C8—H8A0.9400
Co2—O12.1258 (17)C11—H11A0.9700
N—C11.331 (4)C11—H11B0.9700
N—C91.383 (4)C11—H11C0.9700
S1—O11.5236 (18)C12—H12A0.9700
S1—C121.775 (3)C12—H12B0.9700
S1—C111.784 (4)C12—H12C0.9700
S2—O21.5127 (19)C21—H21A0.9700
S2—C211.772 (3)C21—H21B0.9700
S2—C221.776 (3)C21—H21C0.9700
S3—O31.5273 (19)C22—H22A0.9700
S3—C321.775 (3)C22—H22B0.9700
S3—C311.776 (3)C22—H22C0.9700
C1—C21.351 (6)C31—H31A0.9700
C1—H1A0.9400C31—H31B0.9700
C2—C31.316 (7)C31—H31C0.9700
C2—H2A0.9400C32—H32A0.9700
C3—C41.410 (6)C32—H32B0.9700
C3—H3A0.9400C32—H32C0.9700
C4—C91.424 (5)
N—Co1—Cl1107.09 (9)C4—C5—H5A120.0
N—Co1—Cl2107.76 (8)C5—C6—C7125.4 (4)
Cl1—Co1—Cl2108.21 (5)C5—C6—H6A117.3
N—Co1—Cl3108.80 (8)C7—C6—H6A117.3
Cl1—Co1—Cl3110.46 (4)C6—C7—C8117.8 (4)
Cl2—Co1—Cl3114.26 (4)C6—C7—H7A121.1
O3—Co2—O3i180.0C8—C7—H7A121.1
O3—Co2—O2i90.17 (7)C7—C8—C9121.6 (4)
O3i—Co2—O2i89.83 (7)C7—C8—H8A119.2
O3—Co2—O289.83 (7)C9—C8—H8A119.2
O3i—Co2—O290.17 (7)N—C9—C8120.7 (3)
O2i—Co2—O2180.00 (10)N—C9—C4121.2 (3)
O3—Co2—O1i91.82 (7)C8—C9—C4118.0 (4)
O3i—Co2—O1i88.19 (7)S1—C11—H11A109.5
O2i—Co2—O1i86.29 (7)S1—C11—H11B109.5
O2—Co2—O1i93.71 (7)H11A—C11—H11B109.5
O3—Co2—O188.18 (7)S1—C11—H11C109.5
O3i—Co2—O191.81 (7)H11A—C11—H11C109.5
O2i—Co2—O193.71 (7)H11B—C11—H11C109.5
O2—Co2—O186.29 (7)S1—C12—H12A109.5
O1i—Co2—O1180.000 (19)S1—C12—H12B109.5
C1—N—C9116.5 (3)H12A—C12—H12B109.5
C1—N—Co1120.2 (3)S1—C12—H12C109.5
C9—N—Co1123.0 (2)H12A—C12—H12C109.5
O1—S1—C12103.99 (14)H12B—C12—H12C109.5
O1—S1—C11105.22 (15)S2—C21—H21A109.5
C12—S1—C1198.78 (18)S2—C21—H21B109.5
O2—S2—C21105.12 (15)H21A—C21—H21B109.5
O2—S2—C22103.28 (15)S2—C21—H21C109.5
C21—S2—C2298.54 (18)H21A—C21—H21C109.5
O3—S3—C32103.92 (12)H21B—C21—H21C109.5
O3—S3—C31104.93 (13)S2—C22—H22A109.5
C32—S3—C3198.99 (16)S2—C22—H22B109.5
S1—O1—Co2117.12 (10)H22A—C22—H22B109.5
S2—O2—Co2124.52 (11)S2—C22—H22C109.5
S3—O3—Co2118.17 (10)H22A—C22—H22C109.5
N—C1—C2124.9 (4)H22B—C22—H22C109.5
N—C1—H1A117.6S3—C31—H31A109.5
C2—C1—H1A117.6S3—C31—H31B109.5
C3—C2—C1119.7 (4)H31A—C31—H31B109.5
C3—C2—H2A120.2S3—C31—H31C109.5
C1—C2—H2A120.2H31A—C31—H31C109.5
C2—C3—C4121.2 (4)H31B—C31—H31C109.5
C2—C3—H3A119.4S3—C32—H32A109.5
C4—C3—H3A119.4S3—C32—H32B109.5
C3—C4—C9116.3 (4)H32A—C32—H32B109.5
C3—C4—C5126.7 (4)S3—C32—H32C109.5
C9—C4—C5117.0 (4)H32A—C32—H32C109.5
C6—C5—C4120.0 (4)H32B—C32—H32C109.5
C6—C5—H5A120.0
C12—S1—O1—Co2148.84 (16)C4—C5—C6—C75.0 (7)
C11—S1—O1—Co2107.81 (16)C5—C6—C7—C84.8 (6)
C21—S2—O2—Co295.18 (18)C6—C7—C8—C91.9 (6)
C22—S2—O2—Co2162.00 (16)C1—N—C9—C8177.3 (3)
C32—S3—O3—Co2145.35 (14)Co1—N—C9—C83.1 (4)
C31—S3—O3—Co2111.19 (15)C1—N—C9—C42.5 (5)
C9—N—C1—C24.9 (6)Co1—N—C9—C4176.7 (2)
Co1—N—C1—C2179.3 (4)C7—C8—C9—N179.6 (3)
N—C1—C2—C35.5 (7)C7—C8—C9—C40.3 (5)
C1—C2—C3—C43.5 (8)C3—C4—C9—N0.9 (5)
C2—C3—C4—C91.4 (6)C5—C4—C9—N179.7 (3)
C2—C3—C4—C5180.0 (4)C3—C4—C9—C8178.9 (3)
C3—C4—C5—C6176.3 (4)C5—C4—C9—C80.2 (5)
C9—C4—C5—C62.3 (6)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

Gerard Parkin (Columbia University) is thanked for helpful discussions.

Funding information

RKU and KM would like to thank Pace University for research support (Pace Undergraduate Student & Faculty Research Award). SG thanks the University Grants Commission, New Delhi, India, for a Raman Fellowship for postdoctoral research.

References

First citationAfzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Carugo, O. (1996). Coord. Chem. Rev. 153, 83–154.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M. (2004). Coord. Chem. Rev. 248, 351–375.  Web of Science CrossRef CAS Google Scholar
First citationChan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. I., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2373.  Web of Science CSD CrossRef CAS Google Scholar
First citationCiccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223–229.  CSD CrossRef CAS Web of Science Google Scholar
First citationComuzzi, C., Melchior, A., Polese, P., Portanova, R. & Tolazzi, M. (2002). Eur. J. Inorg. Chem. pp. 2194–2201.  CrossRef Google Scholar
First citationCotton, F. A. & Francis, R. (1960). J. Am. Chem. Soc. 82, 2986–2991.  CrossRef CAS Web of Science Google Scholar
First citationDavies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048–3054.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGolič, L. & Mirčeva, A. (1988). Acta Cryst. C44, 820–822.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHapke, M., Weding, N. & Spannenberg, A. (2010). Acta Cryst. E66, m1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlapötke, T. M., Polborn, K. & Schütt, T. (2000). Z. Anorg. Allg. Chem. 626, 1444–1447.  Google Scholar
First citationLi, Q. & Ng, S. W. (2010). Acta Cryst. E66, m21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z. B., Han, S. B., Hopson, R., Wei, Y. H. & Moulton, B. (2012). Inorg. Chim. Acta, 388, 135–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationPauling, L. (1986). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationRaven, W., Kalf, I. & Englert, U. (2012). Acta Cryst. C68, m223–m225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSipos, G., Drinkel, E. E. & Dorta, R. (2015). Chem. Soc. Rev. 44, 3834–3860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurel, I., Pečanac, M., Golobič, A., Alessio, E., Serli, B., Bergamo, A. & Sava, G. (2004). J. Inorg. Biochem. 98, 393–401.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVenkatasubbaiah, K., Zhu, X. J., Kays, E., Hardcastle, K. I. & Jones, C. W. (2011). ACS Catal. 1, 489–492.  Web of Science CSD CrossRef CAS Google Scholar
First citationWhite, A. P., Robertson, K. N., Cameron, T. S., Liengme, B. V., Leznoff, D. B., Trudel, S. & Aquino, M. A. S. (2007). Can. J. Chem. 85, 372–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds