research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, spectroscopy, and crystal structures of 3-(4-bromo­phen­yl)-1,5-di­phenyl­formazan and the 3-(4-bromo­phen­yl)-1,5-di­phenyl­verdazyl radical and the crystal structure of the by-product 5-anilino-3-(4-bromo­phen­yl)-1-phenyl-1H-1,2,4-triazole

CROSSMARK_Color_square_no_text.svg

aUniversity of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany, and bUniversity of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstrasse 12, 53115 Bonn, Germany
*Correspondence e-mail: meyer@pc.uni-bonn.de

Edited by A. J. Lough, University of Toronto, Canada (Received 18 January 2018; accepted 1 February 2018; online 7 February 2018)

The title compounds, C19H15BrN4, C20H16BrN4 and C20H15BrN4, are nitro­gen-rich organic compounds that are related by their synthesis. The verdazyl radical, in which stacking leads to anti­ferromagnetic inter­actions, was reported previously [Iwase et al. (2013[Iwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). Phys. Rev. B, 88, 184431.]). Phys. Rev. B, 88, 184431]. For this compound, improved structural data and spectroscopic data are presented. The other two compounds have been crystallized for the first time and form stacks of dimers, roughly along the a-axis direction of the crystal. The formazan mol­ecule shows signs of rapid intra­molecular H-atom exchange typical for this class of compounds and spectroscopic data are provided in addition to the crystal structure. The triazole compound appears to be a side-product of the verdazyl synthesis.

1. Chemical context

Verdazyl radicals are a family of organic radicals first reported by Kuhn & Trischmann (1963[Kuhn, R. & Trischmann, H. (1963). Angew. Chem. Int. Ed. Engl. 2, 155.]) who emphasized their intense green color and their stability. These Kuhn-verdazyls require formazan precursors, which are intensely red in color and inter­esting in their own respect (Nineham, 1955[Nineham, A. W. (1955). Chem. Rev. 55, 355-483.]; Scudiero et al. 1988[Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. & Boyd, M. R. (1988). Cancer Res. 48, 4827-4833.]). A few years after Kuhn's discovery, syntheses leading to the orange 6-oxo- and 6-thioxoverdazyls were developed (Neugebauer & Fischer, 1980[Neugebauer, F. A. & Fischer, H. (1980). Angew. Chem. Int. Ed. Engl. 19, 724-725.]; Neugebauer et al., 1988[Neugebauer, F. A., Fischer, H. & Siegel, R. (1988). Eur. J. Inorg. Chem. 121, 815-822.]). As of late, verdazyls experience renewed inter­est, partially as a result of the improvements concerning their syntheses, enabling the introduction of a large variety of substitution patterns (Paré et al., 2005[Paré, E. C., Brook, D. J. R., Brieger, A., Badik, M. & Schinke, M. (2005). Org. Biomol. Chem. 3, 4258-4261.]; Bancerz et al., 2012[Bancerz, M., Youn, B., DaCosta, M. V. & Georges, M. K. (2012). J. Org. Chem. 77, 2415-2421.]; Matuschek et al., 2015[Matuschek, D., Eusterwiemann, S., Stegemann, L., Doerenkamp, C., Wibbeling, B., Daniliuc, C. G., Doltsinis, N. L., Strassert, C. A., Eckert, H. & Studer, A. (2015). Chem. Sci. 6, 4712-4716.]; Le et al., 2017[Le, T.-N., Trevisan, T., Lieu, E. & Brook, D. J. R. (2017). Eur. J. Org. Chem. 2017, 1125-1131.]). Such tailor-made radicals have possible applications as fundamental building blocks in mol­ecular magnets or in spintronic materials (Koivisto & Hicks, 2005[Koivisto, B. D. & Hicks, R. G. (2005). Coord. Chem. Rev. 249, 2612-2630.]; Train et al., 2009[Train, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. 253, 2342-2351.]; Ratera & Veciana, 2012[Ratera, I. & Veciana, J. (2012). Chem. Soc. Rev. 41, 303-349.]). Verdazyls often avoid stacking, preventing the occurrence of strong magnetic inter­actions. However, some exceptions to this rule have been reported, where strong anti­ferromagnetic coupling occurs as a consequence (Koivisto et al., 2006[Koivisto, B. D., Ichimura, A. S., McDonald, R., Lemaire, M. T., Thompson, L. K. & Hicks, R. G. (2006). J. Am. Chem. Soc. 128, 690-691.]; Eusterwiemann et al., 2017[Eusterwiemann, S., Dresselhaus, T., Doerenkamp, C., Janka, O., Niehaus, O., Massolle, A., Daniliuc, C. G., Eckert, H., Pöttgen, R., Neugebauer, J. & Studer, A. (2017). Chem. Eur. J. 23, 6069-6082.]). With respect to applications in spintronics, tetra­thia­fulvalene-substituted verdazyl compounds represent inter­esting examples (Chahma et al., 2006[Chahma, M., Wang, X. S., Est, A. van der & Pilkington, M. (2006). J. Org. Chem. 71, 2750-2755.]; Venneri et al., 2015[Venneri, S., Wilson, J., Rawson, J. M. & Pilkington, M. (2015). ChemPlusChem 80, 1624-1633.]). Herein, the preparation and crystal structures of three mol­ecules involved in verdazyl synthesis are reported. 3-(4-Bromo­phen­yl)-1,5-di­phenyl­formazan, C19H15N4Br (1), was used as the educt to obtain the 3-(4-bromo­phen­yl)-1,5-di­phenyl­verdazyl radical C20H16N4Br (2). Additionally, 5-anilino-3-(4-bromo­phen­yl)-1-phenyl-1H-1,2,4-triazole, C20H15N4Br (3), could be crystallized, representing a possible side-product in verdazyl synthesis. The identification of such by-products might aid future efforts to further elucidate the so-far poorly understood mechanism of verdazyl formation. The crystal structures of all three mol­ecules could be obtained and are discussed in detail for 1 and 3. The structure of 2 has already been discussed by Iwase et al. (2013[Iwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). Phys. Rev. B, 88, 184431.]) and a dataset with improved residuals is provided herein. In addition to the crystal structures, spectroscopic data for 1 and 2 are presented.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1 and 3 are shown in Fig. 1[link]a and b, respectively. Compound 2 has a structure typical for verdazyls, for details see Iwase et al. (2013[Iwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). Phys. Rev. B, 88, 184431.]). For 1, inter­esting structural features are the bond lengths in the central NNCNN atomic chain. Taking into account the 3σ criterion, the bond lengths N1—N2 and N3—N4 are identical [1.309 (5) and 1.300 (5) Å, respectively] and the same is true for N1—C7 and N3—C7 [1.350 (5) and 1.364 (5) Å, respectively]. These bond lengths lie between values typical for single and double bonds. The pairwisely identical bond lengths are in agreement with rapid intra­molecular H-atom exchange (Nineham, 1955[Nineham, A. W. (1955). Chem. Rev. 55, 355-483.]; Otting & Neugebauer, 1969[Otting, W. & Neugebauer, F. A. (1969). Eur. J. Inorg. Chem. 102, 2520-2529.]; Buemi et al., 1998[Buemi, G., Zuccarello, F., Venuvanalingam, P., Ramalingam, M. & Ammal, S. S. C. (1998). Faraday Trans. 94, 3313-3319.]). Correspondingly, the H atom was considered to be split between the two possible positions at N2 and N4. In both positions, an intra­molecular hydrogen bond is formed with H⋯A distances amounting to 1.93 (10) Å for N2—H2⋯N4 and 1.86 (12) Å for N4—H4⋯N2 (Table 1[link]). Finally, it is noted that the mol­ecule is essentially planar with angles between the normal vectors of the NNCNN mean plane A and the three rings B, C, and D amounting to 9.71 (16) (A/B), 5.28 (3) (A/C), and 12.18 (13)° (A/D).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4 0.80 (10) 1.93 (10) 2.566 (5) 137 (9)
N4—H4⋯N1 0.81 (12) 2.40 (11) 2.803 (5) 112 (9)
N4—H4⋯N2 0.81 (12) 1.86 (12) 2.566 (5) 145 (10)
C19—H19⋯Br1i 0.95 3.05 3.921 (4) 153
C9—H9⋯Br1i 0.95 3.14 4.014 (5) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structures of (a) 1 and (b) 3 with displacement ellipsoids drawn at the 50% probability level.

Compound 3 was isolated in later fractions of the column that was used to purify 2. Such triazole compounds have been identified as products of thermal verdazyl decomposition at 473 K or after four days of refluxing at 353 K in benzene (Neugebauer et al., 1972[Neugebauer, F. A., Otting, W., Smith, H. O. & Trischmann, H. (1972). Eur. J. Inorg. Chem. 105, 549-553.]). Here, the formation of 3 was observed under much less harsh conditions. The bond lengths within ring A suggest bond orders between single and double bonds, in accordance with the aromatic character of 1,2,4-triazoles. Closer inspection reveals that three of the five bonds are considerably longer than the other two [N1—N2 = 1.375 (4), N2—C2 = 1.358 (5), and N3—C1: 1.370 (5) Å compared to N1—C1 = 1.321 (5) and N3—C2 = 1.326 (5) Å], indicating that the resonance structure given in Fig. 5[link] is the most important one. The amino-nitro­gen N4 is connected to ring A by a bond of similar character to the bonds within the ring [N4—C2 = 1.371 (5) Å] whereas its bond to phenyl ring D has essentially single-bond character [N4—C15 = 1.426 (6) Å]. The bonds connecting ring A with rings B and C also have mostly single-bond character [C1—C3 = 1.479 (5) and N2—C9 = 1.441 (5) Å). The mean planes of rings B, C, and D are tilted with respect to the mean plane of A and are arranged in a propeller-like manner [angles between normal vectors: A/B = 14.47 (14), A/C = 40.42 (14), and A/D = 20.67 (16)°].

[Figure 5]
Figure 5
Synthesis of 1, 2, and 3.

3. Supra­molecular features

Compound 1 crystallizes with ortho­rhom­bic symmetry in space group Pbca, in which head-to-tail dimers between two mol­ecules are stacked along the a-axis direction (Fig. 2[link]). Within a dimer, the shortest contacts are 3.213 (5) and 3.372 (6) Å for N4⋯C7 and C19⋯C5, respectively. The short C5⋯C7 contact [3.277 (6) Å] connects pairs of dimers. The Br atom is not involved in halogen bonding, which is a structural motive attracting increasing attention (Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]; Gilday et al., 2015[Gilday, L., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]). Relatively short contacts between H19 as well as H9 and the Br1 atom of another mol­ecule connect different stacks (Table 1[link]). However, the observed distances of 3.05 Å (C19—H19⋯Br1) and 3.14 Å (C9—H9⋯Br1) are still longer than the sum of the van der Waals radii of H and Br, meaning that these are at best very weak hydrogen bonds.

[Figure 2]
Figure 2
(a) Unit cell of 1 viewed parallel to the (100) plane. (b) Stacks of dimers formed along the a-axis direction. Two nitro­gen atoms of two mol­ecules are labelled.

The packing of 2 leading to anti­ferromagnetic coupling has already been described (Iwase et al., 2013[Iwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). Phys. Rev. B, 88, 184431.]).

Compound 3 has a similar structure to 1 in space group Pbca and with pairs of mol­ecules stacked along the a-axis direction (Fig. 3[link]). Here, the centroid-to-centroid distances of the A rings are 3.564 (3) and 4.661 (3) Å within and between the dimers, respectively. However, the shortest intra-dimer contact is a C—H⋯π inter­action (Table 2[link]) between rings C and D (C10—H10⋯C20, 2.75 Å). A similar contact is found between H17 and C19 (C17—H17⋯C19, 2.84 Å), forming a contact between different stacks. π-Stacking is observed between rings A and B, connecting pairs of dimers, with the shortest contacts being 3.229 (6) (C8⋯N3), 3.318 (6) (C8⋯C2), and 3.378 (6) Å (C7⋯C2). As with 1 and 2, no halogen bonding is observed, but the Br atom is involved in a very weak hydrogen bond (C14—H14⋯Br1, 2.99 Å; Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Br1i 0.95 2.99 3.814 (4) 146 (1)
C10—H10⋯C20ii 0.95 2.75 3.575 (5) 146 (1)
C17—H17⋯C19iii 0.95 2.84 3.694 (6) 150 (1)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
(a) Unit cell of 3 viewed parallel to the (100) plane. (b) Stacks of dimers formed along the a-axis direction. The nitro­gen atoms of one mol­ecule are labelled.

4. Spectroscopy

Fig. 4[link]a shows the UV–Vis spectra of 1 and 2, while Fig. 4[link]b represents the EPR spectrum of 2 and its simulation (black and red lines, respectively). The UV–Vis spectra of 1 and 2 are typical for formazans and verdazyls, respectively, with the peaks in the visible range at 490 nm (1) as well as at 425 and 720 nm (2) being responsible for their intense red (1) or green colors (2). The EPR spectrum of 2 was simulated by assuming a g value of 2.00354 and hyperfine coupling constants (HFCC) of 16.77 and 16.48 MHz for the two pairs of nitro­gen nuclei. In addition, the approximate values for the HFCC of the phenyl ring protons could be obtained, amounting to 0.01 (CH2), 3.04 (H, rings B and D, ortho), 1.14 (H, rings B and D, meta), 3.34 (H, rings B and D, para), 1.14, (H, ring C, ortho), and 0.52 MHz (H, ring C, meta). The assignment of the protons is in accordance with that of Kopf et al. (1971[Kopf, P., Morokuma, K. & Kreilick, R. (1971). J. Chem. Phys. 54, 105-110.]).

[Figure 4]
Figure 4
(a) UV–Vis spectra of 1 (black line, 2.3 µM, DCM) and 2 (red line, 11 µM, DCM). (b) EPR spectrum of 2 in degassed deuterated DCM (black line) along with its simulation (red line) obtained using the program EasySpin (Stoll & Schweiger, 2006[Stoll, S. & Schweiger, A. (2006). J. Magn. Reson. 178, 42-55.]).

5. Database survey

The Cambridge Structural Database (CSD, Version 5.36; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was queried for other formazans, verdazyls, and 1,2,4-triazoles. The search revealed 21 examples of formazans if the only restriction was to have carbon substit­uents in the 1,3,5-positions. This number reduced to nine if all of these substituents were required to be phenyl-based, one of these nine examples being a metal complex of a formazan. The remaining eight structures include examples in which the bond lengths in the NNCNN unit alternate, as well as examples in which they are pairwisely equal in a similar manner to that described herein. Inter­estingly, 3,5-diphenyl-1-(4-bromo­phen­yl)formazan (regioisomer of 1, CCDC code EMEVUO; Tunç & Yıldırım, 2010[Tunç, T. & Yıldırım, L. T. (2010). The Open Crystallogr. J. 3, 54-58.]) shows alternating bond lengths, which reflects the fact that the two nitro­gen atoms are chemically inequivalent in this mol­ecule. An example with split hydrogen positions is 1,5-diphenyl-3-(p-nitro­phen­yl)formazan (GUHCIW; Iqbal et al., 2009[Iqbal, A., Moloney, M. G., Siddiqui, H. L. & Thompson, A. L. (2009). Tetrahedron Lett. 50, 4523-4525.]), which shows a similar stacking to that observed in 1 and can be formally derived from 1 by replacing the bromine with a nitro group. 33 examples for 1,3,5-aryl-substituted verdazyls were found in the CSD, only 14 of them Kuhn-verdazyls. The largest hitlist was obtained for 1,3,5-substituted 1,2,4-triazoles (1001 entries). This number reduced drastically if purely organic compounds were considered exclusively (42 hits) and even further if the substitutent at C5 was required to be a nitro­gen atom (four hits, no further restriction).

6. Synthesis and crystallization

The syntheses were performed following Berry et al., 2009[Berry, D. E., Hicks, R. G. & Gilroy, J. B. (2009). J. Chem. Educ. 86, 76-79.] (Fig. 5[link]). The hydrazone 4 required for the synthesis of 1 was synthesized by refluxing a solution of p-bromo­benzaldehyde with phenyl­hydrazine in ethanol and collecting the slightly yellow precipitate that formed after cooling the solution down to room temperature (rt).

To synthesize 1, 450 mg (1.72 mmol) of 4 and 80 mg (0.25 mmol) of tetra­butyl­ammonium bromide were dissolved in 11 mL of di­chloro­methane (DCM) and combined with 1.4 g of sodium carbonate in 11 mL of water to form a biphasic system, which was stirred at 273 K for 30 min. During this time, 1.8 mL (186 mg, 2 mmol) of aniline were dissolved in 4.5 mL of dilute hydro­chloric acid (ca 12%) and stirred at 273 K. To this solution, 55 mg (3.3 mmol) of sodium nitrite in 3 mL of water were added dropwise over the course of ten minutes, leading to the occurrence of a slight yellow color. This yellow solution was added carefully to the biphasic solution of 4 and an intense red color evolved within minutes. After one h, 20 mL of water were added and the temperature was allowed to increase to rt. After stirring for another 30 minutes at rt, the phases were separated. The organic phase was washed with water and dried over Na2SO4 before removing the solvent under reduced pressure. The raw product was subjected to column chromatography using aluminum oxide (AlOx, water content 5%) as stationary phase and DCM/cyclo­hexane (1:4). The red fractions were collected, yielding 1 as red solid in 66% yield (307 mg). Crystals of 1 were obtained by dissolving the solid in a mixture of DCM and hexane which was left to evaporate.

To obtain 2, 119 mg (0.31 mmol) of 1 were dissolved in 10 mL of di­methyl­formamide and mixed with 0.7 mL 2 M aqueous sodium hydroxide solution and 0.65 mL of 37% formaldehyde solution. The mixture was stirred at rt in an open vessel with contact to air, leading to a change of color from red to green over the course of an hour. 20 mL of water and diethyl ether were then added to the solution and the phases were separated from each other. After drying the organic phase over Na2SO4, the raw product was subjected to column chromatography using AlOx (water content 5%) and di­ethyl­ether/cyclo­hexane (1:5) as eluent. The green fractions were collected and the solvent was removed under reduced pressure (yield: 37 mg, 30%). Crystals of 2 were obtained by dissolving the product in a mixture of DCM and hexane and leaving the green solution to evaporate.

Compound 3 was obtained by collecting the slightly yellow fractions that eluted from the column after 2 and removing the solvent. Dissolving the resulting brownish solid in a mixture of DCM and hexane and leaving the solution to evaporate afforded crystals suitable for X-ray crystallography.

Additional analytical data for 1 and 2. 1: 1H NMR (400 MHz, DCM-d2): δ 15.45 (s, 1H); 8.08 (dt, J = 8.8 MHz, 2.2 MHz, 2H); 7.75 (dm, J = 8.4 MHz, 4H); 7.61 (dt, J = 8.8 MHz, 2.2 MHz, 2H); 7.52 (ddt, J = 8.4 MHz, 7.2 MHz, 1.6 MHz, 4H); 7.36 (tt, J = 7.2 MHz, 1.2 MHz, 2H). ESI–MS (positive, m/z): calculated 377.04 ([M − H]+), found 377.04. UV–Vis: see above.

2: ESI–MS (positive, m/z): calculated 391.06 ([M] +), found 391.06. UV–Vis and EPR: see above.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were refined using a riding model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a difference-Fourier map and refined with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

  1 2 3
Crystal data
Chemical formula C19H15BrN4 C20H16BrN4 C20H15BrN4
Mr 379.26 392.28 391.27
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 100 123 100
a, b, c (Å) 7.7930 (5), 19.0947 (16), 22.1843 (17) 7.0881 (3), 21.2183 (11), 22.2028 (9) 7.7989 (9), 18.971 (3), 22.455 (4)
V3) 3301.1 (4) 3339.2 (3) 3322.4 (8)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.50 2.47 2.48
Crystal size (mm) 0.33 × 0.06 × 0.04 0.15 × 0.12 × 0.06 0.32 × 0.16 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture Stoe IPDS 2T Bruker X8 Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (X-RED32; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.550, 0.746 0.254, 0.620 0.583, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 60778, 3975, 2652 70879, 3640, 3397 19450, 3999, 2708
Rint 0.147 0.128 0.098
(sin θ/λ)max−1) 0.661 0.639 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.153, 1.03 0.029, 0.076, 1.10 0.056, 0.126, 1.05
No. of reflections 3975 3640 3999
No. of parameters 224 226 229
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.76, −1.08 0.72, −0.65 1.46, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015) for (1), (3); X-AREA (Stoe & Cie, 2009) for (2). Cell refinement: SAINT (Bruker, 2015) for (1), (3); X-AREA (Stoe & Cie, 2009) for (2). Data reduction: SAINT (Bruker, 2015) for (1), (3); X-AREA (Stoe & Cie, 2009) for (2). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (2), (3). For all structures, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N'-Anilino-4-bromo-N-(phenylimino)benzene-1-carboximidamide (1) top
Crystal data top
C19H15BrN4Dx = 1.526 Mg m3
Mr = 379.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9908 reflections
a = 7.7930 (5) Åθ = 3.0–27.7°
b = 19.0947 (16) ŵ = 2.50 mm1
c = 22.1843 (17) ÅT = 100 K
V = 3301.1 (4) Å3Needle, clear red
Z = 80.33 × 0.06 × 0.04 mm
F(000) = 1536
Data collection top
Bruker D8 Venture
diffractometer
3975 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2652 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.147
Detector resolution: 7.9 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2525
Tmin = 0.550, Tmax = 0.746l = 2829
60778 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0596P)2 + 12.5159P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3975 reflectionsΔρmax = 1.76 e Å3
224 parametersΔρmin = 1.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.16420 (6)0.55022 (3)0.27999 (2)0.03107 (17)
N10.2728 (4)0.55820 (18)0.54659 (16)0.0192 (7)
N20.3581 (4)0.5531 (2)0.59722 (16)0.0203 (8)
H20.400 (12)0.516 (6)0.605 (4)0.024*0.54 (7)
N30.3438 (4)0.43883 (18)0.51495 (15)0.0192 (7)
N40.4238 (4)0.4268 (2)0.56531 (16)0.0193 (8)
H40.431 (14)0.461 (6)0.587 (5)0.023*0.46 (7)
C10.0210 (5)0.5366 (2)0.34853 (19)0.0240 (10)
C20.0685 (6)0.4745 (3)0.3551 (2)0.0278 (10)
H2A0.06500.43960.32470.033*
C30.1633 (5)0.4645 (2)0.4072 (2)0.0246 (9)
H30.22570.42210.41200.029*
C40.1701 (5)0.5148 (2)0.45276 (18)0.0186 (8)
C50.0796 (5)0.5773 (2)0.44382 (19)0.0223 (9)
H50.08360.61270.47380.027*
C60.0146 (5)0.5881 (2)0.39252 (19)0.0228 (9)
H60.07530.63080.38710.027*
C70.2672 (5)0.5027 (2)0.50893 (18)0.0183 (8)
C80.3693 (5)0.6134 (2)0.63337 (18)0.0191 (9)
C90.4789 (5)0.6102 (2)0.68286 (19)0.0247 (9)
H90.53750.56790.69200.030*
C100.5026 (6)0.6688 (3)0.7187 (2)0.0294 (10)
H100.57930.66680.75200.035*
C110.4152 (6)0.7304 (3)0.7065 (2)0.0304 (11)
H110.43260.77060.73080.036*
C120.3018 (6)0.7325 (2)0.6580 (2)0.0298 (11)
H120.24000.77440.64990.036*
C130.2776 (5)0.6748 (2)0.62164 (19)0.0250 (10)
H130.19930.67680.58890.030*
C140.5102 (5)0.3628 (2)0.57135 (18)0.0182 (8)
C150.5307 (5)0.3138 (2)0.52541 (19)0.0221 (9)
H150.47980.32150.48710.027*
C160.6253 (6)0.2540 (2)0.5358 (2)0.0298 (10)
H160.63990.22050.50450.036*
C170.6999 (6)0.2424 (2)0.5923 (2)0.0293 (10)
H170.76450.20110.59930.035*
C180.6798 (6)0.2907 (2)0.6376 (2)0.0280 (10)
H180.73280.28320.67560.034*
C190.5834 (5)0.3500 (2)0.62810 (19)0.0219 (9)
H190.56630.38240.66000.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0285 (2)0.0471 (3)0.0176 (2)0.0039 (2)0.00492 (18)0.0059 (2)
N10.0146 (15)0.0221 (19)0.0208 (18)0.0026 (14)0.0021 (14)0.0024 (15)
N20.0178 (17)0.025 (2)0.0176 (18)0.0008 (15)0.0007 (13)0.0045 (16)
N30.0152 (16)0.0239 (19)0.0184 (17)0.0030 (14)0.0024 (13)0.0039 (14)
N40.0148 (16)0.025 (2)0.0175 (18)0.0009 (14)0.0008 (14)0.0029 (15)
C10.0139 (19)0.039 (3)0.019 (2)0.0017 (18)0.0004 (16)0.0078 (19)
C20.030 (2)0.029 (2)0.025 (2)0.004 (2)0.0002 (18)0.006 (2)
C30.022 (2)0.026 (2)0.025 (2)0.0079 (19)0.0024 (18)0.0022 (18)
C40.0147 (17)0.022 (2)0.019 (2)0.0035 (17)0.0046 (16)0.0046 (17)
C50.020 (2)0.025 (2)0.021 (2)0.0013 (17)0.0008 (17)0.0008 (18)
C60.021 (2)0.020 (2)0.027 (2)0.0000 (17)0.0031 (18)0.0077 (18)
C70.0126 (17)0.024 (2)0.018 (2)0.0054 (16)0.0023 (15)0.0052 (17)
C80.0183 (19)0.023 (2)0.016 (2)0.0047 (16)0.0054 (15)0.0018 (17)
C90.022 (2)0.033 (3)0.019 (2)0.0018 (19)0.0015 (17)0.0047 (18)
C100.026 (2)0.039 (3)0.023 (2)0.010 (2)0.0032 (19)0.001 (2)
C110.034 (2)0.028 (3)0.030 (3)0.011 (2)0.014 (2)0.004 (2)
C120.031 (2)0.025 (2)0.034 (3)0.0007 (19)0.017 (2)0.004 (2)
C130.021 (2)0.035 (3)0.019 (2)0.0011 (19)0.0046 (17)0.0080 (19)
C140.0113 (17)0.021 (2)0.022 (2)0.0040 (16)0.0011 (16)0.0049 (17)
C150.020 (2)0.027 (2)0.019 (2)0.0057 (17)0.0001 (17)0.0017 (18)
C160.031 (2)0.022 (2)0.036 (3)0.0025 (19)0.006 (2)0.007 (2)
C170.029 (2)0.022 (2)0.037 (3)0.0026 (19)0.006 (2)0.010 (2)
C180.027 (2)0.034 (3)0.023 (2)0.006 (2)0.0010 (19)0.011 (2)
C190.022 (2)0.027 (2)0.017 (2)0.0022 (18)0.0035 (16)0.0002 (18)
Geometric parameters (Å, º) top
Br1—C11.904 (4)C8—C131.398 (6)
N1—N21.309 (5)C9—H90.9500
N1—C71.350 (5)C9—C101.385 (7)
N2—H20.80 (10)C10—H100.9500
N2—C81.405 (6)C10—C111.385 (7)
N3—N41.300 (5)C11—H110.9500
N3—C71.364 (5)C11—C121.392 (7)
N4—H40.81 (12)C12—H120.9500
N4—C141.401 (5)C12—C131.379 (7)
C1—C21.384 (6)C13—H130.9500
C1—C61.386 (6)C14—C151.393 (6)
C2—H2A0.9500C14—C191.404 (6)
C2—C31.384 (6)C15—H150.9500
C3—H30.9500C15—C161.379 (6)
C3—C41.395 (6)C16—H160.9500
C4—C51.400 (6)C16—C171.398 (7)
C4—C71.476 (6)C17—H170.9500
C5—H50.9500C17—C181.373 (7)
C5—C61.370 (6)C18—H180.9500
C6—H60.9500C18—C191.375 (6)
C8—C91.392 (6)C19—H190.9500
N2—N1—C7119.3 (4)C10—C9—C8120.0 (4)
N1—N2—H2117 (7)C10—C9—H9120.0
N1—N2—C8117.5 (4)C9—C10—H10119.8
C8—N2—H2126 (7)C11—C10—C9120.5 (4)
N4—N3—C7116.9 (4)C11—C10—H10119.8
N3—N4—H4113 (8)C10—C11—H11120.4
N3—N4—C14117.8 (4)C10—C11—C12119.3 (4)
C14—N4—H4128 (8)C12—C11—H11120.4
C2—C1—Br1119.8 (3)C11—C12—H12119.5
C2—C1—C6121.0 (4)C13—C12—C11121.0 (4)
C6—C1—Br1119.1 (3)C13—C12—H12119.5
C1—C2—H2A120.8C8—C13—H13120.3
C1—C2—C3118.4 (4)C12—C13—C8119.5 (4)
C3—C2—H2A120.8C12—C13—H13120.3
C2—C3—H3119.0N4—C14—C19115.6 (4)
C2—C3—C4122.0 (4)C15—C14—N4124.8 (4)
C4—C3—H3119.0C15—C14—C19119.6 (4)
C3—C4—C5117.7 (4)C14—C15—H15120.2
C3—C4—C7121.6 (4)C16—C15—C14119.7 (4)
C5—C4—C7120.7 (4)C16—C15—H15120.2
C4—C5—H5119.5C15—C16—H16119.9
C6—C5—C4121.1 (4)C15—C16—C17120.2 (4)
C6—C5—H5119.5C17—C16—H16119.9
C1—C6—H6120.1C16—C17—H17119.9
C5—C6—C1119.8 (4)C18—C17—C16120.2 (4)
C5—C6—H6120.1C18—C17—H17119.9
N1—C7—N3128.8 (4)C17—C18—H18119.9
N1—C7—C4114.6 (4)C17—C18—C19120.2 (4)
N3—C7—C4116.5 (4)C19—C18—H18119.9
C9—C8—N2116.9 (4)C14—C19—H19119.9
C9—C8—C13119.7 (4)C18—C19—C14120.1 (4)
C13—C8—N2123.3 (4)C18—C19—H19119.9
C8—C9—H9120.0
Br1—C1—C2—C3176.2 (3)C3—C4—C7—N32.6 (6)
Br1—C1—C6—C5176.0 (3)C4—C5—C6—C10.0 (6)
N1—N2—C8—C9171.6 (3)C5—C4—C7—N15.7 (5)
N1—N2—C8—C138.0 (6)C5—C4—C7—N3176.7 (3)
N2—N1—C7—N31.7 (6)C6—C1—C2—C30.8 (6)
N2—N1—C7—C4179.0 (3)C7—N1—N2—C8176.3 (3)
N2—C8—C9—C10176.9 (4)C7—N3—N4—C14177.1 (3)
N2—C8—C13—C12177.3 (4)C7—C4—C5—C6178.2 (4)
N3—N4—C14—C156.4 (6)C8—C9—C10—C111.3 (6)
N3—N4—C14—C19175.3 (3)C9—C8—C13—C122.4 (6)
N4—N3—C7—N15.4 (6)C9—C10—C11—C120.7 (6)
N4—N3—C7—C4177.3 (3)C10—C11—C12—C131.1 (6)
N4—C14—C15—C16176.9 (4)C11—C12—C13—C80.4 (6)
N4—C14—C19—C18176.0 (4)C13—C8—C9—C102.8 (6)
C1—C2—C3—C40.3 (7)C14—C15—C16—C170.2 (6)
C2—C1—C6—C51.0 (6)C15—C14—C19—C182.3 (6)
C2—C3—C4—C51.2 (6)C15—C16—C17—C180.3 (7)
C2—C3—C4—C7178.1 (4)C16—C17—C18—C191.4 (7)
C3—C4—C5—C61.1 (6)C17—C18—C19—C142.4 (7)
C3—C4—C7—N1175.0 (4)C19—C14—C15—C161.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N40.80 (10)1.93 (10)2.566 (5)137 (9)
N4—H4···N10.81 (12)2.40 (11)2.803 (5)112 (9)
N4—H4···N20.81 (12)1.86 (12)2.566 (5)145 (10)
C19—H19···Br1i0.953.053.921 (4)153
C9—H9···Br1i0.953.144.014 (5)153
Symmetry code: (i) x+1/2, y+1, z+1/2.
6-(4-Bromophenyl)-2,4-diphenyl-1,2,3,4-tetrahydro-1,2,4,5-tetrazin-1-yl (2) top
Crystal data top
C20H16BrN4Dx = 1.561 Mg m3
Mr = 392.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8857 reflections
a = 7.0881 (3) Åθ = 2.7–29.5°
b = 21.2183 (11) ŵ = 2.47 mm1
c = 22.2028 (9) ÅT = 123 K
V = 3339.2 (3) Å3Plate, clear green
Z = 80.15 × 0.12 × 0.06 mm
F(000) = 1592
Data collection top
STOE IPDS 2T
diffractometer
3640 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3397 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.128
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 2.7°
rotation method scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2009)
k = 2626
Tmin = 0.254, Tmax = 0.620l = 2828
70879 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.3621P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3640 reflectionsΔρmax = 0.72 e Å3
226 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68387 (3)0.06162 (2)0.45203 (2)0.02595 (8)
N10.66003 (19)0.27769 (7)0.22407 (6)0.0176 (3)
N20.63370 (19)0.31170 (6)0.17288 (6)0.0177 (3)
N30.5658 (2)0.22196 (6)0.11776 (6)0.0184 (3)
N40.59259 (19)0.18478 (6)0.16660 (6)0.0177 (3)
C10.6208 (2)0.21623 (7)0.21812 (7)0.0168 (3)
C20.5041 (2)0.28635 (7)0.12838 (8)0.0196 (3)
H2A0.50960.31120.09070.024*
H2B0.37310.28700.14380.024*
C30.6287 (2)0.17818 (7)0.27390 (7)0.0169 (3)
C40.6697 (2)0.11391 (8)0.27170 (8)0.0203 (3)
H40.68980.09420.23380.024*
C50.6815 (2)0.07845 (8)0.32404 (8)0.0219 (3)
H50.70760.03460.32210.026*
C60.6550 (2)0.10777 (8)0.37910 (7)0.0188 (3)
C70.6106 (2)0.17127 (8)0.38283 (8)0.0201 (3)
H70.59120.19080.42080.024*
C80.5950 (2)0.20578 (7)0.32989 (7)0.0182 (3)
H80.56060.24900.33190.022*
C90.7103 (2)0.37250 (7)0.16939 (7)0.0169 (3)
C100.8613 (2)0.38881 (8)0.20700 (8)0.0203 (3)
H100.90780.35940.23560.024*
C110.9424 (3)0.44801 (8)0.20224 (8)0.0230 (4)
H111.04340.45930.22820.028*
C120.8777 (3)0.49117 (8)0.15982 (8)0.0230 (3)
H120.93630.53120.15600.028*
C130.7268 (3)0.47506 (8)0.12329 (8)0.0236 (3)
H130.68180.50440.09440.028*
C140.6404 (2)0.41659 (8)0.12830 (8)0.0204 (3)
H140.53440.40660.10390.024*
C150.5678 (2)0.19397 (7)0.06049 (7)0.0173 (3)
C160.4641 (2)0.21964 (8)0.01255 (7)0.0195 (3)
H160.39030.25650.01850.023*
C170.4698 (2)0.19094 (8)0.04350 (7)0.0218 (3)
H170.39980.20850.07590.026*
C180.5761 (3)0.13688 (8)0.05301 (8)0.0236 (4)
H180.57970.11760.09160.028*
C190.6775 (2)0.11138 (8)0.00510 (8)0.0238 (4)
H190.75060.07440.01120.029*
C200.6733 (2)0.13926 (8)0.05142 (8)0.0202 (3)
H200.74200.12120.08380.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02689 (12)0.02657 (12)0.02438 (12)0.00268 (6)0.00495 (6)0.00843 (6)
N10.0164 (6)0.0181 (6)0.0184 (7)0.0001 (5)0.0007 (5)0.0015 (5)
N20.0176 (6)0.0169 (6)0.0186 (6)0.0016 (5)0.0021 (5)0.0006 (5)
N30.0206 (7)0.0166 (6)0.0180 (6)0.0007 (5)0.0028 (5)0.0001 (5)
N40.0166 (6)0.0183 (6)0.0181 (6)0.0002 (5)0.0011 (5)0.0017 (5)
C10.0105 (7)0.0190 (7)0.0207 (8)0.0002 (6)0.0004 (6)0.0008 (6)
C20.0171 (7)0.0178 (7)0.0238 (8)0.0009 (6)0.0038 (6)0.0009 (6)
C30.0106 (7)0.0190 (7)0.0211 (8)0.0020 (6)0.0005 (6)0.0008 (6)
C40.0201 (8)0.0200 (8)0.0209 (8)0.0002 (6)0.0003 (6)0.0028 (6)
C50.0198 (8)0.0176 (7)0.0282 (9)0.0005 (6)0.0013 (6)0.0011 (7)
C60.0148 (7)0.0219 (8)0.0197 (8)0.0033 (6)0.0021 (6)0.0053 (6)
C70.0180 (8)0.0215 (8)0.0209 (8)0.0017 (6)0.0008 (6)0.0009 (6)
C80.0156 (7)0.0176 (7)0.0213 (8)0.0010 (6)0.0008 (6)0.0002 (6)
C90.0156 (7)0.0150 (7)0.0202 (8)0.0003 (5)0.0031 (6)0.0009 (6)
C100.0200 (8)0.0199 (8)0.0210 (8)0.0003 (6)0.0020 (6)0.0014 (6)
C110.0211 (8)0.0223 (8)0.0256 (9)0.0024 (6)0.0032 (7)0.0015 (6)
C120.0240 (8)0.0166 (7)0.0284 (9)0.0026 (6)0.0022 (7)0.0005 (6)
C130.0246 (8)0.0193 (8)0.0268 (9)0.0030 (7)0.0019 (7)0.0019 (7)
C140.0189 (8)0.0191 (8)0.0231 (8)0.0002 (6)0.0033 (6)0.0005 (6)
C150.0153 (7)0.0186 (7)0.0180 (7)0.0044 (6)0.0001 (6)0.0004 (6)
C160.0169 (7)0.0190 (7)0.0227 (8)0.0025 (6)0.0022 (6)0.0011 (6)
C170.0197 (8)0.0255 (8)0.0203 (8)0.0049 (7)0.0043 (6)0.0031 (6)
C180.0249 (9)0.0266 (9)0.0193 (8)0.0057 (7)0.0017 (6)0.0052 (6)
C190.0234 (9)0.0214 (8)0.0266 (9)0.0015 (6)0.0018 (7)0.0035 (7)
C200.0185 (8)0.0195 (8)0.0227 (8)0.0014 (6)0.0027 (6)0.0008 (6)
Geometric parameters (Å, º) top
Br1—C61.9034 (16)C9—C101.401 (2)
N1—N21.3592 (19)C9—C141.398 (2)
N1—C11.340 (2)C10—H100.9500
N2—C21.452 (2)C10—C111.385 (2)
N2—C91.402 (2)C11—H110.9500
N3—N41.3544 (18)C11—C121.392 (2)
N3—C21.454 (2)C12—H120.9500
N3—C151.404 (2)C12—C131.385 (3)
N4—C11.339 (2)C13—H130.9500
C1—C31.479 (2)C13—C141.388 (2)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.404 (2)
C3—C41.395 (2)C15—C201.395 (2)
C3—C81.395 (2)C16—H160.9500
C4—H40.9500C16—C171.386 (2)
C4—C51.387 (2)C17—H170.9500
C5—H50.9500C17—C181.389 (3)
C5—C61.385 (2)C18—H180.9500
C6—C71.386 (2)C18—C191.393 (3)
C7—H70.9500C19—H190.9500
C7—C81.389 (2)C19—C201.388 (2)
C8—H80.9500C20—H200.9500
C1—N1—N2113.94 (13)C14—C9—N2120.97 (15)
N1—N2—C2117.33 (13)C14—C9—C10119.65 (15)
N1—N2—C9118.79 (13)C9—C10—H10120.1
C9—N2—C2123.25 (13)C11—C10—C9119.71 (15)
N4—N3—C2117.38 (13)C11—C10—H10120.1
N4—N3—C15118.51 (13)C10—C11—H11119.6
C15—N3—C2123.22 (13)C10—C11—C12120.76 (16)
C1—N4—N3114.49 (13)C12—C11—H11119.6
N1—C1—C3116.15 (14)C11—C12—H12120.4
N4—C1—N1126.88 (15)C13—C12—C11119.24 (16)
N4—C1—C3116.66 (14)C13—C12—H12120.4
N2—C2—N3105.55 (12)C12—C13—H13119.5
N2—C2—H2A110.6C12—C13—C14120.96 (16)
N2—C2—H2B110.6C14—C13—H13119.5
N3—C2—H2A110.6C9—C14—H14120.2
N3—C2—H2B110.6C13—C14—C9119.61 (15)
H2A—C2—H2B108.8C13—C14—H14120.2
C4—C3—C1120.79 (15)N3—C15—C16121.15 (14)
C8—C3—C1120.70 (14)C20—C15—N3119.24 (14)
C8—C3—C4118.51 (15)C20—C15—C16119.60 (15)
C3—C4—H4119.6C15—C16—H16120.2
C5—C4—C3120.90 (16)C17—C16—C15119.68 (15)
C5—C4—H4119.6C17—C16—H16120.2
C4—C5—H5120.4C16—C17—H17119.5
C6—C5—C4119.19 (15)C16—C17—C18121.01 (15)
C6—C5—H5120.4C18—C17—H17119.5
C5—C6—Br1120.35 (13)C17—C18—H18120.5
C5—C6—C7121.36 (15)C17—C18—C19119.00 (15)
C7—C6—Br1118.28 (13)C19—C18—H18120.5
C6—C7—H7120.7C18—C19—H19119.5
C6—C7—C8118.69 (15)C20—C19—C18120.90 (16)
C8—C7—H7120.7C20—C19—H19119.5
C3—C8—H8119.4C15—C20—H20120.1
C7—C8—C3121.26 (14)C19—C20—C15119.79 (16)
C7—C8—H8119.4C19—C20—H20120.1
C10—C9—N2119.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N1i0.952.653.519 (2)153
Symmetry code: (i) x+1/2, y, z+1/2.
5-Anilino-3-(4-bromophenyl)-1-phenyl-1H-1,2,4-triazole (3) top
Crystal data top
C20H15BrN4Dx = 1.564 Mg m3
Mr = 391.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1652 reflections
a = 7.7989 (9) Åθ = 2.8–23.1°
b = 18.971 (3) ŵ = 2.48 mm1
c = 22.455 (4) ÅT = 100 K
V = 3322.4 (8) Å3Plank, clear light yellow
Z = 80.32 × 0.16 × 0.1 mm
F(000) = 1584
Data collection top
Bruker X8 Kappa APEXII
diffractometer
3999 independent reflections
Radiation source: sealed tube2708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 8 pixels mm-1θmax = 28.0°, θmin = 3.0°
fine slicing ω and φ scansh = 610
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2425
Tmin = 0.583, Tmax = 0.746l = 2929
19450 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0408P)2 + 6.8615P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3999 reflectionsΔρmax = 1.46 e Å3
229 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.11136 (5)0.36858 (2)0.25928 (2)0.02548 (14)
N10.7607 (4)0.57251 (19)0.48352 (14)0.0201 (7)
N20.6739 (4)0.58069 (18)0.53638 (14)0.0179 (7)
N30.7073 (4)0.46533 (19)0.52531 (15)0.0193 (7)
N40.5536 (4)0.5068 (2)0.61156 (16)0.0249 (8)
H40.487 (6)0.549 (3)0.626 (2)0.030*
C10.7806 (5)0.5035 (2)0.48020 (17)0.0178 (8)
C20.6420 (5)0.5157 (2)0.55932 (17)0.0191 (9)
C30.8667 (4)0.4696 (2)0.42895 (17)0.0183 (8)
C40.8470 (5)0.3977 (2)0.41832 (18)0.0195 (9)
H4A0.78370.36940.44540.023*
C50.9206 (5)0.3673 (2)0.36779 (18)0.0216 (8)
H50.90720.31840.36010.026*
C61.0134 (4)0.4094 (2)0.32914 (17)0.0174 (8)
C71.0376 (5)0.4806 (2)0.33950 (18)0.0220 (9)
H71.10340.50850.31280.026*
C80.9637 (5)0.5105 (2)0.38984 (18)0.0203 (9)
H80.97950.55930.39770.024*
C90.6007 (5)0.6479 (2)0.55219 (17)0.0176 (8)
C100.5417 (5)0.6904 (2)0.50640 (18)0.0216 (9)
H100.55270.67590.46610.026*
C110.4660 (5)0.7548 (2)0.5203 (2)0.0266 (10)
H110.42640.78490.48930.032*
C120.4485 (5)0.7750 (2)0.5792 (2)0.0274 (10)
H120.39390.81840.58860.033*
C130.5099 (5)0.7328 (2)0.6240 (2)0.0269 (10)
H130.49850.74710.66430.032*
C140.5883 (5)0.6694 (2)0.61057 (18)0.0219 (9)
H140.63340.64070.64150.026*
C150.5186 (5)0.4420 (2)0.64132 (19)0.0237 (9)
C160.3863 (5)0.4433 (3)0.68331 (19)0.0276 (10)
H160.32530.48580.69040.033*
C170.3441 (6)0.3832 (3)0.7144 (2)0.0313 (11)
H170.25410.38460.74290.038*
C180.4312 (6)0.3214 (3)0.7045 (2)0.0302 (11)
H180.39980.27980.72530.036*
C190.5661 (6)0.3199 (2)0.66360 (19)0.0268 (10)
H190.62850.27750.65760.032*
C200.6096 (5)0.3798 (2)0.63171 (18)0.0249 (9)
H200.70060.37850.60360.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0214 (2)0.0350 (3)0.0200 (2)0.00676 (19)0.00321 (17)0.00357 (19)
N10.0195 (16)0.023 (2)0.0179 (17)0.0000 (14)0.0018 (14)0.0011 (14)
N20.0199 (16)0.0151 (19)0.0186 (17)0.0001 (13)0.0037 (13)0.0002 (14)
N30.0164 (16)0.019 (2)0.0223 (18)0.0010 (14)0.0001 (13)0.0017 (15)
N40.0240 (18)0.023 (2)0.0283 (19)0.0022 (15)0.0046 (15)0.0009 (16)
C10.0120 (18)0.024 (2)0.0180 (19)0.0008 (16)0.0004 (15)0.0017 (17)
C20.0179 (19)0.020 (2)0.019 (2)0.0022 (16)0.0001 (15)0.0007 (16)
C30.0143 (18)0.022 (2)0.0182 (19)0.0018 (16)0.0024 (15)0.0003 (16)
C40.0168 (18)0.018 (2)0.023 (2)0.0009 (16)0.0009 (15)0.0015 (17)
C50.0208 (19)0.015 (2)0.029 (2)0.0001 (17)0.0007 (16)0.0008 (18)
C60.0104 (17)0.024 (2)0.0179 (19)0.0058 (16)0.0000 (15)0.0016 (16)
C70.0167 (18)0.025 (3)0.025 (2)0.0012 (17)0.0040 (16)0.0028 (18)
C80.0205 (19)0.015 (2)0.025 (2)0.0013 (17)0.0007 (17)0.0007 (17)
C90.0143 (17)0.013 (2)0.026 (2)0.0047 (15)0.0005 (16)0.0029 (15)
C100.0191 (19)0.025 (3)0.021 (2)0.0003 (17)0.0007 (16)0.0001 (17)
C110.022 (2)0.023 (3)0.035 (3)0.0014 (18)0.0046 (18)0.012 (2)
C120.024 (2)0.013 (2)0.046 (3)0.0018 (17)0.0001 (19)0.002 (2)
C130.027 (2)0.026 (3)0.027 (2)0.0007 (19)0.0026 (18)0.0048 (19)
C140.021 (2)0.021 (2)0.024 (2)0.0017 (17)0.0023 (17)0.0037 (17)
C150.025 (2)0.023 (3)0.023 (2)0.0075 (18)0.0061 (18)0.0047 (18)
C160.027 (2)0.029 (3)0.027 (2)0.000 (2)0.0024 (19)0.0022 (19)
C170.032 (2)0.037 (3)0.025 (2)0.005 (2)0.0035 (19)0.001 (2)
C180.038 (3)0.026 (3)0.026 (2)0.009 (2)0.0014 (19)0.0046 (19)
C190.033 (2)0.017 (2)0.030 (2)0.0013 (18)0.0049 (18)0.0012 (18)
C200.023 (2)0.029 (3)0.022 (2)0.0040 (19)0.0010 (17)0.0018 (17)
Geometric parameters (Å, º) top
Br1—C61.909 (4)C9—C141.376 (6)
N1—N21.375 (4)C10—H100.9500
N1—C11.321 (5)C10—C111.392 (6)
N2—C21.358 (5)C11—H110.9500
N2—C91.441 (5)C11—C121.384 (6)
N3—C11.370 (5)C12—H120.9500
N3—C21.326 (5)C12—C131.373 (6)
N4—H41.00 (5)C13—H130.9500
N4—C21.371 (5)C13—C141.382 (6)
N4—C151.426 (6)C14—H140.9500
C1—C31.479 (5)C15—C161.398 (6)
C3—C41.393 (6)C15—C201.394 (6)
C3—C81.395 (6)C16—H160.9500
C4—H4A0.9500C16—C171.376 (6)
C4—C51.397 (6)C17—H170.9500
C5—H50.9500C17—C181.374 (7)
C5—C61.384 (6)C18—H180.9500
C6—C71.384 (6)C18—C191.396 (6)
C7—H70.9500C19—H190.9500
C7—C81.390 (6)C19—C201.385 (6)
C8—H80.9500C20—H200.9500
C9—C101.386 (5)
C1—N1—N2102.6 (3)C14—C9—C10120.7 (4)
N1—N2—C9120.5 (3)C9—C10—H10120.5
C2—N2—N1108.4 (3)C9—C10—C11119.1 (4)
C2—N2—C9129.5 (3)C11—C10—H10120.5
C2—N3—C1101.8 (3)C10—C11—H11120.0
C2—N4—H4116 (3)C12—C11—C10119.9 (4)
C2—N4—C15127.1 (4)C12—C11—H11120.0
C15—N4—H4116 (3)C11—C12—H12119.9
N1—C1—N3115.7 (4)C13—C12—C11120.3 (4)
N1—C1—C3121.9 (4)C13—C12—H12119.9
N3—C1—C3122.3 (4)C12—C13—H13119.9
N2—C2—N4121.9 (4)C12—C13—C14120.2 (4)
N3—C2—N2111.4 (3)C14—C13—H13119.9
N3—C2—N4126.7 (4)C9—C14—C13119.8 (4)
C4—C3—C1120.6 (4)C9—C14—H14120.1
C4—C3—C8119.7 (4)C13—C14—H14120.1
C8—C3—C1119.6 (4)C16—C15—N4116.2 (4)
C3—C4—H4A120.0C20—C15—N4124.1 (4)
C3—C4—C5119.9 (4)C20—C15—C16119.7 (4)
C5—C4—H4A120.0C15—C16—H16119.9
C4—C5—H5120.5C17—C16—C15120.3 (4)
C6—C5—C4119.0 (4)C17—C16—H16119.9
C6—C5—H5120.5C16—C17—H17119.8
C5—C6—Br1119.4 (3)C18—C17—C16120.4 (4)
C5—C6—C7122.0 (4)C18—C17—H17119.8
C7—C6—Br1118.7 (3)C17—C18—H18120.1
C6—C7—H7120.7C17—C18—C19119.7 (4)
C6—C7—C8118.6 (4)C19—C18—H18120.1
C8—C7—H7120.7C18—C19—H19119.7
C3—C8—H8119.7C20—C19—C18120.5 (4)
C7—C8—C3120.7 (4)C20—C19—H19119.7
C7—C8—H8119.7C15—C20—H20120.4
C10—C9—N2117.7 (4)C19—C20—C15119.3 (4)
C14—C9—N2121.7 (4)C19—C20—H20120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Br1i0.952.993.814 (4)146 (1)
C10—H10···C20ii0.952.753.575 (5)146 (1)
C17—H17···C19iii0.952.843.694 (6)150 (1)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y, z+3/2.
 

Acknowledgements

Professor Dr O. Schiemann and Professor Dr. A. C. Filippou are gratefully acknowledged for providing access to the laboratory and spectrometers and for financial support (AM) as well as access to the X-ray diffractometers (GS).

Funding information

Funding for this research was provided by: Rheinische Friedrich-Wilhelms-Universität Bonn (contract to Gregor Schnakenburg; scholarship to Andreas Meyer).

References

First citationBancerz, M., Youn, B., DaCosta, M. V. & Georges, M. K. (2012). J. Org. Chem. 77, 2415–2421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBerry, D. E., Hicks, R. G. & Gilroy, J. B. (2009). J. Chem. Educ. 86, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuemi, G., Zuccarello, F., Venuvanalingam, P., Ramalingam, M. & Ammal, S. S. C. (1998). Faraday Trans. 94, 3313–3319.  Web of Science CrossRef CAS Google Scholar
First citationChahma, M., Wang, X. S., Est, A. van der & Pilkington, M. (2006). J. Org. Chem. 71, 2750–2755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEusterwiemann, S., Dresselhaus, T., Doerenkamp, C., Janka, O., Niehaus, O., Massolle, A., Daniliuc, C. G., Eckert, H., Pöttgen, R., Neugebauer, J. & Studer, A. (2017). Chem. Eur. J. 23, 6069–6082.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGilday, L., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIqbal, A., Moloney, M. G., Siddiqui, H. L. & Thompson, A. L. (2009). Tetrahedron Lett. 50, 4523–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwase, K., Yamaguchi, H., Ono, T., Hosokoshi, Y., Shimokawa, T., Kono, Y., Kittaka, S., Sakakibara, T., Matsuo, A. & Kindo, K. (2013). Phys. Rev. B, 88, 184431.  Web of Science CSD CrossRef Google Scholar
First citationKoivisto, B. D. & Hicks, R. G. (2005). Coord. Chem. Rev. 249, 2612–2630.  Web of Science CrossRef CAS Google Scholar
First citationKoivisto, B. D., Ichimura, A. S., McDonald, R., Lemaire, M. T., Thompson, L. K. & Hicks, R. G. (2006). J. Am. Chem. Soc. 128, 690–691.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopf, P., Morokuma, K. & Kreilick, R. (1971). J. Chem. Phys. 54, 105–110.  CrossRef CAS Web of Science Google Scholar
First citationKuhn, R. & Trischmann, H. (1963). Angew. Chem. Int. Ed. Engl. 2, 155.  CrossRef Google Scholar
First citationLe, T.-N., Trevisan, T., Lieu, E. & Brook, D. J. R. (2017). Eur. J. Org. Chem. 2017, 1125–1131.  Web of Science CrossRef CAS Google Scholar
First citationMatuschek, D., Eusterwiemann, S., Stegemann, L., Doerenkamp, C., Wibbeling, B., Daniliuc, C. G., Doltsinis, N. L., Strassert, C. A., Eckert, H. & Studer, A. (2015). Chem. Sci. 6, 4712–4716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationNeugebauer, F. A. & Fischer, H. (1980). Angew. Chem. Int. Ed. Engl. 19, 724–725.  CrossRef Web of Science Google Scholar
First citationNeugebauer, F. A., Fischer, H. & Siegel, R. (1988). Eur. J. Inorg. Chem. 121, 815–822.  CAS Google Scholar
First citationNeugebauer, F. A., Otting, W., Smith, H. O. & Trischmann, H. (1972). Eur. J. Inorg. Chem. 105, 549–553.  CAS Google Scholar
First citationNineham, A. W. (1955). Chem. Rev. 55, 355–483.  CrossRef CAS Web of Science Google Scholar
First citationOtting, W. & Neugebauer, F. A. (1969). Eur. J. Inorg. Chem. 102, 2520–2529.  CAS Google Scholar
First citationParé, E. C., Brook, D. J. R., Brieger, A., Badik, M. & Schinke, M. (2005). Org. Biomol. Chem. 3, 4258–4261.  Web of Science PubMed Google Scholar
First citationRatera, I. & Veciana, J. (2012). Chem. Soc. Rev. 41, 303–349.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. & Boyd, M. R. (1988). Cancer Res. 48, 4827–4833.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoll, S. & Schweiger, A. (2006). J. Magn. Reson. 178, 42–55.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrain, C., Norel, L. & Baumgarten, M. (2009). Coord. Chem. Rev. 253, 2342–2351.  Web of Science CrossRef CAS Google Scholar
First citationTunç, T. & Yıldırım, L. T. (2010). The Open Crystallogr. J. 3, 54–58.  Google Scholar
First citationVenneri, S., Wilson, J., Rawson, J. M. & Pilkington, M. (2015). ChemPlusChem 80, 1624-1633.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds