research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of methyl 3,5-di­bromo-4-cyano­benzoate and methyl 3,5-di­bromo-4-iso­cyano­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 31 January 2018; accepted 6 February 2018; online 13 February 2018)

The title crystals, C9H5Br2NO2, are the first reported 2,6-dihalophenyl cyanide–isocyanide pair that have neither three- nor two-dimensional isomorphism. Both crystals contain contacts between the carbonyl O atom and a Br atom. In the crystal of the cyanide, R22(10) inversion dimers form based on C≡N⋯Br contacts, a common packing feature in this series of crystals. In the isocyanide, the corresponding N≡C⋯Br contacts are not observed. Instead, the iso­cyano C atom forms contacts with the meth­oxy C atom. RNC was refined as a two-component pseudo-merohedral twin.

1. Chemical context & database survey

The crystal packing of 2,6-dihalophenyl cyanides and isocyanides is commonly influenced by C≡N⋯X or N≡C⋯X contacts, especially when X is Br or I (Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]). The crystal structures of isomeric, non-ligand cyanides and isocyanides are usually very similar. There are six reported 2,6-dihalophenyl cyanide–isocyanide pairs (Fig. 1[link]). Three are in the most recent update of the Cambridge Structural Database (CSD, Version 5.38, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), and three were recently completed by our group. The penta­fluoro [(Ia); Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]) and (Ib); Lentz & Preugschat, 1993[Lentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52-54.])], 2,6-di­bromo-4-methyl [(IIIa), (IIIb); Noland et al., 2017b[Noland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017b). Acta Cryst. E73, 1913-1916.]], 2,6-di­bromo-4-chloro [(IVa); Britton, 2005[Britton, D. (2005). Acta Cryst. E61, o1726-o1727.] and (IIVb); Noland & Tritch, 2018[Noland, W. E. & Tritch, K. J. (2018). IUCrData, 3, x171819.]], and 2,4,6-tri­iodo [(VIa), (VIb); Noland et al. 2018[Noland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98-102.]] pairs are each isomorphous. The 2,4,6-tri­chloro [(IIa), (IIb); Pink et al., 2000[Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.]] and 2,4,6-tri­bromo [(Va), (Vb); Britton et al., 2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]] pairs each have two-dimensional isomorphism and are polytypic.

[Scheme 1]
[Figure 1]
Figure 1
The six pairs of 2,6-dihalophenyl cyanides (_a) and isocyanides (_b) previously reported in the CSD. All corresponding crystal pairs are either isomorphous or polytypic.

Two simple 3,5-di­bromo­benzoate esters were found in the CSD (Fig. 2[link]). Crystals of (VII) contain C(6) chains of C=O⋯Br contacts (Saeed et al., 2010[Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982-o983.]), and crystals of (VIII) contain C(5) chains of Br⋯Br contacts (Reinhold & Rosati, 1994[Reinhold, A. R. & Rosati, R. L. (1994). Tetrahedron Asymmetry, 5, 1187-1190.]). A co-crystal of cyano acid (IXa) with anthracene was recently reported by our group (Noland et al. 2017a[Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017a). Acta Cryst. E73, 1743-1746.]). The corresponding iso­cyano acid (IXb) was not observed, probably because of the acid sensitivity of isocyanides (Ugi et al., 1965[Ugi, I., Fetzer, U., Eholzer, U., Knupfer, H. & Offermann, K. (1965). Angew. Chem. Int. Ed. Engl. 4, 472-484.]), preventing crystallographic comparison of (IXa) and (IXb). The title cyanide (RCN) and isocyanide (RNC) were synthetic inter­mediates to (IXa) and (IXb), and their crystals are presented instead.

[Figure 2]
Figure 2
3,5-Di­bromo­benzoates (VII) and (VIII) in the CSD. We recently reported (IXa); iso­cyano acid (IXb) was not observed.

2. Structural commentary

Mol­ecules of RCN and RNC (Fig. 3[link]) occupy general positions and have similar, typical geometry. Both benzene rings are nearly planar, with mean atomic deviations of 0.005 (2) and 0.002 (3) Å for RCN and RNC, respectively. The most prominent difference between the mol­ecular conformations is the bond angles about the meth­oxy O atoms, which are 117.1 (2)° for C8—O2—C9, and 114.8 (3)° for C18—O12—C19. In RNC, the compression about O12 is probably caused by repulsion between methyl groups in adjacent mol­ecules, rather than the N11≡C17⋯C19 short contact (Table 1[link]), because the C9—O2 and C19—O12 bond lengths are nearly identical.

Table 1
Contact geometry for RCN and RNC (Å, °)

A—B⋯C A—B B⋯C A—B⋯C
C1≡N1⋯Br2i 1.138 (3) 3.041 (3) 128.6 (2)
C8=O1⋯Br6ii 1.201 (3) 3.025 (2) 143.7 (2)
N11≡C17⋯C19iii 1.162 (5) 3.240 (6) 112.9 (3)
C18=O11⋯Br16iv 1.207 (5) 3.133 (3) 146.6 (3)
Symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) x + 1, −y + [{3\over 2}], z + [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].
[Figure 3]
Figure 3
The mol­ecular structures of (a) RCN and (b) RNC, with atom labeling and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

Mol­ecules of RCN form R22(10) inversion dimers based on C1≡N1⋯Br2 short contacts (Table 1[link]), similar to the centric contacts found in crystals of (II) and (IV)–(VI). Adjacent dimers are connected along [201] by C8=O1⋯Br6 contacts similar to those found in (VII). Adjacent dimers are mutually inclined by 44.03 (7)°. The resulting sheet structure (Fig. 4[link]) is staggered so that the methyl groups are spread apart to minimize steric congestion (Fig. 5[link]). Crystals of RNC have a different packing motif, a slice of which is anti­parallel ribbons parallel to [001] (Fig. 6[link]). Each mol­ecule of RNC participates in four short contacts between two pairs of mol­ecules that are related by the (x + 1, y, z) translation, forming a three-dimensional network. Contacted mol­ecules are mutually inclined by 42.0 (1)°. Half of the contacts are C18=O11⋯Br16 contacts, similar to those found in RCN and (VII). The other half are N11≡C17⋯C19 contacts, instead of the anti­cipated N11≡C17⋯Br12 contacts. It is inter­esting that the cyano group in RCN favors contacting a Br atom, but the iso­cyano group in RNC favors contacting the meth­oxy C atom.

[Figure 4]
Figure 4
The sheet structure in a crystal of RCN, viewed along [100]. Dashed magenta lines represent short contacts.
[Figure 5]
Figure 5
The sheet structure in a crystal of RCN, viewed along [503]. The same mol­ecules are shown as in Fig. 4[link].
[Figure 6]
Figure 6
A slice of a crystal of RNC parallel to (100), viewed nearly along [100].

4. Synthesis and crystallization

Methyl 4-amino-3,5-di­bromo­benzoate (RNH2) and methyl 3,5-di­bromo-4-cyano­benzoate (RCN) were taken from material prepared in our recent study (Noland et al. 2017a[Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017a). Acta Cryst. E73, 1743-1746.]; Fig. 7[link]).

[Figure 7]
Figure 7
The synthesis of RCN and RNC.

Methyl 3,5-di­bromo-4-formamido­benzoate (RFA) was prepared from (RNH2, 1.24 g) by the formyl­ation procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), with 1,2-di­chloro­ethane in place of tetra­hydro­furan, giving white needles (1.31 g, 97%). M.p. 489–490 K; 1H NMR (300 MHz, (CD3)2CO) δ 9.203 (s, 1H), 8.441 (s, 1H), 8.226 (s, 2H), 3.928 (s, 3H); 13C NMR (126 MHz, (CD3)2SO) δ 163.5 (1C), 160.2 (1C), 139.5 (1C), 132.5 (2C), 130.7 (1C), 123.5 (2C), 52.9 (1C); IR (KBr, cm−1) 3153, 1727, 1664, 1524, 1282, 1154, 966, 765, 749; MS–ESI [M + Na]+ calculated for C9H779Br81BrNO3 359.8664, found 359.8662.

Methyl 3,5-di­bromo-4-iso­cyano­benzoate (RNC) was prepared from (RFA, 594 mg) by the dehydration procedure described by Britton et al. (2016[Britton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178-183.]), giving a brown powder (490 mg), which was crystallized as described below (453 mg, 84%). M.p. 391–392 K; 1H NMR (500 MHz, CD2Cl2) δ 8.278 (s, H13A, H15A), 3.930 (s, H19A, H19B, H19C); 13C NMR (126 MHz, (CD3)2SO) δ 174.1 (C17), 163.0 (C18), 132.5 (C13, C15), 132.3 (C14), 130.1 (C11), 121.0 (C12, C16), 53.2 (C19); IR (KBr, cm−1) 3073, 2961, 2853, 2122, 1722, 1426, 1275, 971, 764, 753; MS–EI [M]+ calculated for C9H579Br81BrNO2 316.8682, found 316.8699.

Crystallization: Crystals of RCN and RNC were grown by slow evaporation of solutions in di­chloro­methane–pentane, followed by deca­ntation, washing with pentane, and then drying at room temperature and reduced pressure (10 Pa, 4 h). RCN was obtained as colorless blocks, and RNC was obtained as colorless needles.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A direct-methods solution was calculated, followed by full-matrix least squares/difference-Fourier cycles. All H atoms were placed in calculated positions and refined as riding atoms. For aryl H atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). For methyl H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). RNC was refined as a two-component pseudo-merohedral twin in an 0.67:0.33 ratio, with a 180° rotation of [001] as the twinning symmetry element.

Table 2
Experimental details

  RCN RNC
Crystal data
Chemical formula C9H5Br2NO2 C9H5Br2NO2
Mr 318.96 318.96
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 3.9273 (18), 17.881 (8), 14.739 (7) 3.9233 (9), 13.554 (3), 18.672 (4)
β (°) 93.757 (7) 90.002 (3)
V3) 1032.9 (8) 992.9 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.82 8.13
Crystal size (mm) 0.32 × 0.27 × 0.25 0.50 × 0.12 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.414, 0.746 0.418, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11889, 2426, 2013 11400, 2277, 2132
Rint 0.043 0.053
(sin θ/λ)max−1) 0.657 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.07 0.029, 0.069, 1.02
No. of reflections 2426 2277
No. of parameters 128 129
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.52 0.85, −0.65
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl 3,5-dibromo-4-cyanobenzoate (RCN) top
Crystal data top
C9H5Br2NO2Dx = 2.051 Mg m3
Mr = 318.96Melting point: 410 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.9273 (18) ÅCell parameters from 2977 reflections
b = 17.881 (8) Åθ = 2.7–27.6°
c = 14.739 (7) ŵ = 7.82 mm1
β = 93.757 (7)°T = 173 K
V = 1032.9 (8) Å3Block, colourless
Z = 40.32 × 0.27 × 0.25 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
2013 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.043
φ and ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.414, Tmax = 0.746k = 2323
11889 measured reflectionsl = 1919
2426 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.0295P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2426 reflectionsΔρmax = 0.37 e Å3
128 parametersΔρmin = 0.52 e Å3
Special details top

Experimental. Dr. K.J. Tritch / Prof. W.E. Noland

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6370 (6)0.65590 (14)0.86321 (17)0.0196 (5)
C20.7731 (6)0.67398 (14)0.95078 (16)0.0199 (5)
Br20.74408 (8)0.60384 (2)1.04534 (2)0.02954 (9)
C30.9245 (6)0.74304 (14)0.96807 (17)0.0204 (5)
H3A1.01690.75481.02750.024*
C40.9412 (6)0.79516 (14)0.89815 (17)0.0197 (5)
C50.8100 (6)0.77825 (14)0.81049 (16)0.0193 (5)
H5A0.82160.81380.76290.023*
C60.6624 (6)0.70889 (15)0.79351 (16)0.0193 (5)
Br60.49149 (7)0.68383 (2)0.67451 (2)0.02395 (9)
C70.4695 (7)0.58481 (16)0.84529 (18)0.0251 (6)
N10.3333 (6)0.52966 (14)0.82991 (16)0.0359 (6)
C81.1066 (6)0.86917 (14)0.92064 (17)0.0203 (5)
O11.2632 (5)0.88220 (11)0.99159 (14)0.0357 (5)
O21.0590 (5)0.91760 (10)0.85308 (13)0.0292 (5)
C91.2078 (8)0.99150 (15)0.8667 (2)0.0326 (7)
H9A1.16281.02150.81150.049*
H9B1.45480.98680.87980.049*
H9C1.10631.01610.91790.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (13)0.0179 (13)0.0226 (13)0.0008 (11)0.0018 (10)0.0010 (11)
C20.0187 (13)0.0237 (14)0.0174 (12)0.0018 (11)0.0022 (10)0.0039 (10)
Br20.03760 (18)0.02881 (17)0.02189 (15)0.00681 (12)0.00044 (12)0.00724 (11)
C30.0225 (13)0.0220 (14)0.0164 (12)0.0024 (11)0.0001 (10)0.0013 (10)
C40.0174 (13)0.0198 (13)0.0219 (13)0.0036 (10)0.0021 (10)0.0002 (10)
C50.0213 (14)0.0189 (14)0.0177 (13)0.0009 (10)0.0011 (10)0.0011 (10)
C60.0164 (13)0.0256 (14)0.0158 (12)0.0028 (10)0.0002 (10)0.0029 (10)
Br60.02657 (15)0.02717 (16)0.01735 (14)0.00102 (11)0.00436 (10)0.00197 (10)
C70.0273 (15)0.0289 (16)0.0189 (13)0.0006 (12)0.0009 (11)0.0023 (11)
N10.0486 (17)0.0303 (15)0.0282 (13)0.0132 (12)0.0021 (11)0.0024 (11)
C80.0214 (13)0.0207 (14)0.0187 (13)0.0020 (11)0.0014 (10)0.0007 (10)
O10.0487 (13)0.0283 (11)0.0283 (11)0.0060 (10)0.0112 (10)0.0008 (9)
O20.0403 (12)0.0195 (10)0.0270 (10)0.0074 (9)0.0036 (9)0.0025 (8)
C90.0387 (17)0.0196 (15)0.0388 (17)0.0077 (12)0.0018 (13)0.0053 (12)
Geometric parameters (Å, º) top
C1—C21.402 (4)C5—H5A0.9500
C1—C61.406 (4)C6—Br61.890 (2)
C1—C71.448 (4)C7—N11.138 (3)
C2—C31.387 (3)C8—O11.201 (3)
C2—Br21.884 (3)C8—O21.324 (3)
C3—C41.394 (3)O2—C91.454 (3)
C3—H3A0.9500C9—H9A0.9800
C4—C51.393 (3)C9—H9B0.9800
C4—C81.502 (4)C9—H9C0.9800
C5—C61.385 (4)
C2—C1—C6118.4 (2)C5—C6—C1121.4 (2)
C2—C1—C7120.8 (2)C5—C6—Br6119.93 (19)
C6—C1—C7120.8 (2)C1—C6—Br6118.71 (19)
C3—C2—C1120.5 (2)N1—C7—C1178.6 (3)
C3—C2—Br2120.19 (19)O1—C8—O2124.6 (2)
C1—C2—Br2119.32 (19)O1—C8—C4123.6 (2)
C2—C3—C4120.0 (2)O2—C8—C4111.9 (2)
C2—C3—H3A120.0C8—O2—C9117.1 (2)
C4—C3—H3A120.0O2—C9—H9A109.5
C5—C4—C3120.5 (2)O2—C9—H9B109.5
C5—C4—C8121.6 (2)H9A—C9—H9B109.5
C3—C4—C8117.8 (2)O2—C9—H9C109.5
C6—C5—C4119.2 (2)H9A—C9—H9C109.5
C6—C5—H5A120.4H9B—C9—H9C109.5
C4—C5—H5A120.4
C6—C1—C2—C30.9 (4)C4—C5—C6—Br6178.62 (18)
C7—C1—C2—C3178.1 (2)C2—C1—C6—C51.6 (4)
C6—C1—C2—Br2179.76 (18)C7—C1—C6—C5177.4 (2)
C7—C1—C2—Br21.2 (3)C2—C1—C6—Br6178.18 (18)
C1—C2—C3—C40.2 (4)C7—C1—C6—Br62.8 (3)
Br2—C2—C3—C4179.11 (18)C5—C4—C8—O1169.5 (3)
C2—C3—C4—C50.7 (4)C3—C4—C8—O110.1 (4)
C2—C3—C4—C8179.8 (2)C5—C4—C8—O210.4 (3)
C3—C4—C5—C60.0 (4)C3—C4—C8—O2170.0 (2)
C8—C4—C5—C6179.5 (2)O1—C8—O2—C90.0 (4)
C4—C5—C6—C11.2 (4)C4—C8—O2—C9179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br6i0.952.973.878 (3)160
Symmetry code: (i) x+1, y+3/2, z+1/2.
Methyl 3,5-dibromo-4-isocyanobenzoate (RNC) top
Crystal data top
C9H5Br2NO2Dx = 2.134 Mg m3
Mr = 318.96Melting point: 391 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.9233 (9) ÅCell parameters from 2953 reflections
b = 13.554 (3) Åθ = 2.2–27.4°
c = 18.672 (4) ŵ = 8.13 mm1
β = 90.002 (3)°T = 173 K
V = 992.9 (4) Å3Needle, colourless
Z = 40.50 × 0.12 × 0.03 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
2132 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.053
φ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.418, Tmax = 0.746k = 1717
11400 measured reflectionsl = 2424
2277 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2277 reflectionsΔρmax = 0.85 e Å3
129 parametersΔρmin = 0.65 e Å3
Special details top

Experimental. Dr. K.J. Tritch / Prof. W.E. Noland

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component pseudo-merohedral twin in an 0.67:0.33 ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5312 (10)0.5930 (3)0.6880 (2)0.0187 (7)
C120.6653 (9)0.5605 (2)0.6228 (2)0.0193 (7)
Br120.85319 (11)0.43306 (2)0.61597 (2)0.02497 (11)
C130.6606 (10)0.6211 (2)0.5634 (2)0.0216 (8)
H13A0.75040.59830.51920.026*
C140.5246 (10)0.7153 (2)0.56835 (19)0.0188 (8)
C150.3900 (9)0.7501 (2)0.63284 (19)0.0185 (8)
H15A0.29710.81470.63600.022*
C160.3944 (9)0.6887 (3)0.69219 (18)0.0181 (7)
Br160.21859 (11)0.73312 (2)0.78028 (2)0.02528 (11)
N110.5307 (9)0.5321 (2)0.74742 (17)0.0240 (7)
C170.5282 (15)0.4800 (3)0.7968 (2)0.0402 (11)
C180.5255 (11)0.7760 (2)0.5011 (2)0.0210 (8)
O110.6712 (9)0.75012 (19)0.44732 (15)0.0321 (7)
O120.3467 (8)0.85902 (17)0.50681 (14)0.0270 (6)
C190.3135 (13)0.9150 (3)0.4408 (2)0.0306 (9)
H19A0.17940.97470.44980.046*
H19B0.19840.87450.40460.046*
H19C0.54040.93350.42340.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0214 (19)0.0192 (16)0.0153 (18)0.0050 (15)0.0002 (15)0.0001 (14)
C120.0169 (19)0.0166 (15)0.0246 (19)0.0021 (13)0.0002 (18)0.0022 (13)
Br120.0280 (2)0.01584 (15)0.0310 (2)0.00238 (13)0.0011 (2)0.00255 (14)
C130.021 (2)0.0209 (16)0.0231 (19)0.0018 (15)0.0031 (16)0.0034 (14)
C140.023 (2)0.0176 (16)0.0160 (18)0.0025 (14)0.0008 (15)0.0007 (14)
C150.020 (2)0.0185 (15)0.0175 (19)0.0019 (13)0.0019 (15)0.0022 (13)
C160.0196 (19)0.0210 (16)0.0138 (16)0.0049 (14)0.0001 (14)0.0060 (13)
Br160.0296 (2)0.02670 (18)0.01950 (19)0.00182 (15)0.00484 (19)0.00694 (13)
N110.0310 (19)0.0198 (15)0.0213 (17)0.0029 (13)0.0011 (14)0.0014 (13)
C170.065 (3)0.028 (2)0.027 (2)0.008 (2)0.003 (2)0.0025 (19)
C180.027 (2)0.0172 (17)0.0187 (19)0.0031 (14)0.0015 (16)0.0021 (14)
O110.048 (2)0.0235 (12)0.0245 (15)0.0022 (14)0.0087 (16)0.0019 (10)
O120.0391 (17)0.0219 (12)0.0201 (13)0.0055 (12)0.0001 (13)0.0016 (10)
C190.039 (3)0.0269 (18)0.026 (2)0.0042 (19)0.003 (2)0.0071 (15)
Geometric parameters (Å, º) top
C11—N111.383 (5)C15—H15A0.9500
C11—C121.396 (5)C16—Br161.882 (3)
C11—C161.407 (5)N11—C171.162 (5)
C12—C131.379 (5)C18—O111.207 (5)
C12—Br121.883 (3)C18—O121.331 (4)
C13—C141.387 (5)O12—C191.454 (4)
C13—H13A0.9500C19—H19A0.9800
C14—C151.397 (5)C19—H19B0.9800
C14—C181.501 (5)C19—H19C0.9800
C15—C161.386 (5)
N11—C11—C12120.8 (3)C15—C16—C11120.9 (3)
N11—C11—C16120.3 (3)C15—C16—Br16120.2 (3)
C12—C11—C16118.9 (3)C11—C16—Br16118.9 (3)
C13—C12—C11120.5 (3)C17—N11—C11179.1 (4)
C13—C12—Br12119.8 (3)O11—C18—O12124.2 (4)
C11—C12—Br12119.7 (3)O11—C18—C14122.6 (3)
C12—C13—C14120.0 (3)O12—C18—C14113.2 (3)
C12—C13—H13A120.0C18—O12—C19114.8 (3)
C14—C13—H13A120.0O12—C19—H19A109.5
C13—C14—C15120.9 (3)O12—C19—H19B109.5
C13—C14—C18116.6 (3)H19A—C19—H19B109.5
C15—C14—C18122.5 (3)O12—C19—H19C109.5
C16—C15—C14118.8 (3)H19A—C19—H19C109.5
C16—C15—H15A120.6H19B—C19—H19C109.5
C14—C15—H15A120.6
N11—C11—C12—C13179.1 (3)C14—C15—C16—Br16179.5 (3)
C16—C11—C12—C130.6 (6)N11—C11—C16—C15179.3 (4)
N11—C11—C12—Br120.8 (5)C12—C11—C16—C150.4 (5)
C16—C11—C12—Br12179.5 (3)N11—C11—C16—Br161.1 (5)
C11—C12—C13—C140.6 (6)C12—C11—C16—Br16179.2 (3)
Br12—C12—C13—C14179.5 (3)C13—C14—C18—O118.6 (6)
C12—C13—C14—C150.3 (6)C15—C14—C18—O11172.4 (4)
C12—C13—C14—C18179.3 (4)C13—C14—C18—O12170.5 (3)
C13—C14—C15—C160.0 (6)C15—C14—C18—O128.5 (6)
C18—C14—C15—C16179.0 (3)O11—C18—O12—C194.8 (6)
C14—C15—C16—C110.1 (6)C14—C18—O12—C19174.2 (4)
Contact geometry for RCN and RNC (Å, °) top
A—B···CA—BB···CA—B···C
C1N1···Br2i1.138 (3)3.041 (3)128.6 (2)
C8O1···Br6ii1.201 (3)3.025 (2)143.7 (2)
N11C17···C19iii1.162 (5)3.240 (6)112.9 (3)
C18O11···Br16iv1.207 (5)3.133 (3)146.6 (3)
Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x + 1, -y + 3/2, z + 1/2; (iii) x + 1/2, -y + 3/2, z + 1/2; (iv) x + 1/2, -y + 3/2, z - 1/2.
 

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project. This work was taken in large part from the PhD thesis of KJT (Tritch, 2017[Tritch, K. J. (2017). PhD thesis. University of Minnesota, Minneapolis, MN, USA.]).

References

First citationBond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231–o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2005). Acta Cryst. E61, o1726–o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D., Noland, W. E. & Tritch, K. J. (2016). Acta Cryst. E72, 178–183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLentz, D. & Preugschat, D. (1993). Acta Cryst. C49, 52–54.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98–102.  CSD CrossRef IUCr Journals Google Scholar
First citationNoland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017a). Acta Cryst. E73, 1743–1746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017b). Acta Cryst. E73, 1913–1916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoland, W. E. & Tritch, K. J. (2018). IUCrData, 3, x171819.  Google Scholar
First citationPink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReinhold, A. R. & Rosati, R. L. (1994). Tetrahedron Asymmetry, 5, 1187–1190.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982–o983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTritch, K. J. (2017). PhD thesis. University of Minnesota, Minneapolis, MN, USA.  Google Scholar
First citationUgi, I., Fetzer, U., Eholzer, U., Knupfer, H. & Offermann, K. (1965). Angew. Chem. Int. Ed. Engl. 4, 472–484.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds