research communications
Different molecular conformations in the crystal structures of three 5-nitroimidazolyl derivatives
aInstituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, bPrograma de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dCFisUC, Physics Department, University of Coimbra, Rua Larga 3004–516, Coimbra, Portugal, and eDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The crystal structures of (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-benzyloxime, C12H12N4O3, (I), (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-(4-fluorobenzyl) oxime, C12H11FN4O3, (II), and (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-(4-bromobenzyl) oxime, C12H11BrN4O3, (III), are described. The dihedral angle between the ring systems in (I) is 49.66 (5)° and the linking Nm—C—C=N (m = methylated) bond shows an anti conformation [torsion angle = 175.00 (15)°]. Compounds (II) and (III) are isostructural [dihedral angle between the aromatic rings = 8.31 (5)° in (II) and 5.34 (15)° in (III)] and differ from (I) in showing a near-syn conformation for the Nm—C—C=N linker [torsion angles for (II) and (III) = 17.64 (18) and 8.7 (5)°, respectively], which allows for the occurrence of a short intramolecular C—H⋯N contact. In the crystal of (I), C—H⋯N hydrogen bonds link the molecules into [010] chains, which are cross-linked by very weak C—H⋯O bonds into (100) sheets. Weak aromatic π–π stacking interactions occur between the sheets. The extended structures of (II) and (III) feature several C—H⋯N and C—H⋯O hydrogen bonds, which link the molecules into three-dimensional networks, which are consolidated by aromatic π–π stacking interactions. Conformational energy calculations and Hirshfeld fingerprint analyses for (I), (II) and (III) are presented and discussed.
Keywords: benzoxathiol-2-one; hydrogen bonds; Hirshfeld surface; crystal structure.
1. Chemical context
Trypanosomes infect a variety of hosts and cause various serious illnesses, including sleeping sickness (transmitted by Trypanosoma brucei) and Chagas' disease. The infectious agent of Chagas' disease is the protozoan parasite Trypanosoma cruzi, which produces progressive symptoms from mild swelling to intestinal disease and ultimately heart failure (Rassi et al., 2010). New effective drugs are urgently required for the treatment of Chagas' disease, which infects an estimated 6.6 million people worldwide (Rassi et al., 2010): benznidazole and nifurtimox have been the only recognised treatments for over 40 years and both drugs present variable results and undesirable side effects (Soeiro & Castro, 2011). Megazol, while active, also has serious side effects (Poli et al. 2002).
We have recently described (Carvalho et al., 2017) the syntheses and biological activities of a family of 5-nitroimidazolyl-O-benzyloxime which displayed moderate antitrypanosidal activity. We now report the crystal structures, Hirshfeld surface analyses and conformational energy calculations for three compounds from that study, viz. (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-benzyloxime, C12H12N4O3 (I), (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-(4-fluorobenzyl) oxime C12H11FN4O3 (II) and (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehyde O-(4-bromobenzyl) oxime, C12H11BrN4O3 (III).
2. Structural commentary
Compound (I) crystallizes in P21/c with one molecule in the (Fig. 1 and Table 1). The dihedral angle between the imidazole ring (C1/C2/C3/N1/N2) and phenyl group (C7–C12) is 49.66 (5)°. The N4/O2/O3 nitro group is approximately coplanar with its attached ring [dihedral angle = 7.87 (17)°]. The C—C and C—N bond lengths within the heterocyclic ring show typical values and N2 is statistically planar (bond-angle sum = 359.7°). The angle C1—N2—C4 [129.47 (13)°] is significantly greater than C3—N2—C4 [126.14 (14)°] perhaps because of steric repulsion between the C4 methyl group and the nitro group. The key parameter defining the conformation of the molecule of (I) is the N2—C3—C5=N3 torsion angle: the value of 175.00 (15)° indicates an anti conformation for these atoms. The rest of the chain linking the rings can be described as extended in terms of the C3—C5=N3—O1, C5=N3—O1—C6 and N3—O1—C6—C7 torsion angles of 175.55 (14), −172.50 (15) and 172.62 (14)°, respectively. The major twist in the molecule of (I) occurs about the C6—C7 bond as indicated by the O1—C6—C7—C12 torsion angle of −45.5 (2)°. Assuming that the rotating-group model for the C4 methyl group is reliable, it may be seen that this group has twisted about the N2—C4 bond to reduce steric repulsion with H5, although a rather short intramolecular contact (H5⋯H4C = 2.12 Å) is still present.
|
Compounds (II) and (III) are isostructural, crystallizing in P21/n with one molecule in the (Figs. 2 and 3). The dihedral angles between the aromatic rings for (II) and (III) are 8.31 (5) and 5.34 (15)°, respectively, whereas the dihedral angles for the nitro group and its attached ring are 2.83 (11) and 5.9 (30)°, respectively. The geometrical data for the imidazole rings in (II) and (III) show no significant differences compared to (I) but a major conformational difference is seen in terms of the N2—C3—C5=N3 torsion angles of 17.64 (18) for (II) and 8.7 (5)° for (III), indicating an approximate syn conformation, as opposed to anti for (I). This reorientation facilitates the formation of an intramolecular C4—H4C⋯N3 hydrogen bond in both (II) (Table 2) and (III) (Table 3). The rest of the linking chain displays an extended conformation in both (II) and (III) with respective C3—C5=N3—O1, C5=N3—O1—C6 and N3—O1—C6—C7 torsion angles of 179.79 (9), −173.96 (9) and 175.61 (8)° in (II) and 179.2 (2), −171.8 (2) and 179.7 (2)° in (III). The C6—C7 bond in (II) and (III) is somewhat less twisted than in (I), with O1—C6—C7—C8 torsion angles of −30.95 (14) and −23.1 (4)° for (II) and (III), respectively.
|
3. Computational calculations
The different conformations of (I) compared to (II) and (III) were investigated by computational means. All calculations were performed with the Orca software package version 4.0.0.2 (Neese, 2012). Geometry optimizations were performed at the spin-component-scaled MP2 (SCS-MP2) level (Grimme, 2003) using the Def2-TZVP (Hellweg et al., 2007) basis set. Optimized geometries were then subjected to single-point energy calculations at the SCS-MP2 level with the larger Def2-QZVPP basis set to obtain final relative conformational energies. Geometry optimizations and single point energies were repeated using the SMD method to model the methanol solvent environment (Marenich et al., 2009) used in the crystallization experiments. The results (Table 4) show that the syn conformation [i.e. that found for (II) and (III)] is favoured for all substituents by roughly the same energy (with the energy of the syn conformer arbitrarily defined to be zero in each case) either in vacuo or in a methanol solvent environment, although the differences in the latter case are quite small.
4. Supramolecular features
In the crystal of (I), the molecules are linked by C—H⋯N hydrogen bonds (Table 1) to generate [010] C(6) chains, with adjacent molecules related by the 21 screw axis (Fig. 4). The C5—H5⋯O3 contact is long and the angle is small, but if it is regarded as significant, it serves to cross-link the chains into (100) sheets. Weak aromatic π–π stacking interactions arise between the sheets, such that each imidazole ring is sandwiched by two phenyl groups and vice versa [centroid–centroid separations = 3.7355 (10) and 4.1184 (10) Å; corresponding slippages = 1.35 and 2.25 Å, respectively].
There are a number of intermolecular interactions in (II) (Table 2) and (III) (Table 3) and together they lead to three-dimensional networks in each case. It is interesting that the C9—H9⋯N1 interaction in (II) is clearly a directional bond [H⋯N = 2.58 Å compared to a van der Waals contact distance (Bondi, 1964) of 2.75 Å for these atoms] whereas the equivalent contact in (III), included in Table 3 for completeness, has an H⋯N separation of 2.77 Å and, by itself, would be very doubtful as a bond, which shows that can show distinct variations in their weak interactions. This is supported by the presence of a weak C4—H4C⋯Br1 bond in (III) (H⋯Br = 2.85 Å, van der Waals contact distance = 3.05 Å) whilst the equivalent link in (II) has H⋯F = 2.77 Å, significantly greater than the van der Waals contact distance of 2.67 Å and would not be regarded as a significant bond. As in (I), π–π stacking appears to consolidate the crystals of (II) and (III), in which the imidazole rings and phenyl rings form alternating stacks, which propagate in [100]. In (II), the imidazole ring faces phenyl rings with centroid–centroid (slippage) distances of 3.7297 (7) (1.23) and 3.9323 (7) Å (1.64 Å). Equivalent data for (III) are 3.7664 (18) (1.47) and 3.9698 (18) Å (1.82 Å).
5. Hirshfeld surface analysis
Hirshfeld surface fingerprint plots for (I), (II) and (III) (supplementary Figs. 1, 2 and 3, respectively) were calculated with CrystalExplorer17 (Turner et al., 2017). When the fingerprint plots are decomposed into the separate types of intermolecular contacts (McKinnon et al., 2007), it may be seen (Table 5) that as a percentage of surface interactions, H⋯H contacts (i.e. van der Waals interactions) are the most significant in each structure, followed by O⋯H/H⋯O contacts. It is interesting the percentage of the latter for (I) is slightly higher than for (II), despite the fact that (I) features one weak C—H⋯O bond at best whilst (II) features three such bonds. The C⋯C contacts (associated with aromatic π–π stacking) contribute a very small percentage in each structure, which is slightly surprising given the significant π–π stacking interactions noted above. Finally, it may be noted that the C⋯H/H⋯C and N⋯N/H⋯N contributions for (I) and the C⋯H/H⋯C, N⋯N/H⋯N and X—H/H⋯X contributions for (II) and (III) sum to approximately the same amount.
|
Beyond a vague appeal to `packing forces', we find it difficult to explain why (I) forms the energetically disfavoured anti conformation in the crystal: it allows the C5—H5 group to form a weak hydrogen bond (Table 1) to a nitro group oxygen atom but it should be noted that the same grouping forms a similar bond in the opposite direction (i.e. pointing away from C4) in both (II) and (III). The syn conformation for (II) and (III) seems to be favoured in terms of the occurrence of an intramolecular C—H⋯N link and it is possible that weak C—H⋯X (X = F, Br) interactions in the crystals of (II) and (III) provide some stabilization not possible in (I), although they are at the opposite end of the molecule. The Hirshfeld fingerprint data (Table 5) show that N⋯H/H⋯N and C⋯H/H⋯C contacts are somewhat more significant in the crystal of (I) but the energetic consequences of these are not clear. We cannot rule out the posssibility that a polymorph of (I) may exist in which the Nm—C—C=N grouping has a syn conformation but with a different overall packing motif to (II) and (III).
6. Database survey
A survey of of the Cambridge Structural Database (Groom et al., 2016: updated to January 2018) for the 1-methyl 5-nitro imidazole fragment revealed 33 hits. The 4-methyl-substituted analogue of the title compounds, N-[(4-methylbenzyl)oxy]-1-(1-methyl-5-nitro-1H-imidazol-2-yl)methanimine (refcode: TEVGAF), has been reported by Carvalho et al. (2017): its Nm—C—C=N torsion angle is −30.7 (2)°, i.e. somewhat twisted from syn.
7. Synthesis and crystallization
The syntheses and spectroscopic data of the title compounds have already been described (Carvalho et al., 2017). The crystals used for data collections in this study were recrystallized from methanol solution in each case as colourless plates of (I), orange blocks of (II) and yellow blocks of (III).
8. Refinement
Crystal data, data collection and structure . The hydrogen atoms were geometrically placed (C—H = 0.95–0.99Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989018002876/mw2136sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002876/mw2136Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018002876/mw2136IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018002876/mw2136IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002876/mw2136Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002876/mw2136IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002876/mw2136IIIsup7.cml
Supplementary Figures 1, 2 and 3: Hirshfeld fingerprint plots. DOI: https://doi.org/10.1107/S2056989018002876/mw2136sup8.pdf
For all structures, data collection: CrystalClear (Rigaku, 2012); cell
CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C12H12N4O3 | F(000) = 544 |
Mr = 260.26 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6399 (5) Å | Cell parameters from 7971 reflections |
b = 10.5071 (7) Å | θ = 2.4–27.5° |
c = 14.9243 (11) Å | µ = 0.11 mm−1 |
β = 97.942 (3)° | T = 100 K |
V = 1186.53 (14) Å3 | Plate, colourless |
Z = 4 | 0.11 × 0.07 × 0.03 mm |
Rigaku Saturn724+ CCD diffractometer | 1891 reflections with I > 2σ(I) |
ω scans | Rint = 0.055 |
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 27.5°, θmin = 2.4° |
Tmin = 0.618, Tmax = 1.000 | h = −9→6 |
7757 measured reflections | k = −13→13 |
2705 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0674P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
2705 reflections | Δρmax = 0.24 e Å−3 |
173 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.2026 (2) | 0.18424 (17) | 0.08287 (11) | 0.0272 (4) | |
C2 | −0.1242 (2) | 0.06989 (17) | 0.10516 (11) | 0.0302 (4) | |
H2 | −0.1177 | 0.0010 | 0.0646 | 0.036* | |
C3 | −0.0953 (2) | 0.18453 (17) | 0.22478 (11) | 0.0262 (4) | |
C4 | −0.2593 (2) | 0.38590 (16) | 0.17211 (11) | 0.0295 (4) | |
H4A | −0.3780 | 0.3918 | 0.1378 | 0.044* | |
H4B | −0.1832 | 0.4512 | 0.1508 | 0.044* | |
H4C | −0.2661 | 0.3991 | 0.2365 | 0.044* | |
C5 | −0.0422 (2) | 0.23260 (16) | 0.31595 (11) | 0.0277 (4) | |
H5 | −0.0610 | 0.3193 | 0.3300 | 0.033* | |
C6 | 0.1846 (3) | 0.13647 (17) | 0.51983 (12) | 0.0353 (5) | |
H6A | 0.2794 | 0.0969 | 0.4903 | 0.042* | |
H6B | 0.1069 | 0.0680 | 0.5372 | 0.042* | |
C7 | 0.2641 (2) | 0.20824 (16) | 0.60261 (11) | 0.0275 (4) | |
C8 | 0.2637 (2) | 0.15343 (17) | 0.68727 (11) | 0.0296 (4) | |
H8 | 0.2039 | 0.0751 | 0.6927 | 0.036* | |
C9 | 0.3508 (2) | 0.21295 (18) | 0.76444 (12) | 0.0328 (4) | |
H9 | 0.3522 | 0.1739 | 0.8220 | 0.039* | |
C10 | 0.4346 (2) | 0.32796 (18) | 0.75770 (12) | 0.0336 (4) | |
H10 | 0.4943 | 0.3680 | 0.8103 | 0.040* | |
C11 | 0.4313 (2) | 0.38490 (17) | 0.67342 (12) | 0.0327 (4) | |
H11 | 0.4865 | 0.4652 | 0.6686 | 0.039* | |
C12 | 0.3475 (2) | 0.32503 (17) | 0.59602 (11) | 0.0293 (4) | |
H12 | 0.3471 | 0.3639 | 0.5385 | 0.035* | |
N1 | −0.05705 (18) | 0.06958 (14) | 0.19410 (9) | 0.0292 (4) | |
N2 | −0.18520 (17) | 0.25946 (13) | 0.15896 (9) | 0.0257 (3) | |
N3 | 0.03028 (18) | 0.15619 (14) | 0.37682 (9) | 0.0287 (3) | |
N4 | −0.28663 (19) | 0.22404 (14) | −0.00435 (9) | 0.0308 (4) | |
O1 | 0.08352 (16) | 0.22291 (11) | 0.45775 (7) | 0.0304 (3) | |
O2 | −0.33264 (17) | 0.33549 (12) | −0.01644 (8) | 0.0382 (3) | |
O3 | −0.30669 (18) | 0.14106 (13) | −0.06357 (8) | 0.0402 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0262 (8) | 0.0346 (9) | 0.0192 (8) | −0.0040 (7) | −0.0031 (6) | 0.0003 (7) |
C2 | 0.0309 (9) | 0.0354 (9) | 0.0224 (9) | −0.0024 (8) | −0.0026 (7) | −0.0007 (7) |
C3 | 0.0231 (8) | 0.0319 (9) | 0.0215 (8) | −0.0024 (7) | −0.0038 (6) | 0.0032 (7) |
C4 | 0.0303 (9) | 0.0299 (8) | 0.0257 (9) | 0.0015 (7) | −0.0055 (7) | 0.0003 (7) |
C5 | 0.0276 (9) | 0.0319 (8) | 0.0215 (8) | −0.0012 (7) | −0.0033 (7) | 0.0000 (7) |
C6 | 0.0412 (10) | 0.0328 (9) | 0.0270 (9) | 0.0019 (8) | −0.0131 (8) | 0.0024 (8) |
C7 | 0.0243 (8) | 0.0320 (9) | 0.0232 (8) | 0.0031 (7) | −0.0070 (6) | 0.0001 (7) |
C8 | 0.0266 (8) | 0.0335 (9) | 0.0272 (9) | 0.0006 (7) | −0.0018 (7) | 0.0034 (7) |
C9 | 0.0328 (9) | 0.0427 (10) | 0.0211 (9) | 0.0104 (8) | −0.0030 (7) | 0.0024 (8) |
C10 | 0.0305 (9) | 0.0404 (10) | 0.0263 (9) | 0.0069 (8) | −0.0090 (7) | −0.0072 (8) |
C11 | 0.0271 (9) | 0.0317 (9) | 0.0366 (10) | −0.0005 (7) | −0.0049 (7) | −0.0031 (8) |
C12 | 0.0285 (9) | 0.0344 (9) | 0.0230 (9) | 0.0024 (8) | −0.0031 (7) | 0.0037 (7) |
N1 | 0.0306 (7) | 0.0339 (8) | 0.0212 (7) | −0.0019 (6) | −0.0033 (6) | 0.0012 (6) |
N2 | 0.0247 (7) | 0.0305 (7) | 0.0197 (7) | −0.0012 (6) | −0.0049 (6) | 0.0002 (6) |
N3 | 0.0282 (7) | 0.0355 (8) | 0.0203 (7) | −0.0027 (6) | −0.0040 (6) | −0.0042 (6) |
N4 | 0.0321 (8) | 0.0374 (8) | 0.0202 (7) | −0.0036 (7) | −0.0054 (6) | 0.0002 (7) |
O1 | 0.0334 (7) | 0.0358 (6) | 0.0185 (6) | 0.0028 (5) | −0.0087 (5) | −0.0025 (5) |
O2 | 0.0460 (8) | 0.0378 (7) | 0.0271 (7) | 0.0049 (6) | −0.0085 (6) | 0.0048 (6) |
O3 | 0.0500 (8) | 0.0428 (7) | 0.0236 (7) | −0.0058 (6) | −0.0097 (6) | −0.0054 (6) |
C1—C2 | 1.363 (2) | C6—H6A | 0.9900 |
C1—N2 | 1.375 (2) | C6—H6B | 0.9900 |
C1—N4 | 1.432 (2) | C7—C8 | 1.389 (2) |
C2—N1 | 1.355 (2) | C7—C12 | 1.392 (2) |
C2—H2 | 0.9500 | C8—C9 | 1.396 (2) |
C3—N1 | 1.338 (2) | C8—H8 | 0.9500 |
C3—N2 | 1.368 (2) | C9—C10 | 1.378 (3) |
C3—C5 | 1.456 (2) | C9—H9 | 0.9500 |
C4—N2 | 1.468 (2) | C10—C11 | 1.390 (3) |
C4—H4A | 0.9800 | C10—H10 | 0.9500 |
C4—H4B | 0.9800 | C11—C12 | 1.391 (2) |
C4—H4C | 0.9800 | C11—H11 | 0.9500 |
C5—N3 | 1.279 (2) | C12—H12 | 0.9500 |
C5—H5 | 0.9500 | N3—O1 | 1.4071 (16) |
C6—O1 | 1.4428 (19) | N4—O2 | 1.2287 (18) |
C6—C7 | 1.502 (2) | N4—O3 | 1.2359 (18) |
C2—C1—N2 | 108.43 (14) | C12—C7—C6 | 121.42 (15) |
C2—C1—N4 | 127.30 (16) | C7—C8—C9 | 120.27 (17) |
N2—C1—N4 | 124.26 (15) | C7—C8—H8 | 119.9 |
N1—C2—C1 | 109.59 (15) | C9—C8—H8 | 119.9 |
N1—C2—H2 | 125.2 | C10—C9—C8 | 120.40 (16) |
C1—C2—H2 | 125.2 | C10—C9—H9 | 119.8 |
N1—C3—N2 | 112.68 (14) | C8—C9—H9 | 119.8 |
N1—C3—C5 | 125.95 (14) | C9—C10—C11 | 119.54 (16) |
N2—C3—C5 | 121.28 (15) | C9—C10—H10 | 120.2 |
N2—C4—H4A | 109.5 | C11—C10—H10 | 120.2 |
N2—C4—H4B | 109.5 | C10—C11—C12 | 120.36 (17) |
H4A—C4—H4B | 109.5 | C10—C11—H11 | 119.8 |
N2—C4—H4C | 109.5 | C12—C11—H11 | 119.8 |
H4A—C4—H4C | 109.5 | C11—C12—C7 | 120.16 (16) |
H4B—C4—H4C | 109.5 | C11—C12—H12 | 119.9 |
N3—C5—C3 | 118.90 (15) | C7—C12—H12 | 119.9 |
N3—C5—H5 | 120.5 | C3—N1—C2 | 105.18 (14) |
C3—C5—H5 | 120.5 | C3—N2—C1 | 104.12 (14) |
O1—C6—C7 | 109.39 (14) | C3—N2—C4 | 126.14 (14) |
O1—C6—H6A | 109.8 | C1—N2—C4 | 129.47 (13) |
C7—C6—H6A | 109.8 | C5—N3—O1 | 110.01 (13) |
O1—C6—H6B | 109.8 | O2—N4—O3 | 124.23 (14) |
C7—C6—H6B | 109.8 | O2—N4—C1 | 119.68 (14) |
H6A—C6—H6B | 108.2 | O3—N4—C1 | 116.09 (14) |
C8—C7—C12 | 119.23 (15) | N3—O1—C6 | 107.65 (12) |
C8—C7—C6 | 119.24 (16) | ||
N2—C1—C2—N1 | 0.2 (2) | C1—C2—N1—C3 | −0.16 (19) |
N4—C1—C2—N1 | 178.92 (15) | N1—C3—N2—C1 | 0.01 (19) |
N1—C3—C5—N3 | −8.6 (3) | C5—C3—N2—C1 | 176.86 (15) |
N2—C3—C5—N3 | 175.00 (15) | N1—C3—N2—C4 | 174.49 (15) |
O1—C6—C7—C8 | 138.31 (16) | C5—C3—N2—C4 | −8.7 (2) |
O1—C6—C7—C12 | −45.5 (2) | C2—C1—N2—C3 | −0.11 (18) |
C12—C7—C8—C9 | −2.0 (3) | N4—C1—N2—C3 | −178.90 (15) |
C6—C7—C8—C9 | 174.21 (16) | C2—C1—N2—C4 | −174.33 (16) |
C7—C8—C9—C10 | 1.4 (3) | N4—C1—N2—C4 | 6.9 (3) |
C8—C9—C10—C11 | 0.3 (3) | C3—C5—N3—O1 | 175.55 (14) |
C9—C10—C11—C12 | −1.5 (3) | C2—C1—N4—O2 | −171.21 (18) |
C10—C11—C12—C7 | 0.9 (3) | N2—C1—N4—O2 | 7.4 (3) |
C8—C7—C12—C11 | 0.9 (3) | C2—C1—N4—O3 | 8.3 (3) |
C6—C7—C12—C11 | −175.28 (16) | N2—C1—N4—O3 | −173.14 (16) |
N2—C3—N1—C2 | 0.09 (19) | C5—N3—O1—C6 | −172.50 (15) |
C5—C3—N1—C2 | −176.59 (16) | C7—C6—O1—N3 | 172.62 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···N3i | 0.98 | 2.51 | 3.466 (2) | 165 |
C5—H5···O3ii | 0.95 | 2.65 | 3.175 (2) | 115 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2. |
C12H11FN4O3 | F(000) = 576 |
Mr = 278.25 | Dx = 1.481 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5484 (2) Å | Cell parameters from 7472 reflections |
b = 12.6442 (4) Å | θ = 3.1–27.5° |
c = 13.4150 (9) Å | µ = 0.12 mm−1 |
β = 102.988 (7)° | T = 120 K |
V = 1247.62 (10) Å3 | Block, orange |
Z = 4 | 0.19 × 0.13 × 0.10 mm |
Rigaku Saturn724+ CCD diffractometer | 2292 reflections with I > 2σ(I) |
ω scans | Rint = 0.021 |
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 27.5°, θmin = 3.1° |
Tmin = 0.802, Tmax = 1.000 | h = −9→9 |
8522 measured reflections | k = −14→16 |
2848 independent reflections | l = −14→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.1808P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2848 reflections | Δρmax = 0.29 e Å−3 |
182 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.40044 (15) | 0.59196 (9) | 0.16775 (9) | 0.0177 (2) | |
C2 | 0.38559 (16) | 0.48697 (9) | 0.14129 (9) | 0.0192 (3) | |
H2 | 0.3923 | 0.4590 | 0.0765 | 0.023* | |
C3 | 0.35720 (15) | 0.49975 (9) | 0.29626 (9) | 0.0160 (2) | |
C4 | 0.40828 (17) | 0.69554 (9) | 0.33328 (9) | 0.0213 (3) | |
H4A | 0.3204 | 0.7499 | 0.3025 | 0.032* | |
H4B | 0.5320 | 0.7228 | 0.3401 | 0.032* | |
H4C | 0.3892 | 0.6769 | 0.4010 | 0.032* | |
C5 | 0.32784 (15) | 0.46335 (9) | 0.39394 (9) | 0.0176 (2) | |
H5 | 0.3457 | 0.3906 | 0.4109 | 0.021* | |
C6 | 0.18665 (15) | 0.54029 (9) | 0.60895 (9) | 0.0185 (2) | |
H6A | 0.0718 | 0.5716 | 0.5697 | 0.022* | |
H6B | 0.2737 | 0.5984 | 0.6330 | 0.022* | |
C7 | 0.15188 (14) | 0.47943 (9) | 0.69873 (9) | 0.0175 (2) | |
C8 | 0.10500 (15) | 0.37210 (9) | 0.69078 (9) | 0.0201 (3) | |
H8 | 0.1018 | 0.3354 | 0.6286 | 0.024* | |
C9 | 0.06311 (16) | 0.31892 (10) | 0.77312 (10) | 0.0238 (3) | |
H9 | 0.0328 | 0.2459 | 0.7684 | 0.029* | |
C10 | 0.06662 (16) | 0.37454 (11) | 0.86169 (10) | 0.0249 (3) | |
C11 | 0.11210 (17) | 0.48020 (11) | 0.87283 (9) | 0.0250 (3) | |
H11 | 0.1132 | 0.5165 | 0.9350 | 0.030* | |
C12 | 0.15620 (16) | 0.53179 (10) | 0.79027 (9) | 0.0210 (3) | |
H12 | 0.1900 | 0.6043 | 0.7965 | 0.025* | |
N1 | 0.36001 (13) | 0.42969 (8) | 0.22186 (7) | 0.0187 (2) | |
N2 | 0.38326 (12) | 0.60100 (7) | 0.26758 (7) | 0.0160 (2) | |
N3 | 0.27904 (12) | 0.52518 (8) | 0.45773 (7) | 0.0180 (2) | |
N4 | 0.42710 (14) | 0.67827 (8) | 0.10515 (8) | 0.0225 (2) | |
O1 | 0.26029 (11) | 0.46915 (6) | 0.54488 (6) | 0.01878 (19) | |
O2 | 0.44180 (14) | 0.76801 (7) | 0.14148 (7) | 0.0315 (2) | |
O3 | 0.43216 (14) | 0.65795 (8) | 0.01587 (7) | 0.0338 (2) | |
F1 | 0.02098 (11) | 0.32309 (7) | 0.94206 (6) | 0.0378 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0181 (5) | 0.0188 (6) | 0.0166 (6) | 0.0022 (4) | 0.0048 (4) | 0.0022 (5) |
C2 | 0.0219 (6) | 0.0197 (6) | 0.0162 (6) | 0.0018 (4) | 0.0051 (4) | −0.0009 (5) |
C3 | 0.0138 (5) | 0.0155 (5) | 0.0181 (6) | 0.0007 (4) | 0.0022 (4) | 0.0002 (5) |
C4 | 0.0275 (6) | 0.0157 (6) | 0.0215 (6) | −0.0017 (4) | 0.0071 (5) | −0.0037 (5) |
C5 | 0.0177 (5) | 0.0164 (6) | 0.0184 (6) | −0.0011 (4) | 0.0030 (4) | 0.0005 (5) |
C6 | 0.0188 (5) | 0.0187 (6) | 0.0185 (6) | 0.0011 (4) | 0.0055 (4) | −0.0031 (5) |
C7 | 0.0121 (5) | 0.0208 (6) | 0.0189 (6) | 0.0023 (4) | 0.0022 (4) | 0.0004 (5) |
C8 | 0.0180 (5) | 0.0211 (6) | 0.0206 (6) | 0.0016 (4) | 0.0031 (4) | −0.0007 (5) |
C9 | 0.0214 (6) | 0.0211 (6) | 0.0286 (7) | 0.0017 (5) | 0.0049 (5) | 0.0053 (5) |
C10 | 0.0212 (6) | 0.0328 (7) | 0.0217 (6) | 0.0045 (5) | 0.0067 (5) | 0.0111 (5) |
C11 | 0.0237 (6) | 0.0342 (7) | 0.0174 (6) | 0.0031 (5) | 0.0053 (5) | −0.0008 (5) |
C12 | 0.0188 (6) | 0.0221 (6) | 0.0218 (6) | 0.0010 (4) | 0.0037 (4) | −0.0012 (5) |
N1 | 0.0203 (5) | 0.0175 (5) | 0.0181 (5) | 0.0003 (4) | 0.0042 (4) | −0.0013 (4) |
N2 | 0.0164 (4) | 0.0146 (5) | 0.0172 (5) | 0.0012 (4) | 0.0041 (4) | 0.0005 (4) |
N3 | 0.0170 (5) | 0.0200 (5) | 0.0167 (5) | −0.0001 (4) | 0.0032 (4) | 0.0030 (4) |
N4 | 0.0237 (5) | 0.0212 (5) | 0.0243 (6) | 0.0027 (4) | 0.0092 (4) | 0.0038 (4) |
O1 | 0.0230 (4) | 0.0186 (4) | 0.0164 (4) | 0.0026 (3) | 0.0077 (3) | 0.0022 (3) |
O2 | 0.0468 (6) | 0.0176 (5) | 0.0332 (6) | −0.0032 (4) | 0.0158 (4) | 0.0013 (4) |
O3 | 0.0537 (6) | 0.0307 (5) | 0.0217 (5) | 0.0033 (4) | 0.0182 (4) | 0.0037 (4) |
F1 | 0.0437 (5) | 0.0446 (5) | 0.0286 (4) | 0.0027 (4) | 0.0158 (4) | 0.0162 (4) |
C1—C2 | 1.3721 (16) | C6—H6A | 0.9900 |
C1—N2 | 1.3789 (15) | C6—H6B | 0.9900 |
C1—N4 | 1.4187 (15) | C7—C12 | 1.3890 (16) |
C2—N1 | 1.3506 (15) | C7—C8 | 1.4005 (17) |
C2—H2 | 0.9500 | C8—C9 | 1.3890 (17) |
C3—N1 | 1.3382 (15) | C8—H8 | 0.9500 |
C3—N2 | 1.3636 (15) | C9—C10 | 1.3757 (18) |
C3—C5 | 1.4522 (16) | C9—H9 | 0.9500 |
C4—N2 | 1.4721 (15) | C10—F1 | 1.3679 (14) |
C4—H4A | 0.9800 | C10—C11 | 1.3791 (19) |
C4—H4B | 0.9800 | C11—C12 | 1.3888 (17) |
C4—H4C | 0.9800 | C11—H11 | 0.9500 |
C5—N3 | 1.2731 (15) | C12—H12 | 0.9500 |
C5—H5 | 0.9500 | N3—O1 | 1.4012 (12) |
C6—O1 | 1.4393 (13) | N4—O2 | 1.2301 (14) |
C6—C7 | 1.5013 (16) | N4—O3 | 1.2339 (14) |
C2—C1—N2 | 108.14 (10) | C8—C7—C6 | 121.49 (11) |
C2—C1—N4 | 127.25 (11) | C9—C8—C7 | 120.48 (11) |
N2—C1—N4 | 124.60 (10) | C9—C8—H8 | 119.8 |
N1—C2—C1 | 109.26 (10) | C7—C8—H8 | 119.8 |
N1—C2—H2 | 125.4 | C10—C9—C8 | 118.41 (12) |
C1—C2—H2 | 125.4 | C10—C9—H9 | 120.8 |
N1—C3—N2 | 112.56 (10) | C8—C9—H9 | 120.8 |
N1—C3—C5 | 119.63 (10) | F1—C10—C9 | 118.57 (12) |
N2—C3—C5 | 127.81 (10) | F1—C10—C11 | 118.42 (12) |
N2—C4—H4A | 109.5 | C9—C10—C11 | 123.01 (12) |
N2—C4—H4B | 109.5 | C10—C11—C12 | 117.84 (12) |
H4A—C4—H4B | 109.5 | C10—C11—H11 | 121.1 |
N2—C4—H4C | 109.5 | C12—C11—H11 | 121.1 |
H4A—C4—H4C | 109.5 | C11—C12—C7 | 121.26 (11) |
H4B—C4—H4C | 109.5 | C11—C12—H12 | 119.4 |
N3—C5—C3 | 122.53 (11) | C7—C12—H12 | 119.4 |
N3—C5—H5 | 118.7 | C3—N1—C2 | 105.71 (10) |
C3—C5—H5 | 118.7 | C3—N2—C1 | 104.31 (9) |
O1—C6—C7 | 108.62 (9) | C3—N2—C4 | 126.92 (10) |
O1—C6—H6A | 110.0 | C1—N2—C4 | 128.42 (10) |
C7—C6—H6A | 110.0 | C5—N3—O1 | 110.43 (9) |
O1—C6—H6B | 110.0 | O2—N4—O3 | 123.85 (11) |
C7—C6—H6B | 110.0 | O2—N4—C1 | 119.16 (10) |
H6A—C6—H6B | 108.3 | O3—N4—C1 | 116.99 (10) |
C12—C7—C8 | 118.98 (11) | N3—O1—C6 | 107.89 (8) |
C12—C7—C6 | 119.43 (10) | ||
N2—C1—C2—N1 | −0.16 (13) | C5—C3—N1—C2 | 178.73 (10) |
N4—C1—C2—N1 | −179.62 (11) | C1—C2—N1—C3 | 0.72 (13) |
N1—C3—C5—N3 | −162.10 (10) | N1—C3—N2—C1 | 0.95 (12) |
N2—C3—C5—N3 | 17.64 (18) | C5—C3—N2—C1 | −178.81 (11) |
O1—C6—C7—C12 | 152.70 (10) | N1—C3—N2—C4 | −172.71 (10) |
O1—C6—C7—C8 | −30.95 (14) | C5—C3—N2—C4 | 7.53 (18) |
C12—C7—C8—C9 | 0.13 (16) | C2—C1—N2—C3 | −0.46 (12) |
C6—C7—C8—C9 | −176.23 (10) | N4—C1—N2—C3 | 179.02 (10) |
C7—C8—C9—C10 | 0.82 (17) | C2—C1—N2—C4 | 173.07 (10) |
C8—C9—C10—F1 | 178.37 (10) | N4—C1—N2—C4 | −7.45 (18) |
C8—C9—C10—C11 | −0.87 (18) | C3—C5—N3—O1 | 179.79 (9) |
F1—C10—C11—C12 | −179.30 (10) | C2—C1—N4—O2 | −178.34 (11) |
C9—C10—C11—C12 | −0.05 (18) | N2—C1—N4—O2 | 2.29 (17) |
C10—C11—C12—C7 | 1.06 (18) | C2—C1—N4—O3 | 2.41 (18) |
C8—C7—C12—C11 | −1.10 (17) | N2—C1—N4—O3 | −176.96 (11) |
C6—C7—C12—C11 | 175.34 (10) | C5—N3—O1—C6 | −173.96 (9) |
N2—C3—N1—C2 | −1.05 (13) | C7—C6—O1—N3 | 175.61 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···N3 | 0.98 | 2.29 | 3.0184 (15) | 131 |
C4—H4A···N1i | 0.98 | 2.63 | 3.5693 (16) | 160 |
C9—H9···N1ii | 0.95 | 2.58 | 3.4973 (16) | 163 |
C2—H2···O3iii | 0.95 | 2.49 | 3.3165 (15) | 145 |
C5—H5···O2iv | 0.95 | 2.63 | 3.1676 (14) | 116 |
C6—H6A···O2v | 0.99 | 2.54 | 3.1376 (14) | 119 |
C4—H4C···F1vi | 0.98 | 2.77 | 3.353 (2) | 119 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y+1/2, −z+3/2. |
C12H11BrN4O3 | F(000) = 680 |
Mr = 339.16 | Dx = 1.730 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6024 (2) Å | Cell parameters from 6837 reflections |
b = 12.7526 (3) Å | θ = 2.2–27.5° |
c = 13.8954 (5) Å | µ = 3.17 mm−1 |
β = 104.869 (2)° | T = 120 K |
V = 1302.05 (7) Å3 | Block, yellow |
Z = 4 | 0.66 × 0.52 × 0.24 mm |
Rigaku Mercury CCD diffractometer | 2835 reflections with I > 2σ(I) |
ω scans | Rint = 0.065 |
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 27.5°, θmin = 2.2° |
Tmin = 0.438, Tmax = 1.000 | h = −8→9 |
16791 measured reflections | k = −16→16 |
2974 independent reflections | l = −18→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0837P)2 + 1.3179P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
2974 reflections | Δρmax = 1.78 e Å−3 |
182 parameters | Δρmin = −1.03 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4010 (4) | 0.5860 (2) | 0.1628 (2) | 0.0210 (6) | |
C2 | 0.3825 (4) | 0.4812 (2) | 0.1385 (2) | 0.0227 (6) | |
H2 | 0.3902 | 0.4517 | 0.0769 | 0.027* | |
C3 | 0.3498 (4) | 0.4984 (2) | 0.2868 (2) | 0.0201 (6) | |
C4 | 0.3974 (5) | 0.6933 (2) | 0.3184 (3) | 0.0281 (7) | |
H4A | 0.3108 | 0.7457 | 0.2827 | 0.042* | |
H4B | 0.5214 | 0.7210 | 0.3308 | 0.042* | |
H4C | 0.3704 | 0.6770 | 0.3821 | 0.042* | |
C5 | 0.3150 (4) | 0.4652 (2) | 0.3803 (2) | 0.0221 (6) | |
H5 | 0.3120 | 0.3922 | 0.3932 | 0.026* | |
C6 | 0.2011 (4) | 0.5460 (2) | 0.5916 (2) | 0.0227 (6) | |
H6A | 0.0894 | 0.5833 | 0.5554 | 0.027* | |
H6B | 0.2982 | 0.5986 | 0.6159 | 0.027* | |
C7 | 0.1655 (4) | 0.4863 (2) | 0.6778 (2) | 0.0203 (6) | |
C8 | 0.1233 (4) | 0.3798 (2) | 0.6718 (2) | 0.0229 (6) | |
H8 | 0.1207 | 0.3422 | 0.6124 | 0.027* | |
C9 | 0.0849 (4) | 0.3284 (2) | 0.7522 (2) | 0.0237 (6) | |
H9 | 0.0561 | 0.2558 | 0.7481 | 0.028* | |
C10 | 0.0890 (4) | 0.3840 (2) | 0.8382 (2) | 0.0224 (6) | |
C11 | 0.1292 (4) | 0.4900 (2) | 0.8463 (2) | 0.0232 (6) | |
H11 | 0.1300 | 0.5275 | 0.9055 | 0.028* | |
C12 | 0.1683 (4) | 0.5400 (2) | 0.7656 (2) | 0.0232 (6) | |
H12 | 0.1977 | 0.6126 | 0.7702 | 0.028* | |
N1 | 0.3517 (4) | 0.42704 (18) | 0.21619 (19) | 0.0233 (5) | |
N2 | 0.3819 (3) | 0.59752 (17) | 0.25814 (18) | 0.0191 (5) | |
N3 | 0.2882 (3) | 0.52867 (18) | 0.44583 (19) | 0.0219 (5) | |
N4 | 0.4338 (4) | 0.6687 (2) | 0.1020 (2) | 0.0234 (5) | |
O1 | 0.2561 (3) | 0.47297 (15) | 0.52654 (16) | 0.0239 (5) | |
O2 | 0.4605 (4) | 0.75804 (16) | 0.13734 (19) | 0.0325 (5) | |
O3 | 0.4324 (4) | 0.64727 (19) | 0.01529 (19) | 0.0343 (6) | |
Br1 | 0.04121 (4) | 0.31299 (2) | 0.94938 (2) | 0.02821 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0257 (14) | 0.0171 (12) | 0.0208 (14) | 0.0008 (10) | 0.0071 (11) | −0.0021 (10) |
C2 | 0.0304 (15) | 0.0168 (12) | 0.0214 (15) | 0.0020 (10) | 0.0076 (12) | −0.0035 (10) |
C3 | 0.0216 (13) | 0.0147 (11) | 0.0239 (15) | 0.0002 (10) | 0.0058 (11) | −0.0007 (10) |
C4 | 0.0431 (19) | 0.0137 (13) | 0.0295 (18) | −0.0020 (11) | 0.0132 (15) | −0.0045 (10) |
C5 | 0.0241 (14) | 0.0144 (11) | 0.0284 (16) | 0.0010 (10) | 0.0078 (12) | 0.0019 (10) |
C6 | 0.0284 (15) | 0.0165 (12) | 0.0237 (15) | 0.0008 (10) | 0.0079 (12) | 0.0004 (10) |
C7 | 0.0198 (13) | 0.0173 (12) | 0.0231 (15) | 0.0017 (10) | 0.0042 (11) | 0.0025 (10) |
C8 | 0.0259 (14) | 0.0168 (12) | 0.0256 (15) | 0.0013 (10) | 0.0058 (11) | −0.0016 (10) |
C9 | 0.0279 (15) | 0.0140 (11) | 0.0291 (17) | 0.0004 (10) | 0.0072 (12) | 0.0008 (11) |
C10 | 0.0218 (14) | 0.0196 (13) | 0.0262 (15) | 0.0019 (10) | 0.0069 (11) | 0.0052 (10) |
C11 | 0.0275 (15) | 0.0202 (13) | 0.0221 (15) | 0.0010 (11) | 0.0067 (12) | −0.0016 (10) |
C12 | 0.0290 (15) | 0.0141 (12) | 0.0269 (16) | −0.0015 (10) | 0.0082 (12) | 0.0000 (10) |
N1 | 0.0305 (13) | 0.0144 (10) | 0.0255 (13) | −0.0002 (9) | 0.0083 (10) | −0.0035 (9) |
N2 | 0.0261 (12) | 0.0126 (10) | 0.0195 (12) | −0.0001 (8) | 0.0071 (9) | −0.0015 (9) |
N3 | 0.0263 (12) | 0.0176 (10) | 0.0227 (13) | −0.0007 (9) | 0.0079 (10) | 0.0041 (9) |
N4 | 0.0268 (13) | 0.0188 (11) | 0.0257 (14) | 0.0005 (9) | 0.0090 (11) | 0.0011 (10) |
O1 | 0.0328 (12) | 0.0170 (9) | 0.0253 (12) | 0.0019 (8) | 0.0137 (9) | 0.0027 (8) |
O2 | 0.0485 (14) | 0.0161 (10) | 0.0357 (13) | −0.0055 (9) | 0.0158 (11) | −0.0015 (9) |
O3 | 0.0536 (15) | 0.0290 (12) | 0.0251 (13) | 0.0010 (11) | 0.0190 (11) | −0.0004 (10) |
Br1 | 0.0366 (2) | 0.0231 (2) | 0.0267 (2) | 0.00051 (10) | 0.01133 (17) | 0.00691 (10) |
C1—C2 | 1.377 (4) | C6—H6A | 0.9900 |
C1—N2 | 1.378 (4) | C6—H6B | 0.9900 |
C1—N4 | 1.413 (4) | C7—C8 | 1.393 (4) |
C2—N1 | 1.352 (4) | C7—C12 | 1.394 (4) |
C2—H2 | 0.9500 | C8—C9 | 1.389 (4) |
C3—N1 | 1.341 (4) | C8—H8 | 0.9500 |
C3—N2 | 1.366 (3) | C9—C10 | 1.383 (4) |
C3—C5 | 1.453 (4) | C9—H9 | 0.9500 |
C4—N2 | 1.468 (3) | C10—C11 | 1.384 (4) |
C4—H4A | 0.9800 | C10—Br1 | 1.905 (3) |
C4—H4B | 0.9800 | C11—C12 | 1.387 (4) |
C4—H4C | 0.9800 | C11—H11 | 0.9500 |
C5—N3 | 1.273 (4) | C12—H12 | 0.9500 |
C5—H5 | 0.9500 | N3—O1 | 1.401 (3) |
C6—O1 | 1.433 (4) | N4—O3 | 1.232 (4) |
C6—C7 | 1.502 (4) | N4—O2 | 1.237 (3) |
C2—C1—N2 | 108.0 (3) | C12—C7—C6 | 118.9 (2) |
C2—C1—N4 | 126.9 (3) | C9—C8—C7 | 120.3 (3) |
N2—C1—N4 | 125.1 (2) | C9—C8—H8 | 119.8 |
N1—C2—C1 | 109.1 (3) | C7—C8—H8 | 119.8 |
N1—C2—H2 | 125.4 | C10—C9—C8 | 119.4 (3) |
C1—C2—H2 | 125.4 | C10—C9—H9 | 120.3 |
N1—C3—N2 | 112.2 (3) | C8—C9—H9 | 120.3 |
N1—C3—C5 | 119.7 (2) | C9—C10—C11 | 121.8 (3) |
N2—C3—C5 | 128.1 (3) | C9—C10—Br1 | 119.4 (2) |
N2—C4—H4A | 109.5 | C11—C10—Br1 | 118.8 (2) |
N2—C4—H4B | 109.5 | C10—C11—C12 | 118.1 (3) |
H4A—C4—H4B | 109.5 | C10—C11—H11 | 120.9 |
N2—C4—H4C | 109.5 | C12—C11—H11 | 120.9 |
H4A—C4—H4C | 109.5 | C11—C12—C7 | 121.5 (3) |
H4B—C4—H4C | 109.5 | C11—C12—H12 | 119.2 |
N3—C5—C3 | 123.6 (3) | C7—C12—H12 | 119.2 |
N3—C5—H5 | 118.2 | C3—N1—C2 | 105.9 (2) |
C3—C5—H5 | 118.2 | C3—N2—C1 | 104.7 (2) |
O1—C6—C7 | 108.3 (2) | C3—N2—C4 | 126.7 (3) |
O1—C6—H6A | 110.0 | C1—N2—C4 | 128.6 (2) |
C7—C6—H6A | 110.0 | C5—N3—O1 | 110.1 (2) |
O1—C6—H6B | 110.0 | O3—N4—O2 | 123.5 (3) |
C7—C6—H6B | 110.0 | O3—N4—C1 | 117.4 (2) |
H6A—C6—H6B | 108.4 | O2—N4—C1 | 119.1 (3) |
C8—C7—C12 | 118.9 (3) | N3—O1—C6 | 108.3 (2) |
C8—C7—C6 | 122.2 (3) | ||
N2—C1—C2—N1 | 0.2 (3) | C5—C3—N1—C2 | 178.5 (3) |
N4—C1—C2—N1 | −179.8 (3) | C1—C2—N1—C3 | 0.5 (3) |
N1—C3—C5—N3 | −170.9 (3) | N1—C3—N2—C1 | 1.3 (3) |
N2—C3—C5—N3 | 8.7 (5) | C5—C3—N2—C1 | −178.3 (3) |
O1—C6—C7—C8 | −23.1 (4) | N1—C3—N2—C4 | −177.1 (3) |
O1—C6—C7—C12 | 159.4 (3) | C5—C3—N2—C4 | 3.3 (5) |
C12—C7—C8—C9 | −0.1 (4) | C2—C1—N2—C3 | −0.9 (3) |
C6—C7—C8—C9 | −177.7 (3) | N4—C1—N2—C3 | 179.2 (3) |
C7—C8—C9—C10 | 0.0 (5) | C2—C1—N2—C4 | 177.4 (3) |
C8—C9—C10—C11 | 0.5 (5) | N4—C1—N2—C4 | −2.5 (5) |
C8—C9—C10—Br1 | −178.8 (2) | C3—C5—N3—O1 | 179.2 (2) |
C9—C10—C11—C12 | −0.9 (4) | C2—C1—N4—O3 | 6.0 (5) |
Br1—C10—C11—C12 | 178.4 (2) | N2—C1—N4—O3 | −174.0 (3) |
C10—C11—C12—C7 | 0.8 (4) | C2—C1—N4—O2 | −174.7 (3) |
C8—C7—C12—C11 | −0.3 (4) | N2—C1—N4—O2 | 5.3 (4) |
C6—C7—C12—C11 | 177.3 (3) | C5—N3—O1—C6 | −171.8 (2) |
N2—C3—N1—C2 | −1.2 (3) | C7—C6—O1—N3 | 179.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···N3 | 0.98 | 2.24 | 2.997 (4) | 133 |
C4—H4A···N1i | 0.98 | 2.62 | 3.499 (4) | 149 |
C9—H9···N1ii | 0.95 | 2.77 | 3.681 (4) | 160 |
C2—H2···O3iii | 0.95 | 2.44 | 3.282 (4) | 148 |
C5—H5···O2iv | 0.95 | 2.64 | 3.341 (4) | 131 |
C6—H6A···O2v | 0.99 | 2.63 | 3.254 (4) | 121 |
C4—H4C···Br1vi | 0.98 | 2.85 | 3.491 (3) | 124 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y+1/2, −z+3/2. |
The two values refer to a vacuum and methane solvation, respectively. The energy of the syn conformer is arbitrarily set to zero in each case. |
Substituent | Compound | anti | syn |
H | (I) | 14.90/5.91 | 0 |
CH3 | Carvalho et al. (2017) | 14.90/6.84 | 0 |
F | (II) | 17.12/6.17 | 0 |
Br | (III) | 16.84/6.17 | 0 |
Contact type | (I) | (II) | (III) |
H···H | 34.6 | 30.3 | 28.3 |
O···H/H···O | 24.6 | 24.4 | 23.2 |
N···H/H···N | 14.7 | 9.4 | 8.1 |
C···H/H···C | 12.4 | 6.0 | 6.5 |
C···C | 4.6 | 5.8 | 5.9 |
X···H/H···X | – | 11.7 | 15.0 |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Carvalho, S. A., Osorio, L. F. B., Salomão, K., de Castro, S. L., Wardell, S. M. S. V., Wardell, J. L., da Silva, E. F. & Fraga, C. A. M. (2017). J. Heterocycl. Chem. 54, 3626–3631. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grimme, S. (2003). J. Chem. Phys. 118, 9095–9102. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hellweg, A., Hättig, C., Höfener, S. & Klopper, W. (2007). Theor. Chem. Acc. 117, 587–597. CrossRef CAS Google Scholar
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. B, 113, 6378–6396. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Neese, F. (2012). WIREs Comput. Mol. Sci. 2, 73–78. Web of Science CrossRef CAS Google Scholar
Poli, P., Aline de Mello, M., Buschini, A., Mortara, R. A., Northfleet de Albuquerque, C., da Silva, S., Rossi, C. & Zucchi, T. M. (2002). Biochem. Pharmacol. 64, 1617–1627. CrossRef CAS Google Scholar
Rassi, A. Jr, Rassi, A. & Marin-Neto, J. A. (2010). Lancet, 375, 1388–1402. Web of Science CrossRef PubMed Google Scholar
Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soeiro, M. de N. C. & de Castro, S. L. (2011). Open Med. Chem. J. 5, 21–30. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.