research communications
κ2N,N′)tetraacetato-κ4O,O′,O′′,O′′′]chromate(III) from synchrotron X-ray data
of silver [(propane-1,3-diyldinitrilo-aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The 11H14N2O8)]·3H2O, contains one [Cr(1,3-pdta)]− anion [1,3-pdta is (propane-1,3-diyldinitrilo)tetraacetate], one Ag+ cation and three water molecules. The Cr3+ ion is coordinated to the four O and two N atoms of the 1,3-pdta ligand, displaying a distorted octahedral geometry. The mean Cr—N and Cr—O bond lengths are 2.0727 (17) and 1.9608 (15) Å, respectively. The conformations of the chelate rings were found to be envelope for the glycinates and twist-boat for the six-membered diamine (T) ring. The Ag+ cation is surrounded by six O atoms from three non-coordinated carbonyl O atoms of neighbouring 1,3-pdta groups and three water molecules. The is stabilized by intermolecular hydrogen bonding involving the water O—H group as donor and the carboxyl O atom as acceptor.
of the title compound, Ag[Cr(CKeywords: crystal structure; propane-1,3-diyldinitrilotetraacetate; silver cation; chromate(III) complex; twist-boat conformer.
CCDC reference: 1424813
1. Chemical context
The hexadentate ligand, propane-1,3-diyldinitrilotetraacetate (abbreviated here as 1,3-pdta, C11H14N2O8) has been used for the preparation of complexes with many transition metal ions (Herak et al., 1984; Yamamoto et al., 1988; Douglas & Radanović, 1993). In the complex anion, [M(1,3-pdta)]n-, the six-membered propane-1,3-diamine ring is referred to as the T ring, the equatorially coordinated glycinate ring as the G ring, and the axially coordinated glycinate ring as the R ring (see Scheme). The counter-ion and metal-center play a very important role in conformational Upon coordination of 1,3-pdta by a metal center, the six-membered T ring can take twist-boat or half-chair conformers (Meier et al., 2007). The twist-boat conformer was found in the crystal structures of K[Co(1,3-pdta)]·2H2O (Nagao et al., 1972), Li[Fe(1,3-pdta)]·3H2O (Yamamoto et al., 1988) and Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984), whereas the half-chair form was observed in structural studies of [C(NH2)3][Fe(1,3-pdta)]·2H2O (Meier et al., 2007) and Li2[Co(1,3-pdta)]·3H2O (Rychlewska et al., 2008). The of Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984) has also been reported previously. In this communication, we report the of Ag[Cr(1,3-pdta)]·3H2O in order to clarify unambiguously the bonding mode and the conformational geometry adopted by the Ag+ salt.
2. Structural commentary
This is another example of a [Cr(1,3-pdta)]− anion but with a different cation. The of the title compound is isotypic with Na[M(1,3-pdta)]·3H2O (M = Fe, Cr or Rh; Okamoto et al., 1990; Herak et al., 1984) but it belongs to the orthorhombic P212121 compared with the monoclinic P21/n of Li[Fe(1,3-pdta)]·3H2O (Yamamoto et al., 1988) and orthorhombic B2212 of K[Co(1,3-pdta)]·2H2O (Nagao et al., 1972). The structural analysis shows that the propane-1,3-diyldinitrilotetraacetate anion is coordinated octahedrally by the Cr metal center through four O and two N atoms. An ellipsoid plot of title complex showing the atomic numbering is given in Fig. 1. The Cr—O bond distances differ slightly, the mean equatorial and axial distances being 1.9672 (15) and 1.9544 (15) Å, respectively. The cis angles at the CrIII ion range from 81.66 (6) to 99.41 (6)° and the trans angles are 173.07 (7), 175.01 (6) and 176.04 (7)°. The six-membered propane-1,3-diamine T ring (Fig. 1) adopts a flexible twist-boat conformation. The R rings are nearly planar and are in an The G rings are much more puckered and are halfway between an envelope and a twist conformation. The Cr—O bond distances are greater in the G rings than in the R rings, and the average Cr—N bond length of 2.0727 (17) Å is 0.1119 Å longer than the average Cr—O bond distance. The Cr—N and Cr—O bond distances are in accordance with the values observed in Na[Cr(1,3-pdta)]·3H2O. However, the average Ag—O distance of 2.525 (2) Å is slightly longer than the Na—O distance of 2.437 Å in Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984).
3. Supramolecular features
The Ag+ cation is surrounded octahedrally by three water molecules (O9, O10 and O11) and three carboxylate O atoms [O6, O2iii(x + , −y + , 1 − z) and O4i(−x + , −y + 1, z + )] that are not directly coordinated to the Cr atom (Fig. 1). Hydrogen bonds exist between the water molecules and the O atoms in the 1,3-pdta moiety (Table 1). An extensive array of these contacts generate a three-dimensional network of molecules stacked along the a-axis direction (Fig. 2). Non-coordinating and coordinating carboxylate O atoms take part in the formation of O—H⋯O hydrogen bonds, which contribute to the crystal packing stabilization and give rise to an infinite three-dimensional framework.
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, May 2017 with three updates; Groom et al., 2016) gave just three hits for a related complex anion, the [Cr(C11H14N2O8)2]− unit. The with an Na+ counter-cation (Herak et al., 1981, 1984) has been determined. The crystal structures of Na[Cr(1,3-pndta)]·H2O, K[Cr(1,3-pndta)]·H2O and Ca[Cr(1,3-pndta)]2·4H2O (1,3-pndta = pentane-1,3-diyldinitrilotetraacetate; Warżajtis et al., 2014) have been reported previously. However, no structure of a [Cr(1,3-pdta)]− or [Cr(1,3-pndta)]− complex with Ag+ cation was found.
5. Synthesis and physical measurements
All chemicals were reagent-grade materials and were used without further purification. The UV–Vis 2O was prepared as described previously (Weyh & Hamm, 1968; Herak et al., 1984). The sodium salt (0.20 g) was dissolved in 15 mL of water at 323 K and added to 3 mL of water containing 0.5 g of AgNO3. The resulting solution was filtered and left to stand at room temperature for several days to give purple block-shaped crystals of the silver salt, Ag[Cr(1,3-pdta)]·3H2O suitable for X-ray structural analysis. Elemental analysis calculated for Ag[Cr(C11H14N2O8)]·3H2O: C, 25.60; H, 3.91; N, 5.43%; found: C, 25.71; H, 3.23; N, 5.36%. UV–vis data (H2O solution, nm): 201 (vs), 223 (vs), 245 (sh), 385 (s), 506 (s), 700 (w). IR spectrum (KBr, cm−1) : 3447 (vs, br) (ν OH), 3232 (sh), 2977 (vs) and 2941 (s) (ν CH), 1643 (s, br) (νas COO), 1473 (s), 1428 (m), 1363 (vs) and 1327 (vs) (νs COO), 1271 (sh), 1222 (s), 1144 (s), 1099 (vs), 1061 (m), 1029 (s), 988 (s), 941 (vs), 916 (vs), 897 (m), 853 (vs), 746 (vs), 690 (m), 632 (w), 579 (m), 529 (s), 486 (s), 433 (s).
was recorded with a Cary 5000 UV–Vis–NIR Spectrophotometer. The FT–IR spectrum was obtained from a KBr pellet with a JASCO 460 plus series FT–IR spectrometer. Analyses for C, H, N were performed on a Carlo Erba 1108 Elemental Vario EL analyser. The precursor salt, Na[Cr(1,3-pdta)]·3H6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C). O-bound H atoms were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.88 (2) Å (using DFIX and DANG commands), and Uiso(H) = 1.2Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1424813
https://doi.org/10.1107/S2056989018001743/nk2244sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001743/nk2244Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).Ag[Cr(C11H14N2O8)]·3H2O | Dx = 2.059 Mg m−3 |
Mr = 516.16 | Synchrotron radiation, λ = 0.610 Å |
Orthorhombic, P212121 | Cell parameters from 33074 reflections |
a = 8.7800 (18) Å | θ = 0.4–33.7° |
b = 11.443 (2) Å | µ = 1.25 mm−1 |
c = 16.573 (3) Å | T = 260 K |
V = 1665.1 (6) Å3 | Block, purple |
Z = 4 | 0.17 × 0.13 × 0.07 mm |
F(000) = 1036 |
ADSC Q210 CCD area detector diffractometer | 4738 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.041 |
ω scan | θmax = 25.5°, θmin = 2.1° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.843, Tmax = 1.000 | k = −16→16 |
14937 measured reflections | l = −23→23 |
4807 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0272P)2 + 0.5713P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.051 | (Δ/σ)max = 0.002 |
S = 1.07 | Δρmax = 0.41 e Å−3 |
4807 reflections | Δρmin = −0.65 e Å−3 |
253 parameters | Absolute structure: Flack x determined using 2027 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
9 restraints | Absolute structure parameter: −0.008 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.24189 (3) | 0.37102 (2) | 0.24502 (2) | 0.00967 (6) | |
O1 | 0.12226 (18) | 0.25175 (12) | 0.30121 (9) | 0.0175 (3) | |
O2 | −0.0055 (2) | 0.21547 (15) | 0.41423 (11) | 0.0251 (3) | |
O3 | 0.08051 (18) | 0.39909 (14) | 0.16628 (9) | 0.0186 (3) | |
O4 | −0.16003 (19) | 0.45764 (18) | 0.15293 (11) | 0.0282 (4) | |
O5 | 0.40372 (17) | 0.35453 (13) | 0.32531 (9) | 0.0177 (3) | |
O6 | 0.63816 (19) | 0.40881 (18) | 0.35973 (11) | 0.0286 (4) | |
O7 | 0.35275 (18) | 0.27005 (12) | 0.16811 (9) | 0.0184 (3) | |
O8 | 0.5114 (3) | 0.27410 (18) | 0.06396 (14) | 0.0398 (5) | |
N1 | 0.11336 (19) | 0.48076 (14) | 0.31737 (10) | 0.0116 (3) | |
N2 | 0.38257 (19) | 0.50019 (14) | 0.19855 (11) | 0.0132 (3) | |
C1 | 0.0637 (2) | 0.28284 (17) | 0.36905 (12) | 0.0150 (3) | |
C2 | 0.0876 (2) | 0.41046 (17) | 0.39202 (12) | 0.0165 (3) | |
H21 | −0.001299 | 0.439533 | 0.420408 | 0.020* | |
H22 | 0.174899 | 0.417403 | 0.427556 | 0.020* | |
C3 | −0.0428 (2) | 0.45009 (19) | 0.19226 (12) | 0.0163 (3) | |
C4 | −0.0348 (2) | 0.50289 (17) | 0.27589 (13) | 0.0155 (3) | |
H41 | −0.050662 | 0.586572 | 0.271860 | 0.019* | |
H42 | −0.116537 | 0.470866 | 0.308456 | 0.019* | |
C5 | 0.5249 (2) | 0.41833 (17) | 0.31713 (12) | 0.0159 (3) | |
C6 | 0.5206 (2) | 0.50999 (17) | 0.25100 (15) | 0.0177 (3) | |
H61 | 0.522708 | 0.587001 | 0.275442 | 0.021* | |
H62 | 0.611006 | 0.502164 | 0.217770 | 0.021* | |
C7 | 0.4341 (3) | 0.32390 (19) | 0.11558 (13) | 0.0192 (4) | |
C8 | 0.4251 (3) | 0.45637 (18) | 0.11673 (13) | 0.0204 (4) | |
H81 | 0.522910 | 0.488802 | 0.101292 | 0.024* | |
H82 | 0.349954 | 0.482279 | 0.077731 | 0.024* | |
C9 | 0.1955 (2) | 0.59037 (17) | 0.33877 (13) | 0.0183 (4) | |
H91 | 0.286801 | 0.569504 | 0.368393 | 0.022* | |
H92 | 0.131325 | 0.635424 | 0.374865 | 0.022* | |
C10 | 0.2416 (3) | 0.66904 (17) | 0.26797 (15) | 0.0214 (4) | |
H10 | 0.153858 | 0.716501 | 0.254216 | 0.026* | |
H10B | 0.319794 | 0.721905 | 0.287443 | 0.026* | |
C11 | 0.3006 (2) | 0.61414 (17) | 0.18957 (14) | 0.0189 (4) | |
H11 | 0.214770 | 0.602452 | 0.153619 | 0.023* | |
H11B | 0.368853 | 0.669379 | 0.163804 | 0.023* | |
Ag1 | 0.66176 (2) | 0.43997 (2) | 0.51158 (2) | 0.02983 (6) | |
O9 | 0.4276 (2) | 0.55599 (18) | 0.50044 (10) | 0.0323 (4) | |
H1O1 | 0.426 (5) | 0.571 (3) | 0.5503 (8) | 0.039* | |
H2O1 | 0.455 (4) | 0.6206 (19) | 0.4800 (19) | 0.039* | |
O10 | 0.8668 (3) | 0.31407 (19) | 0.54800 (12) | 0.0345 (4) | |
H1O2 | 0.869 (5) | 0.264 (3) | 0.5862 (15) | 0.041* | |
H2O2 | 0.899 (4) | 0.276 (3) | 0.5075 (14) | 0.041* | |
O11 | 0.8203 (3) | 0.60117 (17) | 0.44997 (13) | 0.0333 (4) | |
H1O3 | 0.758 (4) | 0.637 (3) | 0.421 (2) | 0.040* | |
H2O3 | 0.853 (4) | 0.649 (3) | 0.4838 (18) | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.00884 (12) | 0.01014 (11) | 0.01002 (11) | −0.00089 (9) | 0.00008 (9) | 0.00054 (9) |
O1 | 0.0211 (7) | 0.0136 (6) | 0.0177 (6) | −0.0061 (5) | 0.0050 (5) | −0.0013 (5) |
O2 | 0.0265 (8) | 0.0234 (7) | 0.0253 (8) | −0.0017 (6) | 0.0088 (7) | 0.0093 (6) |
O3 | 0.0137 (6) | 0.0295 (7) | 0.0127 (6) | 0.0031 (5) | −0.0030 (5) | −0.0026 (5) |
O4 | 0.0137 (6) | 0.0496 (10) | 0.0212 (7) | 0.0015 (7) | −0.0065 (6) | 0.0017 (7) |
O5 | 0.0133 (6) | 0.0219 (7) | 0.0180 (6) | −0.0021 (5) | −0.0042 (5) | 0.0052 (5) |
O6 | 0.0154 (7) | 0.0474 (10) | 0.0230 (8) | −0.0030 (6) | −0.0080 (6) | 0.0007 (7) |
O7 | 0.0211 (7) | 0.0143 (6) | 0.0199 (7) | 0.0007 (5) | 0.0072 (6) | −0.0012 (5) |
O8 | 0.0520 (13) | 0.0286 (9) | 0.0388 (11) | −0.0050 (9) | 0.0299 (10) | −0.0106 (8) |
N1 | 0.0116 (6) | 0.0113 (6) | 0.0119 (6) | −0.0005 (5) | −0.0009 (5) | −0.0003 (5) |
N2 | 0.0117 (7) | 0.0118 (7) | 0.0160 (7) | −0.0009 (5) | 0.0001 (5) | 0.0022 (5) |
C1 | 0.0140 (8) | 0.0163 (8) | 0.0147 (8) | −0.0005 (6) | 0.0008 (6) | 0.0039 (6) |
C2 | 0.0206 (9) | 0.0182 (8) | 0.0108 (7) | 0.0008 (7) | 0.0019 (7) | 0.0011 (6) |
C3 | 0.0114 (8) | 0.0233 (8) | 0.0144 (8) | −0.0021 (7) | −0.0017 (6) | 0.0044 (7) |
C4 | 0.0110 (7) | 0.0192 (9) | 0.0163 (8) | 0.0017 (6) | −0.0018 (6) | 0.0003 (6) |
C5 | 0.0110 (7) | 0.0210 (8) | 0.0157 (8) | −0.0002 (6) | −0.0018 (6) | −0.0034 (7) |
C6 | 0.0108 (7) | 0.0167 (7) | 0.0258 (9) | −0.0031 (6) | −0.0016 (7) | 0.0007 (7) |
C7 | 0.0201 (9) | 0.0205 (8) | 0.0169 (9) | −0.0021 (7) | 0.0049 (7) | −0.0025 (7) |
C8 | 0.0253 (10) | 0.0191 (9) | 0.0167 (8) | −0.0036 (7) | 0.0074 (8) | 0.0019 (7) |
C9 | 0.0203 (9) | 0.0147 (7) | 0.0200 (9) | −0.0028 (6) | −0.0008 (7) | −0.0056 (6) |
C10 | 0.0201 (9) | 0.0121 (7) | 0.0319 (10) | −0.0014 (7) | 0.0024 (8) | 0.0002 (7) |
C11 | 0.0215 (9) | 0.0121 (8) | 0.0230 (9) | 0.0017 (6) | 0.0009 (7) | 0.0052 (7) |
Ag1 | 0.03046 (10) | 0.03290 (9) | 0.02614 (9) | 0.00309 (7) | 0.00069 (7) | 0.00446 (7) |
O9 | 0.0440 (10) | 0.0339 (8) | 0.0191 (8) | −0.0016 (8) | −0.0045 (7) | 0.0039 (7) |
O10 | 0.0401 (11) | 0.0378 (10) | 0.0257 (9) | 0.0108 (8) | 0.0103 (8) | 0.0094 (7) |
O11 | 0.0376 (10) | 0.0302 (8) | 0.0320 (9) | 0.0014 (8) | −0.0099 (8) | −0.0045 (7) |
Cr1—O3 | 1.9530 (15) | C4—H41 | 0.9700 |
Cr1—O5 | 1.9558 (15) | C4—H42 | 0.9700 |
Cr1—O1 | 1.9578 (14) | C5—C6 | 1.517 (3) |
Cr1—O7 | 1.9766 (15) | C6—H61 | 0.9700 |
Cr1—N1 | 2.0708 (17) | C6—H62 | 0.9700 |
Cr1—N2 | 2.0745 (16) | C7—C8 | 1.518 (3) |
O1—C1 | 1.287 (2) | C8—H81 | 0.9700 |
O2—C1 | 1.234 (2) | C8—H82 | 0.9700 |
O3—C3 | 1.303 (2) | C9—C10 | 1.533 (3) |
O4—C3 | 1.222 (2) | C9—H91 | 0.9700 |
O5—C5 | 1.298 (2) | C9—H92 | 0.9700 |
O6—C5 | 1.224 (3) | C10—C11 | 1.533 (3) |
O6—Ag1 | 2.5501 (19) | C10—H10 | 0.9700 |
O7—C7 | 1.284 (3) | C10—H10B | 0.9700 |
O8—C7 | 1.232 (3) | C11—H11 | 0.9700 |
N1—C9 | 1.490 (2) | C11—H11B | 0.9700 |
N1—C4 | 1.493 (2) | Ag1—O10 | 2.383 (2) |
N1—C2 | 1.493 (2) | Ag1—O9 | 2.455 (2) |
N2—C8 | 1.493 (3) | Ag1—O11 | 2.526 (2) |
N2—C6 | 1.496 (3) | O9—H1O1 | 0.844 (13) |
N2—C11 | 1.497 (3) | O9—H2O1 | 0.848 (13) |
C1—C2 | 1.524 (3) | O10—H1O2 | 0.854 (13) |
C2—H21 | 0.9700 | O10—H2O2 | 0.847 (13) |
C2—H22 | 0.9700 | O11—H1O3 | 0.839 (13) |
C3—C4 | 1.514 (3) | O11—H2O3 | 0.834 (13) |
O3—Cr1—O5 | 176.04 (7) | O6—C5—C6 | 119.87 (19) |
O3—Cr1—O1 | 92.48 (7) | O5—C5—C6 | 116.36 (17) |
O5—Cr1—O1 | 89.94 (7) | N2—C6—C5 | 112.83 (16) |
O3—Cr1—O7 | 91.29 (7) | N2—C6—H61 | 109.0 |
O5—Cr1—O7 | 91.41 (7) | C5—C6—H61 | 109.0 |
O1—Cr1—O7 | 99.41 (6) | N2—C6—H62 | 109.0 |
O3—Cr1—N1 | 83.79 (7) | C5—C6—H62 | 109.0 |
O5—Cr1—N1 | 93.47 (7) | H61—C6—H62 | 107.8 |
O1—Cr1—N1 | 81.66 (6) | O8—C7—O7 | 123.7 (2) |
O7—Cr1—N1 | 175.01 (7) | O8—C7—C8 | 120.0 (2) |
O3—Cr1—N2 | 93.82 (7) | O7—C7—C8 | 116.21 (18) |
O5—Cr1—N2 | 83.61 (7) | N2—C8—C7 | 111.09 (16) |
O1—Cr1—N2 | 173.07 (7) | N2—C8—H81 | 109.4 |
O7—Cr1—N2 | 83.33 (7) | C7—C8—H81 | 109.4 |
N1—Cr1—N2 | 96.16 (7) | N2—C8—H82 | 109.4 |
C1—O1—Cr1 | 115.94 (12) | C7—C8—H82 | 109.4 |
C3—O3—Cr1 | 117.10 (13) | H81—C8—H82 | 108.0 |
C5—O5—Cr1 | 118.06 (13) | N1—C9—C10 | 116.11 (17) |
C5—O6—Ag1 | 128.51 (15) | N1—C9—H91 | 108.3 |
C7—O7—Cr1 | 115.52 (13) | C10—C9—H91 | 108.3 |
C9—N1—C4 | 112.86 (15) | N1—C9—H92 | 108.3 |
C9—N1—C2 | 109.26 (16) | C10—C9—H92 | 108.3 |
C4—N1—C2 | 109.93 (16) | H91—C9—H92 | 107.4 |
C9—N1—Cr1 | 112.63 (12) | C11—C10—C9 | 119.81 (16) |
C4—N1—Cr1 | 108.12 (12) | C11—C10—H10 | 107.4 |
C2—N1—Cr1 | 103.64 (11) | C9—C10—H10 | 107.4 |
C8—N2—C6 | 110.51 (16) | C11—C10—H10B | 107.4 |
C8—N2—C11 | 108.81 (16) | C9—C10—H10B | 107.4 |
C6—N2—C11 | 112.46 (16) | H10—C10—H10B | 106.9 |
C8—N2—Cr1 | 104.29 (12) | N2—C11—C10 | 115.79 (17) |
C6—N2—Cr1 | 108.67 (12) | N2—C11—H11 | 108.3 |
C11—N2—Cr1 | 111.80 (12) | C10—C11—H11 | 108.3 |
O2—C1—O1 | 123.65 (19) | N2—C11—H11B | 108.3 |
O2—C1—C2 | 120.98 (19) | C10—C11—H11B | 108.3 |
O1—C1—C2 | 115.36 (16) | H11—C11—H11B | 107.4 |
N1—C2—C1 | 109.28 (15) | O10—Ag1—O9 | 168.15 (6) |
N1—C2—H21 | 109.8 | O10—Ag1—O11 | 97.34 (7) |
C1—C2—H21 | 109.8 | O9—Ag1—O11 | 92.08 (7) |
N1—C2—H22 | 109.8 | O10—Ag1—O6 | 103.11 (7) |
C1—C2—H22 | 109.8 | O9—Ag1—O6 | 86.18 (6) |
H21—C2—H22 | 108.3 | O11—Ag1—O6 | 75.40 (6) |
O4—C3—O3 | 123.7 (2) | Ag1—O9—H1O1 | 93 (3) |
O4—C3—C4 | 119.96 (19) | Ag1—O9—H2O1 | 105 (3) |
O3—C3—C4 | 116.29 (16) | H1O1—O9—H2O1 | 103 (3) |
N1—C4—C3 | 113.23 (15) | Ag1—O10—H1O2 | 128 (3) |
N1—C4—H41 | 108.9 | Ag1—O10—H2O2 | 111 (3) |
C3—C4—H41 | 108.9 | H1O2—O10—H2O2 | 104 (3) |
N1—C4—H42 | 108.9 | Ag1—O11—H1O3 | 103 (3) |
C3—C4—H42 | 108.9 | Ag1—O11—H2O3 | 113 (3) |
H41—C4—H42 | 107.7 | H1O3—O11—H2O3 | 107 (3) |
O6—C5—O5 | 123.8 (2) | ||
Cr1—O1—C1—O2 | −174.74 (17) | C11—N2—C6—C5 | 129.15 (18) |
Cr1—O1—C1—C2 | 4.1 (2) | Cr1—N2—C6—C5 | 4.8 (2) |
C9—N1—C2—C1 | −157.68 (16) | O6—C5—C6—N2 | 173.04 (19) |
C4—N1—C2—C1 | 77.96 (19) | O5—C5—C6—N2 | −7.8 (3) |
Cr1—N1—C2—C1 | −37.41 (17) | Cr1—O7—C7—O8 | 179.2 (2) |
O2—C1—C2—N1 | −156.79 (19) | Cr1—O7—C7—C8 | −3.9 (3) |
O1—C1—C2—N1 | 24.3 (2) | C6—N2—C8—C7 | 84.3 (2) |
Cr1—O3—C3—O4 | −168.99 (18) | C11—N2—C8—C7 | −151.72 (18) |
Cr1—O3—C3—C4 | 11.7 (2) | Cr1—N2—C8—C7 | −32.3 (2) |
C9—N1—C4—C3 | 120.00 (18) | O8—C7—C8—N2 | −157.0 (2) |
C2—N1—C4—C3 | −117.75 (18) | O7—C7—C8—N2 | 25.9 (3) |
Cr1—N1—C4—C3 | −5.26 (18) | C4—N1—C9—C10 | −61.7 (2) |
O4—C3—C4—N1 | 177.0 (2) | C2—N1—C9—C10 | 175.70 (17) |
O3—C3—C4—N1 | −3.6 (2) | Cr1—N1—C9—C10 | 61.1 (2) |
Ag1—O6—C5—O5 | −62.2 (3) | N1—C9—C10—C11 | −39.4 (3) |
Ag1—O6—C5—C6 | 117.0 (2) | C8—N2—C11—C10 | 177.20 (17) |
Cr1—O5—C5—O6 | −173.92 (17) | C6—N2—C11—C10 | −60.0 (2) |
Cr1—O5—C5—C6 | 6.9 (2) | Cr1—N2—C11—C10 | 62.6 (2) |
C8—N2—C6—C5 | −109.04 (19) | C9—C10—C11—N2 | −30.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H1O1···O3i | 0.84 (1) | 1.95 (1) | 2.797 (2) | 178 (3) |
O9—H2O1···O8ii | 0.85 (1) | 1.93 (1) | 2.767 (3) | 172 (4) |
O10—H1O2···O5iii | 0.85 (1) | 2.02 (1) | 2.870 (2) | 173 (4) |
O10—H2O2···O2iv | 0.85 (1) | 1.89 (1) | 2.729 (3) | 170 (4) |
O11—H1O3···O7ii | 0.84 (1) | 2.33 (2) | 3.142 (3) | 163 (4) |
O11—H2O3···O8v | 0.83 (1) | 1.99 (2) | 2.791 (3) | 161 (3) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z+1; (iv) x+1, y, z; (v) −x+3/2, −y+1, z+1/2. |
Funding information
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
References
Douglas, B. E. & Radanović, D. J. (1993). Coord. Chem. Rev. 128, 139–165. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Herak, R., Srdanov, G., Djuran, M. & Radanović, D. (1981). Acta Cryst. A37, C237. CrossRef IUCr Journals Google Scholar
Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55–64. CSD CrossRef CAS Web of Science Google Scholar
Meier, R., Maigut, J., Kallies, B., Lehnert, N., Paulat, F., Heinemann, F. W., Zahn, G., Feth, M. P., Krautscheid, H. & van Eldik, R. (2007). Chem. Commun. 3960–3962. Google Scholar
Nagao, R., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 1852–1856. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Okamoto, K.-I., Kanamori, K. & Hidaka, J. (1990). Acta Cryst. C46, 1640–1642. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Rychlewska, U., Warżajtis, B., Djuran, M. I., Radanović, D. D., Dimitrijević, M. Dj. & Rajković, S. (2008). Acta Cryst. C64, m217–m220. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Warżajtis, B., Rychlewska, U., Radanović, D. D., Stanojević, I. M., Drasković, N. S., Radulović, N. S. & Djuran, M. I. (2014). Inorg. Chim. Acta, 67, 270–278. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weyh, J. A. & Hamm, R. E. (1968). Inorg. Chem. 7, 2431–2435. CrossRef CAS Web of Science Google Scholar
Yamamoto, T., Mikata, K., Miyoshi, K. & Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237–244. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.