research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of silver [(propane-1,3-diyl­di­nitrilo-κ2N,N′)­tetra­acetato-κ4O,O′,O′′,O′′′]chromate(III) from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 24 November 2017; accepted 29 January 2018; online 2 February 2018)

The asymmetric unit of the title compound, Ag[Cr(C11H14N2O8)]·3H2O, contains one [Cr(1,3-pdta)] anion [1,3-pdta is (propane-1,3-diyldi­nitrilo)­tetra­acetate], one Ag+ cation and three water mol­ecules. The Cr3+ ion is coordinated to the four O and two N atoms of the 1,3-pdta ligand, displaying a distorted octa­hedral geometry. The mean Cr—N and Cr—O bond lengths are 2.0727 (17) and 1.9608 (15) Å, respectively. The conformations of the chelate rings were found to be envelope for the glycinates and twist-boat for the six-membered di­amine (T) ring. The Ag+ cation is surrounded by six O atoms from three non-coordinated carbonyl O atoms of neighbouring 1,3-pdta groups and three water mol­ecules. The crystal structure is stabilized by inter­molecular hydrogen bonding involving the water O—H group as donor and the carboxyl O atom as acceptor.

1. Chemical context

The hexa­dentate ligand, propane-1,3-diyldi­nitrilo­tetra­acetate (abbreviated here as 1,3-pdta, C11H14N2O8) has been used for the preparation of complexes with many transition metal ions (Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]; Yamamoto et al., 1988[Yamamoto, T., Mikata, K., Miyoshi, K. & Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237-244.]; Douglas & Radanović, 1993[Douglas, B. E. & Radanović, D. J. (1993). Coord. Chem. Rev. 128, 139-165.]). In the complex anion, [M(1,3-pdta)]n-, the six-membered propane-1,3-di­amine ring is referred to as the T ring, the equatorially coordinated glycinate ring as the G ring, and the axially coordinated glycinate ring as the R ring (see Scheme). The counter-ion and metal-center oxidation state play a very important role in conformational isomerism. Upon coordination of 1,3-pdta by a metal center, the six-membered T ring can take twist-boat or half-chair conformers (Meier et al., 2007[Meier, R., Maigut, J., Kallies, B., Lehnert, N., Paulat, F., Heinemann, F. W., Zahn, G., Feth, M. P., Krautscheid, H. & van Eldik, R. (2007). Chem. Commun. 3960-3962.]). The twist-boat conformer was found in the crystal structures of K[Co(1,3-pdta)]·2H2O (Nagao et al., 1972[Nagao, R., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 1852-1856.]), Li[Fe(1,3-pdta)]·3H2O (Yamamoto et al., 1988[Yamamoto, T., Mikata, K., Miyoshi, K. & Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237-244.]) and Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]), whereas the half-chair form was observed in structural studies of [C(NH2)3][Fe(1,3-pdta)]·2H2O (Meier et al., 2007[Meier, R., Maigut, J., Kallies, B., Lehnert, N., Paulat, F., Heinemann, F. W., Zahn, G., Feth, M. P., Krautscheid, H. & van Eldik, R. (2007). Chem. Commun. 3960-3962.]) and Li2[Co(1,3-pdta)]·3H2O (Rychlewska et al., 2008[Rychlewska, U., Warżajtis, B., Djuran, M. I., Radanović, D. D., Dimitrijević, M. Dj. & Rajković, S. (2008). Acta Cryst. C64, m217-m220.]). The crystal structure of Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]) has also been reported previously. In this communication, we report the crystal structure of Ag[Cr(1,3-pdta)]·3H2O in order to clarify unambiguously the bonding mode and the conformational geometry adopted by the Ag+ salt.

[Scheme 1]

2. Structural commentary

This is another example of a [Cr(1,3-pdta)] anion but with a different cation. The crystal structure of the title compound is isotypic with Na[M(1,3-pdta)]·3H2O (M = Fe, Cr or Rh; Okamoto et al., 1990[Okamoto, K.-I., Kanamori, K. & Hidaka, J. (1990). Acta Cryst. C46, 1640-1642.]; Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]) but it belongs to the ortho­rhom­bic space group P212121 compared with the monoclinic space group P21/n of Li[Fe(1,3-pdta)]·3H2O (Yamamoto et al., 1988[Yamamoto, T., Mikata, K., Miyoshi, K. & Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237-244.]) and ortho­rhom­bic space group B2212 of K[Co(1,3-pdta)]·2H2O (Nagao et al., 1972[Nagao, R., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 1852-1856.]). The structural analysis shows that the propane-1,3-diyldi­nitrilo­tetra­acetate anion is coord­in­ated octa­hedrally by the Cr metal center through four O and two N atoms. An ellipsoid plot of title complex showing the atomic numbering is given in Fig. 1[link]. The Cr—O bond distances differ slightly, the mean equatorial and axial distances being 1.9672 (15) and 1.9544 (15) Å, respectively. The cis angles at the CrIII ion range from 81.66 (6) to 99.41 (6)° and the trans angles are 173.07 (7), 175.01 (6) and 176.04 (7)°. The six-membered propane-1,3-di­amine T ring (Fig. 1[link]) adopts a flexible twist-boat conformation. The R rings are nearly planar and are in an envelope conformation. The G rings are much more puckered and are halfway between an envelope and a twist conformation. The Cr—O bond distances are greater in the G rings than in the R rings, and the average Cr—N bond length of 2.0727 (17) Å is 0.1119 Å longer than the average Cr—O bond distance. The Cr—N and Cr—O bond distances are in accordance with the values observed in Na[Cr(1,3-pdta)]·3H2O. However, the average Ag—O distance of 2.525 (2) Å is slightly longer than the Na—O distance of 2.437 Å in Na[Cr(1,3-pdta)]·3H2O (Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]).

[Figure 1]
Figure 1
The structures of the mol­ecular entities in compound (I)[link], showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{1\over 2}], 1 − z.]

3. Supra­molecular features

The Ag+ cation is surrounded octa­hedrally by three water mol­ecules (O9, O10 and O11) and three carboxyl­ate O atoms [O6, O2iii(x + [{1\over 2}], −y + [{1\over 2}], 1 − z) and O4i(−x + [{1\over 2}], −y + 1, z + [{1\over 2}])] that are not directly coordinated to the Cr atom (Fig. 1[link]). Hydrogen bonds exist between the water mol­ecules and the O atoms in the 1,3-pdta moiety (Table 1[link]). An extensive array of these contacts generate a three-dimensional network of mol­ecules stacked along the a-axis direction (Fig. 2[link]). Non-coord­inating and coordinating carboxyl­ate O atoms take part in the formation of O—H⋯O hydrogen bonds, which contribute to the crystal packing stabilization and give rise to an infinite three-dimensional framework.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1O1⋯O3i 0.84 (1) 1.95 (1) 2.797 (2) 178 (3)
O9—H2O1⋯O8ii 0.85 (1) 1.93 (1) 2.767 (3) 172 (4)
O10—H1O2⋯O5iii 0.85 (1) 2.02 (1) 2.870 (2) 173 (4)
O10—H2O2⋯O2iv 0.85 (1) 1.89 (1) 2.729 (3) 170 (4)
O11—H1O3⋯O7ii 0.84 (1) 2.33 (2) 3.142 (3) 163 (4)
O11—H2O3⋯O8v 0.83 (1) 1.99 (2) 2.791 (3) 161 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z; (v) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of Ag[Cr(1,3-pdta)]·3H2O, viewed perpendicular to the bc plane. Dashed lines represent O—H⋯O hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, May 2017 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just three hits for a related complex anion, the [Cr(C11H14N2O8)2] unit. The crystal structure with an Na+ counter-cation (Herak et al., 1981[Herak, R., Srdanov, G., Djuran, M. & Radanović, D. (1981). Acta Cryst. A37, C237.], 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]) has been determined. The crystal structures of Na[Cr(1,3-pndta)]·H2O, K[Cr(1,3-pndta)]·H2O and Ca[Cr(1,3-pndta)]2·4H2O (1,3-pndta = pentane-1,3-diyldi­nitrilo­tetra­acetate; Warżajtis et al., 2014[Warżajtis, B., Rychlewska, U., Radanović, D. D., Stanojević, I. M., Drasković, N. S., Radulović, N. S. & Djuran, M. I. (2014). Inorg. Chim. Acta, 67, 270-278.]) have been reported previously. However, no structure of a [Cr(1,3-pdta)] or [Cr(1,3-pndta)] complex with Ag+ cation was found.

5. Synthesis and physical measurements

All chemicals were reagent-grade materials and were used without further purification. The UV–Vis absorption spectrum was recorded with a Cary 5000 UV–Vis–NIR Spectrophotometer. The FT–IR spectrum was obtained from a KBr pellet with a JASCO 460 plus series FT–IR spectrometer. Analyses for C, H, N were performed on a Carlo Erba 1108 Elemental Vario EL analyser. The precursor salt, Na[Cr(1,3-pdta)]·3H2O was prepared as described previously (Weyh & Hamm, 1968[Weyh, J. A. & Hamm, R. E. (1968). Inorg. Chem. 7, 2431-2435.]; Herak et al., 1984[Herak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55-64.]). The sodium salt (0.20 g) was dissolved in 15 mL of water at 323 K and added to 3 mL of water containing 0.5 g of AgNO3. The resulting solution was filtered and left to stand at room temperature for several days to give purple block-shaped crystals of the silver salt, Ag[Cr(1,3-pdta)]·3H2O suitable for X-ray structural analysis. Elemental analysis calculated for Ag[Cr(C11H14N2O8)]·3H2O: C, 25.60; H, 3.91; N, 5.43%; found: C, 25.71; H, 3.23; N, 5.36%. UV–vis data (H2O solution, nm): 201 (vs), 223 (vs), 245 (sh), 385 (s), 506 (s), 700 (w). IR spectrum (KBr, cm−1) : 3447 (vs, br) (ν OH), 3232 (sh), 2977 (vs) and 2941 (s) (ν CH), 1643 (s, br) (νas COO), 1473 (s), 1428 (m), 1363 (vs) and 1327 (vs) (νs COO), 1271 (sh), 1222 (s), 1144 (s), 1099 (vs), 1061 (m), 1029 (s), 988 (s), 941 (vs), 916 (vs), 897 (m), 853 (vs), 746 (vs), 690 (m), 632 (w), 579 (m), 529 (s), 486 (s), 433 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C). O-bound H atoms were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.88 (2) Å (using DFIX and DANG commands), and Uiso(H) = 1.2Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula Ag[Cr(C11H14N2O8)]·3H2O
Mr 516.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 260
a, b, c (Å) 8.7800 (18), 11.443 (2), 16.573 (3)
V3) 1665.1 (6)
Z 4
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.25
Crystal size (mm) 0.17 × 0.13 × 0.07
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.843, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14937, 4807, 4738
Rint 0.041
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.07
No. of reflections 4807
No. of parameters 253
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.65
Absolute structure Flack x determined using 2027 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.008 (6)
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Silver [(propane-1,3-diyldinitrilo-κ2N,N')tetraacetato-κ4O,O',O'',O''']chromate(III) top
Crystal data top
Ag[Cr(C11H14N2O8)]·3H2ODx = 2.059 Mg m3
Mr = 516.16Synchrotron radiation, λ = 0.610 Å
Orthorhombic, P212121Cell parameters from 33074 reflections
a = 8.7800 (18) Åθ = 0.4–33.7°
b = 11.443 (2) ŵ = 1.25 mm1
c = 16.573 (3) ÅT = 260 K
V = 1665.1 (6) Å3Block, purple
Z = 40.17 × 0.13 × 0.07 mm
F(000) = 1036
Data collection top
ADSC Q210 CCD area detector
diffractometer
4738 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.041
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.843, Tmax = 1.000k = 1616
14937 measured reflectionsl = 2323
4807 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.5713P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.41 e Å3
4807 reflectionsΔρmin = 0.65 e Å3
253 parametersAbsolute structure: Flack x determined using 2027 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
9 restraintsAbsolute structure parameter: 0.008 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.24189 (3)0.37102 (2)0.24502 (2)0.00967 (6)
O10.12226 (18)0.25175 (12)0.30121 (9)0.0175 (3)
O20.0055 (2)0.21547 (15)0.41423 (11)0.0251 (3)
O30.08051 (18)0.39909 (14)0.16628 (9)0.0186 (3)
O40.16003 (19)0.45764 (18)0.15293 (11)0.0282 (4)
O50.40372 (17)0.35453 (13)0.32531 (9)0.0177 (3)
O60.63816 (19)0.40881 (18)0.35973 (11)0.0286 (4)
O70.35275 (18)0.27005 (12)0.16811 (9)0.0184 (3)
O80.5114 (3)0.27410 (18)0.06396 (14)0.0398 (5)
N10.11336 (19)0.48076 (14)0.31737 (10)0.0116 (3)
N20.38257 (19)0.50019 (14)0.19855 (11)0.0132 (3)
C10.0637 (2)0.28284 (17)0.36905 (12)0.0150 (3)
C20.0876 (2)0.41046 (17)0.39202 (12)0.0165 (3)
H210.0012990.4395330.4204080.020*
H220.1748990.4174030.4275560.020*
C30.0428 (2)0.45009 (19)0.19226 (12)0.0163 (3)
C40.0348 (2)0.50289 (17)0.27589 (13)0.0155 (3)
H410.0506620.5865720.2718600.019*
H420.1165370.4708660.3084560.019*
C50.5249 (2)0.41833 (17)0.31713 (12)0.0159 (3)
C60.5206 (2)0.50999 (17)0.25100 (15)0.0177 (3)
H610.5227080.5870010.2754420.021*
H620.6110060.5021640.2177700.021*
C70.4341 (3)0.32390 (19)0.11558 (13)0.0192 (4)
C80.4251 (3)0.45637 (18)0.11673 (13)0.0204 (4)
H810.5229100.4888020.1012920.024*
H820.3499540.4822790.0777310.024*
C90.1955 (2)0.59037 (17)0.33877 (13)0.0183 (4)
H910.2868010.5695040.3683930.022*
H920.1313250.6354240.3748650.022*
C100.2416 (3)0.66904 (17)0.26797 (15)0.0214 (4)
H100.1538580.7165010.2542160.026*
H10B0.3197940.7219050.2874430.026*
C110.3006 (2)0.61414 (17)0.18957 (14)0.0189 (4)
H110.2147700.6024520.1536190.023*
H11B0.3688530.6693790.1638040.023*
Ag10.66176 (2)0.43997 (2)0.51158 (2)0.02983 (6)
O90.4276 (2)0.55599 (18)0.50044 (10)0.0323 (4)
H1O10.426 (5)0.571 (3)0.5503 (8)0.039*
H2O10.455 (4)0.6206 (19)0.4800 (19)0.039*
O100.8668 (3)0.31407 (19)0.54800 (12)0.0345 (4)
H1O20.869 (5)0.264 (3)0.5862 (15)0.041*
H2O20.899 (4)0.276 (3)0.5075 (14)0.041*
O110.8203 (3)0.60117 (17)0.44997 (13)0.0333 (4)
H1O30.758 (4)0.637 (3)0.421 (2)0.040*
H2O30.853 (4)0.649 (3)0.4838 (18)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.00884 (12)0.01014 (11)0.01002 (11)0.00089 (9)0.00008 (9)0.00054 (9)
O10.0211 (7)0.0136 (6)0.0177 (6)0.0061 (5)0.0050 (5)0.0013 (5)
O20.0265 (8)0.0234 (7)0.0253 (8)0.0017 (6)0.0088 (7)0.0093 (6)
O30.0137 (6)0.0295 (7)0.0127 (6)0.0031 (5)0.0030 (5)0.0026 (5)
O40.0137 (6)0.0496 (10)0.0212 (7)0.0015 (7)0.0065 (6)0.0017 (7)
O50.0133 (6)0.0219 (7)0.0180 (6)0.0021 (5)0.0042 (5)0.0052 (5)
O60.0154 (7)0.0474 (10)0.0230 (8)0.0030 (6)0.0080 (6)0.0007 (7)
O70.0211 (7)0.0143 (6)0.0199 (7)0.0007 (5)0.0072 (6)0.0012 (5)
O80.0520 (13)0.0286 (9)0.0388 (11)0.0050 (9)0.0299 (10)0.0106 (8)
N10.0116 (6)0.0113 (6)0.0119 (6)0.0005 (5)0.0009 (5)0.0003 (5)
N20.0117 (7)0.0118 (7)0.0160 (7)0.0009 (5)0.0001 (5)0.0022 (5)
C10.0140 (8)0.0163 (8)0.0147 (8)0.0005 (6)0.0008 (6)0.0039 (6)
C20.0206 (9)0.0182 (8)0.0108 (7)0.0008 (7)0.0019 (7)0.0011 (6)
C30.0114 (8)0.0233 (8)0.0144 (8)0.0021 (7)0.0017 (6)0.0044 (7)
C40.0110 (7)0.0192 (9)0.0163 (8)0.0017 (6)0.0018 (6)0.0003 (6)
C50.0110 (7)0.0210 (8)0.0157 (8)0.0002 (6)0.0018 (6)0.0034 (7)
C60.0108 (7)0.0167 (7)0.0258 (9)0.0031 (6)0.0016 (7)0.0007 (7)
C70.0201 (9)0.0205 (8)0.0169 (9)0.0021 (7)0.0049 (7)0.0025 (7)
C80.0253 (10)0.0191 (9)0.0167 (8)0.0036 (7)0.0074 (8)0.0019 (7)
C90.0203 (9)0.0147 (7)0.0200 (9)0.0028 (6)0.0008 (7)0.0056 (6)
C100.0201 (9)0.0121 (7)0.0319 (10)0.0014 (7)0.0024 (8)0.0002 (7)
C110.0215 (9)0.0121 (8)0.0230 (9)0.0017 (6)0.0009 (7)0.0052 (7)
Ag10.03046 (10)0.03290 (9)0.02614 (9)0.00309 (7)0.00069 (7)0.00446 (7)
O90.0440 (10)0.0339 (8)0.0191 (8)0.0016 (8)0.0045 (7)0.0039 (7)
O100.0401 (11)0.0378 (10)0.0257 (9)0.0108 (8)0.0103 (8)0.0094 (7)
O110.0376 (10)0.0302 (8)0.0320 (9)0.0014 (8)0.0099 (8)0.0045 (7)
Geometric parameters (Å, º) top
Cr1—O31.9530 (15)C4—H410.9700
Cr1—O51.9558 (15)C4—H420.9700
Cr1—O11.9578 (14)C5—C61.517 (3)
Cr1—O71.9766 (15)C6—H610.9700
Cr1—N12.0708 (17)C6—H620.9700
Cr1—N22.0745 (16)C7—C81.518 (3)
O1—C11.287 (2)C8—H810.9700
O2—C11.234 (2)C8—H820.9700
O3—C31.303 (2)C9—C101.533 (3)
O4—C31.222 (2)C9—H910.9700
O5—C51.298 (2)C9—H920.9700
O6—C51.224 (3)C10—C111.533 (3)
O6—Ag12.5501 (19)C10—H100.9700
O7—C71.284 (3)C10—H10B0.9700
O8—C71.232 (3)C11—H110.9700
N1—C91.490 (2)C11—H11B0.9700
N1—C41.493 (2)Ag1—O102.383 (2)
N1—C21.493 (2)Ag1—O92.455 (2)
N2—C81.493 (3)Ag1—O112.526 (2)
N2—C61.496 (3)O9—H1O10.844 (13)
N2—C111.497 (3)O9—H2O10.848 (13)
C1—C21.524 (3)O10—H1O20.854 (13)
C2—H210.9700O10—H2O20.847 (13)
C2—H220.9700O11—H1O30.839 (13)
C3—C41.514 (3)O11—H2O30.834 (13)
O3—Cr1—O5176.04 (7)O6—C5—C6119.87 (19)
O3—Cr1—O192.48 (7)O5—C5—C6116.36 (17)
O5—Cr1—O189.94 (7)N2—C6—C5112.83 (16)
O3—Cr1—O791.29 (7)N2—C6—H61109.0
O5—Cr1—O791.41 (7)C5—C6—H61109.0
O1—Cr1—O799.41 (6)N2—C6—H62109.0
O3—Cr1—N183.79 (7)C5—C6—H62109.0
O5—Cr1—N193.47 (7)H61—C6—H62107.8
O1—Cr1—N181.66 (6)O8—C7—O7123.7 (2)
O7—Cr1—N1175.01 (7)O8—C7—C8120.0 (2)
O3—Cr1—N293.82 (7)O7—C7—C8116.21 (18)
O5—Cr1—N283.61 (7)N2—C8—C7111.09 (16)
O1—Cr1—N2173.07 (7)N2—C8—H81109.4
O7—Cr1—N283.33 (7)C7—C8—H81109.4
N1—Cr1—N296.16 (7)N2—C8—H82109.4
C1—O1—Cr1115.94 (12)C7—C8—H82109.4
C3—O3—Cr1117.10 (13)H81—C8—H82108.0
C5—O5—Cr1118.06 (13)N1—C9—C10116.11 (17)
C5—O6—Ag1128.51 (15)N1—C9—H91108.3
C7—O7—Cr1115.52 (13)C10—C9—H91108.3
C9—N1—C4112.86 (15)N1—C9—H92108.3
C9—N1—C2109.26 (16)C10—C9—H92108.3
C4—N1—C2109.93 (16)H91—C9—H92107.4
C9—N1—Cr1112.63 (12)C11—C10—C9119.81 (16)
C4—N1—Cr1108.12 (12)C11—C10—H10107.4
C2—N1—Cr1103.64 (11)C9—C10—H10107.4
C8—N2—C6110.51 (16)C11—C10—H10B107.4
C8—N2—C11108.81 (16)C9—C10—H10B107.4
C6—N2—C11112.46 (16)H10—C10—H10B106.9
C8—N2—Cr1104.29 (12)N2—C11—C10115.79 (17)
C6—N2—Cr1108.67 (12)N2—C11—H11108.3
C11—N2—Cr1111.80 (12)C10—C11—H11108.3
O2—C1—O1123.65 (19)N2—C11—H11B108.3
O2—C1—C2120.98 (19)C10—C11—H11B108.3
O1—C1—C2115.36 (16)H11—C11—H11B107.4
N1—C2—C1109.28 (15)O10—Ag1—O9168.15 (6)
N1—C2—H21109.8O10—Ag1—O1197.34 (7)
C1—C2—H21109.8O9—Ag1—O1192.08 (7)
N1—C2—H22109.8O10—Ag1—O6103.11 (7)
C1—C2—H22109.8O9—Ag1—O686.18 (6)
H21—C2—H22108.3O11—Ag1—O675.40 (6)
O4—C3—O3123.7 (2)Ag1—O9—H1O193 (3)
O4—C3—C4119.96 (19)Ag1—O9—H2O1105 (3)
O3—C3—C4116.29 (16)H1O1—O9—H2O1103 (3)
N1—C4—C3113.23 (15)Ag1—O10—H1O2128 (3)
N1—C4—H41108.9Ag1—O10—H2O2111 (3)
C3—C4—H41108.9H1O2—O10—H2O2104 (3)
N1—C4—H42108.9Ag1—O11—H1O3103 (3)
C3—C4—H42108.9Ag1—O11—H2O3113 (3)
H41—C4—H42107.7H1O3—O11—H2O3107 (3)
O6—C5—O5123.8 (2)
Cr1—O1—C1—O2174.74 (17)C11—N2—C6—C5129.15 (18)
Cr1—O1—C1—C24.1 (2)Cr1—N2—C6—C54.8 (2)
C9—N1—C2—C1157.68 (16)O6—C5—C6—N2173.04 (19)
C4—N1—C2—C177.96 (19)O5—C5—C6—N27.8 (3)
Cr1—N1—C2—C137.41 (17)Cr1—O7—C7—O8179.2 (2)
O2—C1—C2—N1156.79 (19)Cr1—O7—C7—C83.9 (3)
O1—C1—C2—N124.3 (2)C6—N2—C8—C784.3 (2)
Cr1—O3—C3—O4168.99 (18)C11—N2—C8—C7151.72 (18)
Cr1—O3—C3—C411.7 (2)Cr1—N2—C8—C732.3 (2)
C9—N1—C4—C3120.00 (18)O8—C7—C8—N2157.0 (2)
C2—N1—C4—C3117.75 (18)O7—C7—C8—N225.9 (3)
Cr1—N1—C4—C35.26 (18)C4—N1—C9—C1061.7 (2)
O4—C3—C4—N1177.0 (2)C2—N1—C9—C10175.70 (17)
O3—C3—C4—N13.6 (2)Cr1—N1—C9—C1061.1 (2)
Ag1—O6—C5—O562.2 (3)N1—C9—C10—C1139.4 (3)
Ag1—O6—C5—C6117.0 (2)C8—N2—C11—C10177.20 (17)
Cr1—O5—C5—O6173.92 (17)C6—N2—C11—C1060.0 (2)
Cr1—O5—C5—C66.9 (2)Cr1—N2—C11—C1062.6 (2)
C8—N2—C6—C5109.04 (19)C9—C10—C11—N230.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1O1···O3i0.84 (1)1.95 (1)2.797 (2)178 (3)
O9—H2O1···O8ii0.85 (1)1.93 (1)2.767 (3)172 (4)
O10—H1O2···O5iii0.85 (1)2.02 (1)2.870 (2)173 (4)
O10—H2O2···O2iv0.85 (1)1.89 (1)2.729 (3)170 (4)
O11—H1O3···O7ii0.84 (1)2.33 (2)3.142 (3)163 (4)
O11—H2O3···O8v0.83 (1)1.99 (2)2.791 (3)161 (3)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+3/2, y+1, z+1/2.
 

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationDouglas, B. E. & Radanović, D. J. (1993). Coord. Chem. Rev. 128, 139–165.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerak, R., Srdanov, G., Djuran, M. & Radanović, D. (1981). Acta Cryst. A37, C237.  CrossRef IUCr Journals Google Scholar
First citationHerak, R., Srdanov, G., Djuran, M. I., Radanović, D. J. & Bruvo, M. (1984). Inorg. Chim. Acta, 83, 55–64.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeier, R., Maigut, J., Kallies, B., Lehnert, N., Paulat, F., Heinemann, F. W., Zahn, G., Feth, M. P., Krautscheid, H. & van Eldik, R. (2007). Chem. Commun. 3960–3962.  Google Scholar
First citationNagao, R., Marumo, F. & Saito, Y. (1972). Acta Cryst. B28, 1852–1856.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOkamoto, K.-I., Kanamori, K. & Hidaka, J. (1990). Acta Cryst. C46, 1640–1642.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRychlewska, U., Warżajtis, B., Djuran, M. I., Radanović, D. D., Dimitrijević, M. Dj. & Rajković, S. (2008). Acta Cryst. C64, m217–m220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarżajtis, B., Rychlewska, U., Radanović, D. D., Stanojević, I. M., Drasković, N. S., Radulović, N. S. & Djuran, M. I. (2014). Inorg. Chim. Acta, 67, 270–278.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyh, J. A. & Hamm, R. E. (1968). Inorg. Chem. 7, 2431–2435.  CrossRef CAS Web of Science Google Scholar
First citationYamamoto, T., Mikata, K., Miyoshi, K. & Yoneda, H. (1988). Inorg. Chim. Acta, 150, 237–244.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds