research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-4-chloro-N-{2-[2-(4-nitro­benzyl­­idene)hydrazin-1-yl]-2-oxoeth­yl}benzene­sulfonamide N,N-di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire 574 240, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, Karnataka, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 February 2018; accepted 19 February 2018; online 23 February 2018)

The asymmetric unit of the title compound, C15H13ClN4O5S·C3H7NO, contains one mol­ecule each of the Schiff base and the solvent di­methyl­formamide. The hydrazone group adopts an E configuration about the C=N bond. The dihedral angle between the two aromatic rings is 86.58 (2)°. In the crystal, pairs of N—H⋯O hydrogen bonds between centrosymmetrically related mol­ecules generates rings with an R22(10) graph-set motif. The dimers are further linked via N—H⋯O and C—H⋯O hydrogen bonds, leading to the formation of R33(11) ring motifs. C—H⋯π inter­actions are also observed. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis, which indicates that the most significant contacts in packing are O⋯H/H⋯O (31.3%), followed by H⋯H (25.4%) and C⋯H/H⋯C (13.0%).

1. Chemical context

Supra­molecular chemistry is based upon non-covalent inter­actions such as hydrogen bonding, ππ stacking and van der Waals inter­actions (Beatty et al., 2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]; Biradha et al., 2003[Biradha, K. (2003). CrystEngComm, 5, 374-384.]; Aakeröy & Beatty, 2001[Aakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409-421.]). The presence of strong hydrogen-bond donors and acceptors on the mol­ecular periphery results in cross-linking of mol­ecules via strong hydrogen bonds into dimers, rings, chains and other hydrogen-bonded motifs. The acidity of the C—H donor group determines the strength of C—H⋯O inter­actions (Purandara et al., 2017a[Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683-1686.],b[Purandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946-1951.]). The study of C—H⋯O inter­actions in compounds containing chlorine atoms suggests that the more acidic the C—H hydrogen involved in a C—H⋯O inter­action, the stronger is the inter­action (Desiraju et al., 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]). The presence of donors and acceptors make N-acyl­hydrazones important candidates for structural studies in this field. An attractive feature of hydrazones is their ability to form geometrical E/Z isomers because of the presence of the C=N double bond (Palla et al., 1986[Palla, G., Predieri, G., Domiano, P., Vignali, C. & Turner, W. (1986). Tetrahedron, 42, 3649-3654.]) and conformational isomers because of a partly hindered rotation around the amide C—N bond. The nature and site of the substituents in the hydrazone moiety and hydrogen-bonding inter­actions decide the stereochemistry. In a continuation of our efforts to explore the effect of substit­uents on the structures of N-acyl­hydrazone derivatives, we report herein the synthesis, crystal structure and Hirshfeld analysis of the title compound, (E)-4-chloro-N-{2-[2-(4-nitro­benzyl­idene)hydrazin-1-yl]-2-oxoeth­yl}benzene­sulfonamide N,N-di­methyl­formamide monosolvate.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains one mol­ecule each of the hydrazone and the solvent di­methyl­formamide (DMF). The mol­ecule displays an E configuration about the C=N bond. The conformations of the N—H, C—H and C=O bonds in the hydazone portion of the mol­ecule are syn to each other, whereas the C=O and N—H bonds in the glycinyl segment are anti to each other. The C8=O3 and C9=N3 bond lengths of 1.217 (6) and 1.274 (6) Å, respectively, confirm their double-bond character. The C8—N2 and N2—N3 bond distances [1.357 (7) and 1.374 (6) Å, respectively] are shorter than normal bond lengths as a result of delocalization of the π-electron density. The mol­ecule is twisted at N1—C7 with an S1—N1—C7—C8 torsion angle of 166.5 (4)°. The other central part of the mol­ecule is almost linear with C7—C8—N2—N3, C8—N2—N3—C9 and N2—N3—C9—C10 torsion angles of −1.6 (7), −179.7 (5) and 177.9 (4)°, respectively. The orientations of the sulfonamide group with respect to the attached phenyl ring is given by the torsion angles of C2—C1—S1—N1 = 98.1 (5)° and C6—C1—S1—N1 = −80.2 (5)°, while that of the hydrazone group with the attached phenyl ring by the torsion angles of C11—C10—C9—N3 = 1.6 (8)° and C15—C10—C9—N3 = −177.4 (5)°. The dihedral angle between the sulfonyl benzene ring and the mean plane through the SO2—NH—CH2—CO segment is 82.653 (18)°, while that between the C10–C15 phenyl ring and the mean plane through the C9—N3—N2—CO segment is 4.44 (3)°. The dihedral angle between the two aromatic rings is 86.58 (2)°. The C1–C6 and C10–C15 benzene rings are inclined to the mean plane of the central part of the hydrazone mol­ecule [O3/N1–N3/C7–C9; maximum deviation of 0.026 (6) Å for C7] by 86.4 (3) and 4.5 (3)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The hydrazone and solvent mol­ecules are connected via N—H⋯O and C—H⋯O hydrogen bonds, generating rings with an [R_{3}^{3}](11) graph-set motif (Table 1[link], Fig. 2[link]). These bimolecular units are then linked by pairs of N—H⋯O hydrogen bonds, resulting in inversion dimers forming an [R_{2}^{2}](10) ring motif. A pair of N—H⋯O hydrogen bonds connecting the sulfonamide H-atom of one mol­ecule with carbonyl O atom of another mol­ecule generates an [R_{2}^{2}](10) ring, forming inversion dimers. The dimers are then linked via N—H⋯O and C—H⋯O hydrogen bonds, leading to the formation of [R_{3}^{3}](11) ring motifs. These rings are further extended by two C—H⋯O hydrogen bonds, one involving a methyl hydrogen atom of the solvent mol­ecule (H18B) and the sulfonyl oxygen atom (O2) forming C33(18) chains along the c axis, and the other involving an aromatic C—H (H14) and the nitro O4 atom, giving rise to inversion dimers with an [R_{2}^{2}](10) graph-set motif (Fig. 3[link]). In addition, the hydrazone mol­ecule is involved in C—H⋯π inter­actions (Fig. 4[link], Table 1[link]). The hydrogen-bonding pattern in the title compound is similar to that observed in (E)-4-methyl-N-{2-[2-(4-nitro­benz­yl­idene)hydrazin-1-yl]-2-oxoeth­yl}benzene­sulfonamide N,N-di­meth­yl­form­amide monosolvate (Purandara et al., 2017a[Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683-1686.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.18 (3) 2.976 (6) 155 (5)
N2—H2N⋯O6i 0.87 (2) 2.00 (2) 2.857 (6) 171 (5)
C5—H5⋯O2ii 0.93 2.47 3.357 (7) 159
C14—H14⋯O4iii 0.93 2.53 3.457 (7) 175
C16—H16A⋯O1 0.93 2.46 3.207 (8) 138
C18—H18B⋯O2iv 0.96 2.53 3.339 (8) 142
C15—H15⋯Cg1v 0.93 2.72 3.629 (7) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x, -y+3, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z.
[Figure 2]
Figure 2
The hydrogen-bonding pattern (dashed lines) in the title compound.
[Figure 3]
Figure 3
The mol­ecular packing of the title compound, with hydrogen bonding shown as dashed lines.
[Figure 4]
Figure 4
The C—H⋯π inter­actions (green dotted lines) observed in the structure of the title compound.

4. Hirshfield Surface analysis

CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) was used to generate the mol­ecular Hirshfeld surfaces (dnorm, electrostatic potential and curvedness) to analyse the close contacts in the title compound. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. https://hirshfeldsurface.net/]) integrated within CrystalExplorer. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the 3D dnorm surfaces mapped over a fixed colour scale of −0.5849 to 1.3948. The curvedness was mapped in the colour range of −4.0 to 0.4. The electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level theory over a range ±0.1au.

In the Hirshfeld surfaces mapped over dnorm (Fig. 5[link]), the strong N—H⋯O inter­actions can be observed as bright-red spots between oxygen (O) and hydrogen (H) atoms. These inter­actions are further confirmed by Hirshfeld surfaces mapped over the electrostatic potential (Fig. 6[link]), showing the negative potential around the oxygen atoms as light-red clouds and the positive potential around hydrogen atoms as light-blue clouds. The two-dimensional fingerprint (FP) plots for significant inter­molecular inter­actions are illustrated in Fig. 7[link]. The greatest contribution from the O⋯H/H⋯O contacts is 31.3%, corresponding to N—H⋯O/C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action having de + di values of about 1.8 and 2.0 Å (Fig. 7[link]b). The H⋯H inter­actions appear as the largest region of the fingerprint plot with a high concentration in the middle region, shown in light blue, at de = di ∼1.4 Å (Fig. 7[link]a) with an overall contribution to the Hirshfeld surfaces of 25.4%. The C⋯H contacts, which refer to C—H⋯π inter­actions, contribute 13.0% of the Hirshfeld surfaces. The presence of C—H⋯π inter­actions is indicated by the appearance of two broad spikes having almost same de + di 3.1 Å. The C⋯C contacts contribute 4.5% of the Hirshfeld surfaces, featuring two successive triangles with a minimum (de + di) distance of ∼3.5 Å, which is greater than van der Waals separation, confirming the absence of ππ stacking inter­actions. This is also evident from the absence of flat regions in the Hirshfeld surface mapped over curvedness (Fig. 8[link]).

[Figure 5]
Figure 5
View of the Hirshfeld surface mapped over dnorm.
[Figure 6]
Figure 6
View of the Hirshfeld surface mapped over the electrostatic potential.
[Figure 7]
Figure 7
The two-dimensional fingerprint (FP) plot for the title compound, delineated into (a) O⋯H/H⋯O, (b) H⋯H, (c) C⋯H and (d) C⋯C inter­actions; dnorm surfaces for each plot, indicating the relevant surface patches associated with the specific contacts, are shown on the right.
[Figure 8]
Figure 8
View of the Hirshfeld surface mapped over curvedness.

5. Synthesis and crystallization

4-Chloro­benzene­sulfonyl chloride (0.01 mol) was added to glycine (0.02 mol) dissolved in an aqueous solution of potassium carbonate (0.06 mol, 50 ml). The reaction mixture was stirred at 373 K for 6 h, left overnight at room temperature, then filtered and treated with dilute hydro­chloric acid. The solid N-(4-chloro­benzene­sulfon­yl)glycine (L1) obtained was crystallized from aqueous ethanol. Sulfuric acid (0.5 ml) was added to L1 (0.02 mol) dissolved in ethanol (30 ml) and the mixture was refluxed. The reaction mixture was monitored by TLC at regular inter­vals. After completion of the reaction, the reaction mixture was concentrated to remove the excess ethanol. The product, N-(4-chloro­benzene­sulfon­yl)glycine ethyl ester (L2) obtained was poured into water, neutralized with sodium bicarbonate and recrystallized from acetone. The pure L2 (0.01 mol) was then added in small portions to a stirred solution of 99% hydrazine hydrate (10 ml) in 30 ml ethanol and the mixture was refluxed for 6 h. After cooling to room temperature, the resulting precipitate was filtered, washed with cold water and dried to obtain N-(4-chloro­benzene­sulfon­yl)glycinyl hydrazide (L3). A mixture of L3 (0.01 mol) and 4-nitro­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to a constant melting point from methanol (493–496 K).

The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3250.1, 1685.8, 1587.4, 1342.5 and 1166.9 cm−1 for the stretching bands of N—H, C=O, C=N, S=O asymmetric and S=O symmetric, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 3.68, 4.17 (2d, 2H, J = 5.68 Hz), 7.62–7.67 (m, 2H, Ar-H), 7.80–7.94 (m, 4H, Ar-H), 8.24–8.29 (m, 2H, Ar-H), 8.02 (s, 1H), 8.14 (t, 1H), 11.73, 11.75 (2s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 43.26, 44.42, 123.94, 127.85, 128.53, 129.19, 137.23, 139.77, 141.47, 144.68, 147.75, 164.52, 169.34. Plate-like yellow single crystals of the title compound suitable for X-ray analysis were grown from its DMF solution by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned with idealized geometry, C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 Å (methyl­ene) and refined using a riding model with isotropic displacement parameters set at 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.. The amino H atoms were freely refined with the N—H distances restrained to 0.86 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula C15H13ClN4O5S·C3H7NO
Mr 469.90
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.240 (1), 10.631 (1), 13.720 (2)
α, β, γ (°) 108.15 (1), 98.36 (1), 105.07 (1)
V3) 1068.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.46 × 0.22 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.866, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 6809, 3847, 2623
Rint 0.027
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.167, 1.32
No. of reflections 3847
No. of parameters 288
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.43
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-4-Chloro-N-{2-[2-(4-nitrobenzylidene)hydrazin-1-yl]-2-oxoethyl}benzenesulfonamide N,N-dimethylformamide monosolvate top
Crystal data top
C15H13ClN4O5S·C3H7NOZ = 2
Mr = 469.90F(000) = 488
Triclinic, P1Dx = 1.460 Mg m3
a = 8.240 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.631 (1) ÅCell parameters from 1907 reflections
c = 13.720 (2) Åθ = 2.6–28.0°
α = 108.15 (1)°µ = 0.32 mm1
β = 98.36 (1)°T = 293 K
γ = 105.07 (1)°Plate, yellow
V = 1068.7 (2) Å30.46 × 0.22 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2623 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.866, Tmax = 0.975k = 1212
6809 measured reflectionsl = 1416
3847 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + 3.0287P]
where P = (Fo2 + 2Fc2)/3
S = 1.32(Δ/σ)max < 0.001
3847 reflectionsΔρmax = 0.61 e Å3
288 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.2884 (2)1.0818 (2)0.38232 (19)0.0962 (7)
S10.52061 (19)0.69212 (16)0.26923 (12)0.0430 (4)
O10.5214 (5)0.5704 (4)0.2924 (3)0.0570 (11)
O20.4256 (5)0.7784 (4)0.3183 (3)0.0554 (11)
O30.3990 (5)0.5834 (4)0.0674 (3)0.0561 (11)
O40.0376 (6)1.5139 (5)0.1175 (4)0.0744 (14)
O50.0718 (7)1.4667 (5)0.2589 (4)0.0824 (16)
N10.4475 (6)0.6423 (5)0.1438 (4)0.0429 (11)
H1N0.482 (7)0.581 (4)0.103 (4)0.051*
N20.3264 (6)0.7745 (5)0.0636 (4)0.0420 (11)
H2N0.321 (7)0.760 (6)0.1298 (19)0.050*
N30.2997 (5)0.8933 (4)0.0024 (3)0.0364 (10)
N40.0771 (6)1.4444 (5)0.1669 (5)0.0534 (13)
C10.7391 (7)0.8014 (6)0.3018 (4)0.0406 (13)
C20.7777 (9)0.9455 (7)0.3399 (6)0.069 (2)
H20.68970.98460.34960.083*
C30.9470 (9)1.0308 (7)0.3635 (6)0.077 (2)
H30.97381.12750.38820.092*
C41.0758 (8)0.9717 (7)0.3501 (5)0.0572 (17)
C51.0392 (8)0.8290 (7)0.3112 (5)0.0495 (15)
H51.12760.79040.30150.059*
C60.8695 (8)0.7438 (6)0.2866 (5)0.0467 (15)
H60.84290.64700.25980.056*
C70.4001 (7)0.7410 (6)0.1009 (4)0.0421 (13)
H7A0.49050.83130.13320.051*
H7B0.29360.75270.11810.051*
C80.3754 (7)0.6906 (5)0.0167 (4)0.0386 (13)
C90.2531 (7)0.9679 (5)0.0504 (4)0.0383 (13)
H90.24250.94240.12290.046*
C100.2161 (6)1.0935 (5)0.0081 (4)0.0355 (12)
C110.2339 (8)1.1382 (6)0.1170 (4)0.0483 (15)
H110.27571.08950.15480.058*
C120.1910 (8)1.2531 (6)0.1696 (5)0.0506 (15)
H120.20191.28190.24220.061*
C130.1312 (7)1.3247 (6)0.1119 (4)0.0408 (13)
C140.1167 (7)1.2873 (6)0.0058 (5)0.0467 (14)
H140.07951.33900.03090.056*
C150.1584 (7)1.1714 (6)0.0455 (5)0.0450 (14)
H150.14791.14420.11800.054*
O60.7001 (7)0.2440 (5)0.2779 (4)0.0807 (16)
N50.7345 (7)0.4007 (5)0.4406 (4)0.0602 (14)
C160.7123 (10)0.3594 (8)0.3368 (6)0.069 (2)
H16A0.70550.42520.30620.083*
C170.7557 (13)0.5436 (8)0.5057 (6)0.104 (3)
H17A0.74930.59760.46160.156*
H17B0.86650.58390.55600.156*
H17C0.66540.54390.54270.156*
C180.7419 (12)0.3051 (8)0.4940 (6)0.091 (3)
H18A0.70430.21140.44290.136*
H18B0.66750.31170.54180.136*
H18C0.85890.32820.53300.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0548 (12)0.0931 (16)0.1126 (18)0.0029 (11)0.0042 (11)0.0249 (13)
S10.0452 (8)0.0514 (9)0.0430 (8)0.0233 (7)0.0149 (7)0.0232 (7)
O10.061 (3)0.061 (3)0.063 (3)0.023 (2)0.017 (2)0.038 (2)
O20.053 (3)0.072 (3)0.056 (3)0.037 (2)0.025 (2)0.023 (2)
O30.074 (3)0.047 (3)0.050 (3)0.034 (2)0.013 (2)0.010 (2)
O40.090 (4)0.059 (3)0.090 (4)0.048 (3)0.021 (3)0.030 (3)
O50.109 (4)0.080 (4)0.063 (3)0.055 (3)0.026 (3)0.010 (3)
N10.052 (3)0.040 (3)0.043 (3)0.027 (2)0.009 (2)0.015 (2)
N20.057 (3)0.038 (3)0.036 (3)0.026 (2)0.011 (2)0.014 (2)
N30.040 (3)0.031 (2)0.039 (3)0.014 (2)0.009 (2)0.010 (2)
N40.048 (3)0.045 (3)0.061 (4)0.020 (3)0.011 (3)0.008 (3)
C10.044 (3)0.049 (3)0.036 (3)0.024 (3)0.012 (3)0.018 (3)
C20.060 (4)0.052 (4)0.085 (5)0.031 (4)0.017 (4)0.001 (4)
C30.054 (4)0.041 (4)0.105 (6)0.009 (3)0.014 (4)0.005 (4)
C40.044 (4)0.062 (4)0.048 (4)0.007 (3)0.003 (3)0.009 (3)
C50.045 (4)0.062 (4)0.054 (4)0.029 (3)0.018 (3)0.027 (3)
C60.057 (4)0.048 (4)0.053 (4)0.030 (3)0.021 (3)0.027 (3)
C70.047 (3)0.043 (3)0.041 (3)0.022 (3)0.012 (3)0.016 (3)
C80.034 (3)0.034 (3)0.040 (3)0.010 (2)0.003 (2)0.007 (3)
C90.043 (3)0.038 (3)0.035 (3)0.014 (3)0.010 (2)0.015 (3)
C100.032 (3)0.034 (3)0.042 (3)0.009 (2)0.008 (2)0.016 (2)
C110.065 (4)0.048 (4)0.038 (3)0.027 (3)0.007 (3)0.019 (3)
C120.065 (4)0.048 (4)0.035 (3)0.022 (3)0.005 (3)0.010 (3)
C130.039 (3)0.037 (3)0.039 (3)0.011 (3)0.004 (3)0.008 (3)
C140.050 (4)0.040 (3)0.061 (4)0.020 (3)0.015 (3)0.027 (3)
C150.051 (4)0.049 (4)0.045 (3)0.023 (3)0.013 (3)0.025 (3)
O60.135 (5)0.075 (3)0.045 (3)0.056 (3)0.028 (3)0.017 (3)
N50.085 (4)0.057 (3)0.042 (3)0.034 (3)0.014 (3)0.014 (3)
C160.100 (6)0.075 (5)0.052 (5)0.051 (5)0.022 (4)0.030 (4)
C170.165 (9)0.083 (6)0.064 (5)0.072 (6)0.004 (5)0.010 (5)
C180.145 (8)0.077 (5)0.056 (5)0.032 (5)0.034 (5)0.030 (4)
Geometric parameters (Å, º) top
Cl1—C41.739 (6)C7—H7A0.9700
S1—O11.427 (4)C7—H7B0.9700
S1—O21.431 (4)C9—C101.461 (7)
S1—N11.603 (5)C9—H90.9300
S1—C11.773 (6)C10—C151.390 (7)
O3—C81.217 (6)C10—C111.392 (7)
O4—N41.217 (6)C11—C121.374 (8)
O5—N41.221 (6)C11—H110.9300
N1—C71.460 (6)C12—C131.380 (7)
N1—H1N0.854 (19)C12—H120.9300
N2—C81.357 (7)C13—C141.362 (8)
N2—N31.374 (6)C14—C151.372 (7)
N2—H2N0.865 (19)C14—H140.9300
N3—C91.274 (6)C15—H150.9300
N4—C131.477 (7)O6—C161.210 (8)
C1—C61.379 (7)N5—C161.322 (8)
C1—C21.386 (8)N5—C181.434 (8)
C2—C31.379 (9)N5—C171.452 (8)
C2—H20.9300C16—H16A0.9300
C3—C41.373 (9)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.375 (8)C17—H17C0.9600
C5—C61.380 (8)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.496 (7)
O1—S1—O2120.2 (3)O3—C8—C7123.2 (5)
O1—S1—N1107.3 (2)N2—C8—C7115.1 (5)
O2—S1—N1107.0 (2)N3—C9—C10120.2 (5)
O1—S1—C1107.6 (3)N3—C9—H9119.9
O2—S1—C1106.8 (3)C10—C9—H9119.9
N1—S1—C1107.4 (3)C15—C10—C11117.8 (5)
C7—N1—S1118.6 (4)C15—C10—C9119.9 (5)
C7—N1—H1N116 (4)C11—C10—C9122.2 (5)
S1—N1—H1N118 (4)C12—C11—C10121.2 (5)
C8—N2—N3119.1 (4)C12—C11—H11119.4
C8—N2—H2N122 (4)C10—C11—H11119.4
N3—N2—H2N118 (4)C11—C12—C13118.4 (5)
C9—N3—N2116.6 (4)C11—C12—H12120.8
O4—N4—O5123.6 (5)C13—C12—H12120.8
O4—N4—C13118.4 (6)C14—C13—C12122.5 (5)
O5—N4—C13118.0 (5)C14—C13—N4118.7 (5)
C6—C1—C2120.0 (6)C12—C13—N4118.8 (5)
C6—C1—S1120.4 (4)C13—C14—C15118.3 (5)
C2—C1—S1119.6 (4)C13—C14—H14120.9
C3—C2—C1119.7 (6)C15—C14—H14120.9
C3—C2—H2120.1C14—C15—C10121.8 (5)
C1—C2—H2120.1C14—C15—H15119.1
C4—C3—C2119.5 (6)C10—C15—H15119.1
C4—C3—H3120.2C16—N5—C18120.7 (6)
C2—C3—H3120.2C16—N5—C17122.2 (6)
C3—C4—C5121.4 (6)C18—N5—C17117.1 (6)
C3—C4—Cl1118.5 (5)O6—C16—N5126.0 (7)
C5—C4—Cl1120.1 (5)O6—C16—H16A117.0
C4—C5—C6119.0 (5)N5—C16—H16A117.0
C4—C5—H5120.5N5—C17—H17A109.5
C6—C5—H5120.5N5—C17—H17B109.5
C1—C6—C5120.3 (6)H17A—C17—H17B109.5
C1—C6—H6119.8N5—C17—H17C109.5
C5—C6—H6119.8H17A—C17—H17C109.5
N1—C7—C8111.2 (4)H17B—C17—H17C109.5
N1—C7—H7A109.4N5—C18—H18A109.5
C8—C7—H7A109.4N5—C18—H18B109.5
N1—C7—H7B109.4H18A—C18—H18B109.5
C8—C7—H7B109.4N5—C18—H18C109.5
H7A—C7—H7B108.0H18A—C18—H18C109.5
O3—C8—N2121.7 (5)H18B—C18—H18C109.5
O1—S1—N1—C7167.8 (4)N3—N2—C8—C71.6 (7)
O2—S1—N1—C737.6 (5)N1—C7—C8—O32.5 (8)
C1—S1—N1—C776.7 (5)N1—C7—C8—N2178.3 (5)
C8—N2—N3—C9179.7 (5)N2—N3—C9—C10177.9 (4)
O1—S1—C1—C635.0 (5)N3—C9—C10—C15177.4 (5)
O2—S1—C1—C6165.3 (4)N3—C9—C10—C111.6 (8)
N1—S1—C1—C680.2 (5)C15—C10—C11—C122.0 (9)
O1—S1—C1—C2146.7 (5)C9—C10—C11—C12177.1 (5)
O2—S1—C1—C216.4 (6)C10—C11—C12—C130.7 (9)
N1—S1—C1—C298.1 (5)C11—C12—C13—C141.3 (9)
C6—C1—C2—C30.6 (10)C11—C12—C13—N4177.2 (5)
S1—C1—C2—C3178.8 (6)O4—N4—C13—C147.1 (8)
C1—C2—C3—C40.8 (12)O5—N4—C13—C14171.7 (6)
C2—C3—C4—C51.6 (12)O4—N4—C13—C12174.3 (6)
C2—C3—C4—Cl1179.1 (6)O5—N4—C13—C127.0 (8)
C3—C4—C5—C61.0 (10)C12—C13—C14—C152.0 (9)
Cl1—C4—C5—C6179.7 (5)N4—C13—C14—C15176.6 (5)
C2—C1—C6—C51.2 (9)C13—C14—C15—C100.7 (8)
S1—C1—C6—C5179.5 (4)C11—C10—C15—C141.3 (8)
C4—C5—C6—C10.5 (9)C9—C10—C15—C14177.8 (5)
S1—N1—C7—C8166.5 (4)C18—N5—C16—O61.6 (12)
N3—N2—C8—O3179.2 (5)C17—N5—C16—O6177.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.18 (3)2.976 (6)155 (5)
N2—H2N···O6i0.87 (2)2.00 (2)2.857 (6)171 (5)
C5—H5···O2ii0.932.473.357 (7)159
C14—H14···O4iii0.932.533.457 (7)175
C16—H16A···O10.932.463.207 (8)138
C18—H18B···O2iv0.962.533.339 (8)142
C15—H15···Cg1v0.932.723.629 (7)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+3, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z.
 

Acknowledgements

The authors thank the SAIF, Panjab University, for providing the NMR facility.

Funding information

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty.

References

First citationAakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409–421.  Web of Science CrossRef CAS Google Scholar
First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBiradha, K. (2003). CrystEngComm, 5, 374–384.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. https://hirshfeldsurface.net/  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalla, G., Predieri, G., Domiano, P., Vignali, C. & Turner, W. (1986). Tetrahedron, 42, 3649–3654.  CrossRef CAS Web of Science Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683–1686.  CrossRef IUCr Journals Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946–1951.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds