research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different packing motifs of isomeric (E)-N′-(halo­phenyl­methyl­­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazides controlled by C—H⋯O inter­actions

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, Brazil, bInstituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by J. Simpson, University of Otago, New Zealand (Received 4 January 2018; accepted 19 January 2018; online 7 February 2018)

The crystal structures of three isomeric (E)-N′-(chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazides (C14H13ClN2OS) are described, with the Cl atom in ortho (I), meta (III) and para (IV) positions in the benzene ring. The ortho-bromo derivative (II) (C14H13BrN2OS), which is isostructural with its chloro congener (I), is also reported. Mol­ecules (I)–(III) have similar conformations, which approximate to L-shapes, as indicated by their N—C—C—Ct (t = thio­phene) torsion angles of −90.1 (3), −91.44 (18) and −90.7 (9)°, respectively. The conformation of (IV) is different, with an equivalent torsion angle of −170.75 (11)° corresponding to a more extended shape for the mol­ecule. The thio­phene ring in each structure features `flip' rotational disorder. The packing for (I) and (II) features inversion dimers, linked by pairs of C—H⋯O inter­actions, which generate R22(14) loops. In the crystal of (III), [010] C(8) chains arise, with adjacent mol­ecules linked by pairs of C—H⋯O hydrogen bonds. The packing for (IV) features unusually short C—H⋯O inter­actions arising from an H atom attached to the benzene ring (H⋯O = 2.18 Å), which lead to C(9) [301] chains. Hirshfeld fingerprint percentage contact contributions are similar for the four title compounds.

1. Chemical context

We have reported the syntheses and anti-TB activities of acetamido derivatives, 2-(R,R′NCOCH2)-thio­phene, R = alkyl (Nora de Souza et al., 2008[Nora de Souza, M., Ferreira, M. L., Mendonca Nogueira, T., Borges Goncalves, R., Peralta, M. A., Silva Lourenco, M. & Vicente, F. R. (2008). Lett. Drug. Des. Discov. 5, 221-224.]), and more recently thienyl aceto­hydrazide derivatives, 2-(ArCH=N—NHCOCH2)-thio­phene (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]). We are now studying the related family of methyl­ated 2-[ArCH=N—N(CH3)COCH2]-thio­phene compounds, with different substituents attached to the benzene ring. The biological activities of these compounds will be reported elsewhere: here, we present the crystal structures of three isomeric chloro derivatives (and one bromo derivative) in this family bearing a halogen atom at different sites on the benzene ring, viz. (E)-N′-(2-chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (I)[link], (E)-N′-(2-bromo­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (II)[link], (E)-N′-(3-chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (III)[link] and (E)-N′-(4-chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (IV)[link]. These complement our recent structural study (Cardoso et al., 2016a[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677-1682.]) of isomeric ortho-, meta- and para-nitro derivatives in the same family.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link], which indicates that the expected methyl­ation has occurred at atom N2. The thio­phene ring (S1/C11–C14) shows `flip' disorder (compare, for example, Sonar et al., 2005[Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. E61, o933-o935.]; Wagner et al., 2006[Wagner, P., Officer, D. L. & Kubicki, M. (2006). Acta Cryst. E62, o5931-o5932.]) over two conformations rotated by ∼180° about the C10—C11 bond in a 0.658 (4):0.342 (4) ratio: the major orientation has the S atom pointing towards the C1–C6 benzene ring at the other end of the mol­ecule. The dihedral angle between the thio­phene and benzene rings is 77.92 (8)°. The central CH=N—N(CH3)—C(=O) fragment (C7/C8/C9/N1/N2/O1) in (I)[link] is almost planar (r.m.s. deviation = 0.013 Å) and subtends dihedral angles of 0.89 (12) and 78.80 (9)° with the benzene and thio­phene rings, respectively. Thus, the major twist in the mol­ecule occurs about the C9—C10 bond [N2—C9—C10—C11 = −90.1 (3)°], giving the mol­ecule an approximate overall L-shape. The N1—N2 bond length of 1.372 (3)° is significantly shortened compared to the reference value of ∼1.41 Å for an isolated N—N single bond and the C9—N2 amide bond of 1.377 (3) Å is clearly lengthened: these data can be inter­preted in terms of significant delocalization of electrons over the methyl­idene–acetohydrazide group.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

Compound (II)[link] (Fig. 2[link]) is isostructural with (I)[link]; comparable geometrical data are as follows: C1–C6 benzene ring = `A', thio­phene ring = `B' [disorder occupancies = 0.677 (3):0.323 (3)], linking chain (r.m.s. deviation = 0.009 Å) = `C'; dihedral angles A/B, A/C and B/C = 75.89 (5), 1.53 (8) and 77.37 (6)°, respectively; N2—C9—C10—C11 = −91.44 (18)°, N1—N2 = 1.3720 (19) Å and C9—N2 = 1.375 (2) Å. These data are very similar to the corresponding values for (I)[link]; the only significant (and expected) difference is the C6—Br1 bond length of 1.9064 (16) Å in (II)[link] compared to the C6—Cl1 distance of 1.748 (3) Å in (I)[link].

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% probability displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

The mol­ecular structure of (III)[link] can be seen in Fig. 3[link]: again the methyl­ation of N2 has occurred as expected. The dihedral angle between the thio­phene ring [rotationally disordered over two orientations in a 0.81 (1):0.19 (1) ratio] and the C1–C6 benzene ring is 66.0 (2)°. The approximately planar central C7/C8/C9/N1/N2/O1 group in (II)[link] (r.m.s. deviation = 0.043 Å) subtends dihedral angles of 5.9 (5)° with the benzene ring and 62.9 (3)° with the thio­phene ring. As in (I)[link] and (II)[link], the major twist occurs about the C9—C10 bond [N2—C9—C10—C11 = −90.7 (9)°], giving the mol­ecule an approximate overall L-shape. The N1—N2 and C9—N2 bond lengths in (III)[link] are 1.379 (9) and 1.363 (11) Å, respectively, which again can be ascribed to electronic effects.

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing 50% probability displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

As with the other compounds, (IV)[link] is methyl­ated at N2 (Fig. 4[link]) and has a disordered thio­phene ring [major/minor disorder components = 0.671 (2):0.329 (2)]. The dihedral angles between the benzene ring `A', thio­phene ring `B' and CH=N—N(CH3)—C(=O)—CH2 fragment `C' (r.m.s. deviation = 0.031 Å), are A/B = 81.82 (4), A/C = 14.79 (4) and B/C = 69.70 (5)°. These are roughly consistent with the equivalent data for (I)–(III), but the conformation of (IV)[link] is definitely different, as indicated by the N2—C9—C10—C11 torsion angle of −170.75 (11)°: this reflects the fact that the thio­phene ring points away from the rest of the mol­ecule. Bond-length data [N1—N2 = 1.3778 (14) Å and C9—N2 = 1.3693 (16) Å] within the methyl­idene–acetohydrazide group for (IV)[link] are consistent with the equivalent data for (I)[link], (II)[link] and (III)[link].

[Figure 4]
Figure 4
The mol­ecular structure of (IV)[link], showing 50% probability displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

3. Supra­molecular features

The packing motifs in (I)[link] and (II)[link] feature inversion dimers linked by pairs of C—H⋯O inter­actions (Fig. 5[link]; Tables 1[link] and 2[link]), with the C—H grouping part of the thio­phene ring: this generates an R22(14) loop. Weak C—H⋯π inter­actions consolidate the structures, but there are no aromatic ππ stacking inter­actions [minimum centroid–centroid separation = 4.86 Å for (I)[link] and 4.85 Å for (II)].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the thio­phene ring, Cg2 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.54 3.410 (4) 153
C3—H3⋯Cg1ii 0.95 2.83 3.612 (3) 140
C8—H8ACg2iii 0.98 2.71 3.544 (3) 144
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the thio­phene ring, Cg2 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.53 3.424 (2) 156
C3—H3⋯Cg1ii 0.95 2.82 3.6021 (18) 141
C8—H8ACg2iii 0.98 2.67 3.495 (2) 142
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
An inversion dimer in the crystal of (I)[link] linked by a pair of C—H⋯O inter­actions. [Symmetry code: (i) −x, −y, 1 − z.] All H atoms except H13 have been omitted for clarity.

The packing in (III)[link] features two C—H⋯O inter­actions (Table 3[link]) arising from benzene and adjacent methine C—H groups, which link the mol­ecules into [010] chains (Fig. 6[link]), with adjacent mol­ecules in the chain related by the 21 screw axis in the b direction. The C6 inter­action is long, but deemed to be just significant, as it is consolidating the C7 bond. Individually, each C—H⋯O bond generates a C(8) chain; collectively R21(6) loops arise. A very weak C—H⋯Cl bond is also observed. There are no C—H⋯π contacts in (III)[link] and we consider that the shortest ring-centroid separation of 4.219 (5) Å is far too long to be regarded as a bonding inter­action.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.62 3.474 (9) 150
C7—H7⋯O1i 0.95 2.52 3.381 (9) 152
C12—H12⋯Cl1ii 0.95 2.83 3.415 (7) 121
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.
[Figure 6]
Figure 6
Fragment of an [010] hydrogen-bonded chain in the crystal of (III)[link]. [Symmetry codes: (i) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; (ii) x, y − 1, z.] All H atoms except H6 and H7 have been omitted for clarity.

In the crystal of (IV)[link], an unusually short C—H⋯O inter­action (Table 4[link]) with H⋯O = 2.18 Å leads to C(9) chains (Fig. 7[link]) propagating in the [301] direction. The acceptor O atom deviates from the plane of Cl1/C4/C5/H5 by 0.239 (6) Å. One reason for the short contact could be the presence of the adjacent electron-withdrawing Cl substituent, which will tend to `activate' the H atom (Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]). Two extremely weak C—H⋯Cl inter­actions and a C—H⋯π contact occur, but there is no ππ stacking (minimum centroid–centroid separation = 4.42 Å) in the crystal of (IV)[link].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.18 3.1250 (15) 172
C3—H3⋯Cl1ii 0.95 2.95 3.8044 (14) 151
C12—H12⋯Cl1iii 0.95 2.98 3.7960 (10) 145
C8—H8CCg1iv 0.98 2.73 3.5592 (14) 142
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) x+1, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 7]
Figure 7
Fragment of a [301] hydrogen-bonded chain in the crystal of (IV)[link]. [Symmetry codes: (i) x − [{3\over 2}], [{1\over 2}] − y, z − [{1\over 2}]; (ii) x − 3, y, z − 1.] All H atoms except H5 have been omitted for clarity.

Hirshfeld surface fingerprint plots for (I)–(IV) (supplementary Figs. 1[link]–4[link][link][link]) were calculated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia; https://hirshfeldsurface.net.]) and percentage contact-surface contributions (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are listed in Table 5[link]. As might be expected, the percentage contact data for the isomeric (I)[link] and (II)[link] are very similar but it is inter­esting that the data for (III)[link] and (IV)[link] barely differ from those of the first two compounds, despite their different crystal structures: in every case H⋯H contacts dominate the packing. This is quite different to the recently reported (E)-N′-(3-cyano­rophenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (V) and (E)-N′-(4-meth­oxy­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (VI) (Cardoso et al., 2017[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de & Harrison, W. T. A. (2017). Acta Cryst. E73, 1636-1641.]), where the percentage contributions of the different inter­molecular contacts to the fingerprint plots differ by up to 20%.

Table 5
Hirshfeld contact inter­actions (%)

Contact type (I) (II) (III) (IV)
H⋯H 43.6 43.0 38.5 41.5
C⋯H/H⋯C 21.3 20.8 18.1 23.5
Hal⋯H/H⋯Hal 12.5 13.0 15.2 16.0
O⋯H/H⋯O 9.4 9.6 9.7 7.1
C⋯C 2.5 2.4 4.7 1.6
N⋯H/H⋯N 1.4 1.3 3.9 3.3
S⋯H/H⋯S 1.9 1.8 2.9 2.0

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) updated to June 2017 for the common central —CH=N—N(CH3)—C(=O)—CH2— fragment of the title compounds revealed seven matches, viz. ALAHEC (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-187.]); FOTMUX (Ramírez et al., 2009a[Ramírez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456-2463.]); KULREP (Ramírez et al., 2009b[Ramírez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20-24.]); OFEBIL (Cao et al., 2007[Cao, X.-Y., Harrowfield, J., Nitschke, J., Ramírez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944-2965.]), and EYUBAD, EYUBEH and EYUBIL; this latter trio of refcodes correspond to the three isomeric nitro compounds (Cardoso et al., 2016a[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677-1682.]) noted in the Chemical Context section above. To this list will soon be added the structures of (V) and (VI) noted above.

5. Synthesis and crystallization

The appropriate thienyl acetohydrazide derivative (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]) (0.20 g, 1.0 equiv.) was suspended in acetone (5 ml) and potassium carbonate (4.0 equiv.) was added. The reaction mixture was stirred at room temperature for 30 min. and methyl iodide (4.0 equiv.) was added. The reaction mixture was maintained at 313 K, until thin-layer chromatography indicated the reaction was complete. The mixture was then rotary evaporated to leave a residue, which was dissolved in water (20 ml) and extracted with ethyl acetate (3 × 10 ml). The organic fractions were combined, dried with anhydrous MgSO4, filtered and the solvent evaporated at reduced pressure. The crystals used for the intensity data collections were recrystallized from methanol solution.

(E)-N′-(2-Chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (I)[link]; yield: 66%; yellow solid; m.p. 91–92 °C. 1H NMR (400 MHz; DMSO): δ 8.10–8.08 (2H; m; H-11′ and N=CH), 7.57–7.54 (1H; m; H-8′), 7.47–7.44 (2H; m; H-9′ and H-10′), 7.36 (1H; dd; JHH = 4.1 and 1.0 Hz; H-5), 6.98–6.97 (1H; m; H-4), 6.96–6.94 (1H; m; H-3), 4.39 (2H; s; CH2), 3.36 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO): δ 171.0 (C=O), 136.9 (N=CH), 135.8 (C-2), 133.2 (C-6′), 131.6 (C-7′), 131.1 (C-9′), 129.9 (C-8′), 127.6 (C-11′), 127.2 (C-10′), 126.7 (C-3), 126.5 (C-4), 125.2 (C-5), 34.2 (N–CH3), 28.0 (CH2). MS/ESI: [M + Na]: 315. IR νmax (cm−1; KBr pellet): 1680 (C=O); 3689 (N–CH3).

(E)-N′-(2-Bromo­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (II)[link]; yield: 70%; yellow solid; m.p. 87–88 °C. 1H NMR (400 MHz; DMSO): δ 8.07 (1H; dd; JHH = 7.6 and 1.6 Hz; H-11′), 8.03 (1H; s; N=CH), 7.72 (1H; dd; JHH = 8.0 and 0.8 Hz; H-8′), 7.49 (1H; t; JHH = 7.6 Hz; H-10′), 7.39–7.35 (2H; m; H-9′ and H-5), 6.98–6.94 (2H; m; H-3 and H-4), 4.39 (2H; s; CH2), 3.36 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO): δ 171.0 (C=O), 138.1 (N=CH), 136.9 (C-2), 133.2 (C-6′), 133.0 (C-8′), 131.4 (C-9′), 128.1 (C-3), 127.6 (C-10′ and C-11′), 126.7 (C-4), 125.2 (C-5), 123.5 (C-7′), 34.2 (N-CH3), 28.0 (CH2). MS/ESI: [M + Na]: 359. IR νmax (cm−1; KBr pellet): 1680 (C=O); 3676 (N–CH3).

(E)-N′-(3-Chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (III)[link]: yield: 64%; yellow solid; m.p. 120–121 °C. 1H NMR (500 MHz, DMSO): δ 7.97 (1H; s; CH=N), 7.80 (2H; d; JHH = 9.0 Hz; C6H6), 7.50 (2H; d; JHH = 8.5Hz; C6H6), 7.30 (1H; dd; JHH = 5.5 and 1.5 Hz; H-5), 6.97 (1H; d; JHH = 2.5Hz; H-3), 6.94–6.93 (1H; m; H-4), 4.37 (2H; s; CH2), 3.34 (3H; s; CH3). 13C NMR (500 MHz, DMSO): δ 170.3 (C-2′), 138.8 (CH=N), 136.7 (C-2), 133.7 (phen­yl), 133.3 (phen­yl), 128.3 (phen­yl), 128.2 (C6H6), 126.0 (C-4), 125.9 (C-3), 124.3 (C-5), 33.8 (CH3), 27.6 (CH2). IR νmax (cm−1; KBr pellet): 1681 (C=O); 3715 (N–CH3).

(E)-N′-(4-Chloro­phenyl­methyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide (IV)[link]; yield: 55%; yellow solid; m.p. 121–122 °C. 1H NMR (400 MHz; DMSO): δ 8.00 (1H; s; N=CH), 7.84 (2H; d; JHH = 8.4 Hz; H-7′ and H-11′), 7.54 (2H; d; JHH = 8.4 Hz; H-8′ and H-10′), 7.35 (1H; dd; JHH = 4.8 and 0.8 Hz; H-5), 6.98–6.93 (2H; m; H-3 and H-4), 4.36 (2H; s; CH2), 3.32 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO): δ 170.7 (C=O), 139.4 (N=CH), 137.0 (C-2), 134.1 (C-9′), 133.6 (C-6′), 128.8 (C-7′ and C-11′), 128.7 (C-8′ and C-10′), 126.6 (C-3), 126.5 (C-4), 125.1 (C-5), 34.2 (N-CH3), 28.0 (CH2). MS/ESI: [M + Na]: 315. IR νmax (cm−1; KBr pellet): 1680 (C=O); 3689 (N–CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. H atoms were placed geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(meth­yl) was applied in all cases. The N-methyl group was allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction in SHELXL; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); in every case, this group rotated from its intial calculated orientation to minimize steric inter­action with H7; the final optimized geometry leads to a short (H⋯O ∼ 2.35 Å) intra­molecular C8—H⋯O1 contact but we do not regard this as a bond. The thio­phene rings show ∼180° `flip' rotational disorder about the C10—C11 bond for all compounds. The crystal of (III)[link] used for data collection was small and data quality was poor. Iin the refinement, difference maps indicated significant unmodelled electron density in the vicinity of C4. This was modelled in terms of a minor impurity/disorder component with the Cl atom bonded to C4 rather than C3. Even after the disorder modelling, the residuals are high, but we deem the refinement to be acceptable in terms of its chemical information content.

Table 6
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C14H13ClN2OS C14H13BrN2OS C14H13ClN2OS C14H13ClN2OS
Mr 292.77 337.23 292.77 292.77
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 100 100
a, b, c (Å) 9.1918 (7), 20.3575 (14), 7.2721 (5) 9.4479 (7), 20.2175 (14), 7.2552 (5) 4.2194 (2), 13.0131 (9), 25.0758 (18) 6.7454 (5), 20.2993 (14), 10.1592 (7)
β (°) 96.360 (2) 96.9343 (13) 93.752 (4) 97.510 (2)
V3) 1352.40 (17) 1375.70 (17) 1373.90 (15) 1379.14 (17)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.43 3.13 0.42 0.42
Crystal size (mm) 0.53 × 0.24 × 0.18 0.26 × 0.06 × 0.05 0.22 × 0.01 × 0.01 0.30 × 0.17 × 0.10
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 1.000 0.756, 1.000 0.615, 1.000 0.843, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18992, 2988, 2553 14778, 3163, 2897 12868, 3121, 1766 14763, 3165, 2929
Rint 0.032 0.040 0.127 0.033
(sin θ/λ)max−1) 0.649 0.650 0.648 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.117, 1.22 0.025, 0.064, 1.06 0.116, 0.297, 1.16 0.033, 0.091, 1.05
No. of reflections 2988 3163 3121 3165
No. of parameters 175 174 184 174
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.41 0.48, −0.43 1.00, −0.45 0.53, −0.40
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-N'-(2-Chlorophenylmethylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) top
Crystal data top
C14H13ClN2OSF(000) = 608
Mr = 292.77Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1918 (7) ÅCell parameters from 18890 reflections
b = 20.3575 (14) Åθ = 2.0–27.5°
c = 7.2721 (5) ŵ = 0.43 mm1
β = 96.360 (2)°T = 100 K
V = 1352.40 (17) Å3Block, colourless
Z = 40.53 × 0.24 × 0.18 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2553 reflections with I > 2σ(I)
ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.710, Tmax = 1.000h = 1111
18992 measured reflectionsk = 2626
2988 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0254P)2 + 1.9705P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.37 e Å3
2988 reflectionsΔρmin = 0.41 e Å3
175 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0035 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4009 (3)0.30066 (11)0.2999 (3)0.0205 (5)
C20.2682 (3)0.32749 (12)0.2216 (4)0.0238 (5)
H20.19130.29890.17410.029*
C30.2462 (3)0.39464 (12)0.2116 (4)0.0261 (5)
H30.15510.41170.15780.031*
C40.3576 (3)0.43717 (12)0.2804 (4)0.0264 (6)
H40.34210.48330.27490.032*
C50.4909 (3)0.41239 (12)0.3568 (3)0.0249 (5)
H50.56800.44130.40170.030*
C60.5107 (3)0.34485 (12)0.3669 (3)0.0216 (5)
C70.4218 (3)0.22913 (11)0.3101 (3)0.0219 (5)
H70.51220.21090.36240.026*
C80.4721 (3)0.09617 (12)0.3393 (4)0.0264 (5)
H8A0.49370.11240.46630.040*
H8B0.55190.10840.26710.040*
H8C0.46250.04820.34080.040*
C90.2211 (3)0.08562 (12)0.1850 (4)0.0250 (5)
C100.0768 (3)0.11842 (12)0.1155 (4)0.0273 (6)
H10A0.09530.16280.06760.033*
H10B0.02520.09230.01360.033*
C110.0155 (3)0.12331 (12)0.2724 (4)0.0242 (5)
C120.08888 (16)0.06244 (7)0.3623 (2)0.0380 (5)0.658 (4)
H120.08970.01740.32750.046*0.658 (4)
S1A0.08888 (16)0.06244 (7)0.3623 (2)0.0380 (5)0.342 (4)
C130.1560 (3)0.09474 (17)0.5151 (5)0.0457 (9)
H130.20670.07020.59890.055*
C140.1418 (3)0.16036 (16)0.5300 (4)0.0382 (7)
H140.18180.18530.62270.046*
N10.3152 (2)0.19186 (9)0.2469 (3)0.0214 (4)
N20.3356 (2)0.12514 (9)0.2554 (3)0.0230 (4)
O10.2336 (2)0.02600 (9)0.1856 (3)0.0337 (5)
Cl10.67905 (7)0.31638 (3)0.47232 (10)0.03056 (18)
S10.04886 (10)0.19336 (4)0.37322 (13)0.0294 (3)0.658 (4)
C12A0.04886 (10)0.19336 (4)0.37322 (13)0.0294 (3)0.342 (4)
H12A0.02320.23750.34900.035*0.342 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (13)0.0230 (11)0.0163 (11)0.0015 (9)0.0041 (9)0.0001 (8)
C20.0236 (13)0.0232 (12)0.0245 (13)0.0008 (9)0.0014 (10)0.0001 (9)
C30.0240 (13)0.0255 (12)0.0285 (14)0.0041 (9)0.0020 (11)0.0030 (10)
C40.0313 (14)0.0212 (11)0.0271 (14)0.0010 (10)0.0049 (11)0.0015 (9)
C50.0263 (14)0.0259 (12)0.0231 (13)0.0046 (9)0.0059 (11)0.0019 (9)
C60.0177 (12)0.0288 (12)0.0187 (12)0.0019 (9)0.0039 (10)0.0005 (9)
C70.0227 (13)0.0240 (12)0.0196 (12)0.0042 (9)0.0045 (10)0.0007 (9)
C80.0264 (14)0.0255 (12)0.0276 (14)0.0070 (10)0.0046 (11)0.0036 (10)
C90.0274 (14)0.0244 (12)0.0244 (13)0.0000 (9)0.0080 (11)0.0007 (9)
C100.0264 (14)0.0279 (12)0.0268 (14)0.0028 (10)0.0006 (11)0.0007 (10)
C110.0180 (12)0.0245 (12)0.0290 (14)0.0007 (9)0.0023 (10)0.0032 (9)
C120.0284 (8)0.0372 (8)0.0476 (10)0.0021 (6)0.0006 (7)0.0009 (6)
S1A0.0284 (8)0.0372 (8)0.0476 (10)0.0021 (6)0.0006 (7)0.0009 (6)
C130.0185 (15)0.058 (2)0.060 (2)0.0021 (12)0.0017 (14)0.0294 (16)
C140.0324 (16)0.0531 (18)0.0287 (16)0.0180 (13)0.0023 (13)0.0023 (12)
N10.0252 (11)0.0203 (9)0.0193 (10)0.0035 (8)0.0053 (8)0.0014 (7)
N20.0249 (11)0.0198 (10)0.0249 (11)0.0045 (8)0.0049 (9)0.0016 (8)
O10.0355 (12)0.0219 (9)0.0453 (12)0.0006 (7)0.0115 (9)0.0001 (8)
Cl10.0200 (3)0.0360 (3)0.0346 (4)0.0024 (2)0.0017 (3)0.0010 (3)
S10.0278 (5)0.0300 (5)0.0302 (5)0.0010 (3)0.0021 (4)0.0037 (3)
C12A0.0278 (5)0.0300 (5)0.0302 (5)0.0010 (3)0.0021 (4)0.0037 (3)
Geometric parameters (Å, º) top
C1—C61.399 (3)C9—N21.378 (3)
C1—C21.399 (3)C9—C101.520 (4)
C1—C71.469 (3)C10—C111.499 (4)
C2—C31.383 (3)C10—H10A0.9900
C2—H20.9500C10—H10B0.9900
C3—C41.391 (4)C11—S1A1.586 (3)
C3—H30.9500C11—C121.586 (3)
C4—C51.383 (4)C11—C12A1.648 (3)
C4—H40.9500C11—S11.648 (3)
C5—C61.388 (3)C12—C131.483 (4)
C5—H50.9500C12—H120.9500
C6—Cl11.748 (3)S1A—C131.483 (4)
C7—N11.283 (3)C13—C141.345 (5)
C7—H70.9500C13—H130.9500
C8—N21.457 (3)C14—C12A1.642 (3)
C8—H8A0.9800C14—S11.642 (3)
C8—H8B0.9800C14—H140.9500
C8—H8C0.9800N1—N21.372 (3)
C9—O11.219 (3)C12A—H12A0.9500
C6—C1—C2117.0 (2)C11—C10—H10A109.9
C6—C1—C7122.3 (2)C9—C10—H10A109.9
C2—C1—C7120.7 (2)C11—C10—H10B109.9
C3—C2—C1121.6 (2)C9—C10—H10B109.9
C3—C2—H2119.2H10A—C10—H10B108.3
C1—C2—H2119.2C10—C11—S1A124.4 (2)
C2—C3—C4119.9 (2)C10—C11—C12124.4 (2)
C2—C3—H3120.0C10—C11—C12A123.04 (19)
C4—C3—H3120.0S1A—C11—C12A112.59 (17)
C5—C4—C3120.1 (2)C10—C11—S1123.04 (19)
C5—C4—H4119.9C12—C11—S1112.59 (17)
C3—C4—H4119.9C13—C12—C11101.16 (18)
C4—C5—C6119.2 (2)C13—C12—H12129.4
C4—C5—H5120.4C11—C12—H12129.4
C6—C5—H5120.4C13—S1A—C11101.16 (18)
C5—C6—C1122.2 (2)C14—C13—C12117.1 (3)
C5—C6—Cl1117.13 (19)C14—C13—S1A117.1 (3)
C1—C6—Cl1120.61 (18)C14—C13—H13121.4
N1—C7—C1118.5 (2)C12—C13—H13121.4
N1—C7—H7120.7C13—C14—C12A113.8 (2)
C1—C7—H7120.7C13—C14—S1113.8 (2)
N2—C8—H8A109.5C13—C14—H14123.1
N2—C8—H8B109.5S1—C14—H14123.1
H8A—C8—H8B109.5C7—N1—N2118.3 (2)
N2—C8—H8C109.5N1—N2—C9117.8 (2)
H8A—C8—H8C109.5N1—N2—C8121.8 (2)
H8B—C8—H8C109.5C9—N2—C8120.4 (2)
O1—C9—N2120.8 (2)C14—S1—C1195.27 (15)
O1—C9—C10121.1 (2)C14—C12A—C1195.27 (15)
N2—C9—C10118.0 (2)C14—C12A—H12A132.4
C11—C10—C9108.8 (2)C11—C12A—H12A132.4
C6—C1—C2—C30.3 (4)S1—C11—C12—C132.6 (2)
C7—C1—C2—C3179.6 (2)C10—C11—S1A—C13176.2 (2)
C1—C2—C3—C40.0 (4)C12A—C11—S1A—C132.6 (2)
C2—C3—C4—C50.8 (4)C11—C12—C13—C142.0 (3)
C3—C4—C5—C61.2 (4)C11—S1A—C13—C142.0 (3)
C4—C5—C6—C11.0 (4)S1A—C13—C14—C12A0.6 (3)
C4—C5—C6—Cl1177.7 (2)C12—C13—C14—S10.6 (3)
C2—C1—C6—C50.2 (4)C1—C7—N1—N2179.5 (2)
C7—C1—C6—C5179.9 (2)C7—N1—N2—C9179.2 (2)
C2—C1—C6—Cl1178.47 (18)C7—N1—N2—C82.1 (3)
C7—C1—C6—Cl11.5 (3)O1—C9—N2—N1178.6 (2)
C6—C1—C7—N1179.4 (2)C10—C9—N2—N14.2 (3)
C2—C1—C7—N10.5 (4)O1—C9—N2—C82.7 (4)
O1—C9—C10—C1187.0 (3)C10—C9—N2—C8174.4 (2)
N2—C9—C10—C1190.1 (3)C13—C14—S1—C111.0 (3)
C9—C10—C11—S1A70.0 (3)C10—C11—S1—C14176.6 (2)
C9—C10—C11—C1270.0 (3)C12—C11—S1—C142.24 (19)
C9—C10—C11—C12A108.7 (2)C13—C14—C12A—C111.0 (3)
C9—C10—C11—S1108.7 (2)C10—C11—C12A—C14176.6 (2)
C10—C11—C12—C13176.2 (2)S1A—C11—C12A—C142.24 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring, Cg2 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.543.410 (4)153
C3—H3···Cg1ii0.952.833.612 (3)140
C8—H8A···Cg2iii0.982.713.544 (3)144
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
(II) top
Crystal data top
C14H13BrN2OSF(000) = 680
Mr = 337.23Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4479 (7) ÅCell parameters from 14004 reflections
b = 20.2175 (14) Åθ = 2.4–27.5°
c = 7.2552 (5) ŵ = 3.13 mm1
β = 96.9343 (13)°T = 100 K
V = 1375.70 (17) Å3Rod, light brown
Z = 40.26 × 0.06 × 0.05 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2897 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.756, Tmax = 1.000h = 1211
14778 measured reflectionsk = 2626
3163 independent reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.029P)2 + 0.8865P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3163 reflectionsΔρmax = 0.48 e Å3
174 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.09809 (17)0.30257 (8)0.1963 (2)0.0165 (3)
C20.22907 (18)0.32858 (8)0.2763 (2)0.0187 (3)
H20.30310.29910.32350.022*
C30.25292 (18)0.39601 (9)0.2878 (2)0.0206 (3)
H30.34250.41240.34260.025*
C40.14614 (19)0.43993 (8)0.2194 (2)0.0207 (3)
H40.16330.48620.22570.025*
C50.01471 (18)0.41630 (8)0.1420 (2)0.0193 (3)
H50.05940.44610.09730.023*
C60.00727 (17)0.34818 (9)0.1306 (2)0.0173 (3)
C70.07642 (17)0.23064 (8)0.1846 (2)0.0171 (3)
H70.01210.21280.13090.020*
C80.02550 (18)0.09658 (9)0.1503 (3)0.0208 (3)
H8A0.00480.11340.02320.031*
H8B0.05230.10870.22170.031*
H8C0.03450.04830.14750.031*
C90.26952 (19)0.08518 (9)0.3080 (2)0.0203 (3)
C100.41014 (18)0.11767 (9)0.3834 (3)0.0218 (4)
H10A0.39230.16240.43090.026*
H10B0.45850.09110.48700.026*
C110.50282 (17)0.12232 (8)0.2296 (3)0.0199 (3)
C120.57818 (11)0.06159 (5)0.14775 (16)0.0320 (3)0.677 (3)
H120.57960.01660.18560.038*0.677 (3)
S1A0.57818 (11)0.06159 (5)0.14775 (16)0.0320 (3)0.323 (3)
C130.6464 (2)0.09279 (12)0.0038 (3)0.0368 (5)
H130.69880.06750.08280.044*
C140.6306 (2)0.15886 (11)0.0243 (3)0.0316 (4)
H140.67080.18340.11680.038*
N10.17897 (15)0.19243 (7)0.2481 (2)0.0171 (3)
N20.15849 (15)0.12529 (7)0.2374 (2)0.0177 (3)
O10.25756 (14)0.02499 (6)0.3042 (2)0.0272 (3)
S10.53516 (6)0.19288 (3)0.12608 (9)0.02306 (19)0.677 (3)
C12A0.53516 (6)0.19288 (3)0.12608 (9)0.02306 (19)0.323 (3)
H12A0.50820.23730.14640.028*0.323 (3)
Br10.18904 (2)0.31960 (2)0.01542 (3)0.02297 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (8)0.0179 (8)0.0135 (8)0.0010 (6)0.0025 (6)0.0001 (6)
C20.0183 (8)0.0192 (8)0.0179 (8)0.0008 (6)0.0001 (6)0.0008 (6)
C30.0201 (8)0.0207 (8)0.0206 (9)0.0030 (6)0.0012 (7)0.0018 (6)
C40.0256 (8)0.0163 (8)0.0207 (9)0.0019 (6)0.0050 (7)0.0011 (6)
C50.0213 (8)0.0189 (8)0.0181 (9)0.0042 (6)0.0043 (6)0.0018 (6)
C60.0164 (7)0.0215 (8)0.0140 (8)0.0010 (6)0.0019 (6)0.0004 (6)
C70.0185 (7)0.0183 (8)0.0145 (8)0.0031 (6)0.0021 (6)0.0008 (6)
C80.0203 (8)0.0184 (8)0.0239 (9)0.0048 (6)0.0038 (7)0.0028 (7)
C90.0236 (8)0.0192 (8)0.0191 (9)0.0005 (7)0.0074 (7)0.0006 (6)
C100.0219 (8)0.0211 (8)0.0219 (9)0.0030 (7)0.0002 (7)0.0001 (7)
C110.0150 (7)0.0200 (8)0.0236 (9)0.0010 (6)0.0020 (6)0.0026 (7)
C120.0259 (5)0.0317 (6)0.0370 (6)0.0031 (4)0.0013 (4)0.0004 (4)
S1A0.0259 (5)0.0317 (6)0.0370 (6)0.0031 (4)0.0013 (4)0.0004 (4)
C130.0170 (8)0.0462 (13)0.0465 (14)0.0014 (8)0.0012 (8)0.0239 (10)
C140.0305 (10)0.0408 (12)0.0240 (10)0.0174 (9)0.0047 (8)0.0038 (8)
N10.0208 (7)0.0141 (7)0.0168 (7)0.0024 (5)0.0043 (6)0.0013 (5)
N20.0196 (7)0.0132 (6)0.0205 (7)0.0027 (5)0.0036 (6)0.0017 (5)
O10.0291 (7)0.0167 (6)0.0371 (8)0.0010 (5)0.0099 (6)0.0005 (5)
S10.0217 (3)0.0234 (3)0.0237 (3)0.0004 (2)0.0013 (2)0.0023 (2)
C12A0.0217 (3)0.0234 (3)0.0237 (3)0.0004 (2)0.0013 (2)0.0023 (2)
Br10.01578 (10)0.02638 (11)0.02587 (12)0.00184 (6)0.00109 (7)0.00178 (7)
Geometric parameters (Å, º) top
C1—C61.398 (2)C9—N21.375 (2)
C1—C21.404 (2)C9—C101.523 (2)
C1—C71.470 (2)C10—C111.502 (2)
C2—C31.383 (2)C10—H10A0.9900
C2—H20.9500C10—H10B0.9900
C3—C41.390 (2)C11—S1A1.571 (2)
C3—H30.9500C11—C121.571 (2)
C4—C51.385 (2)C11—C12A1.6576 (19)
C4—H40.9500C11—S11.6576 (19)
C5—C61.394 (2)C12—C131.481 (3)
C5—H50.9500C12—H120.9500
C6—Br11.9064 (16)S1A—C131.481 (3)
C7—N11.281 (2)C13—C141.350 (3)
C7—H70.9500C13—H130.9500
C8—N21.457 (2)C14—C12A1.648 (2)
C8—H8A0.9800C14—S11.648 (2)
C8—H8B0.9800C14—H140.9500
C8—H8C0.9800N1—N21.3720 (19)
C9—O11.222 (2)C12A—H12A0.9500
C6—C1—C2116.73 (15)C11—C10—H10A109.9
C6—C1—C7122.98 (15)C9—C10—H10A109.9
C2—C1—C7120.28 (15)C11—C10—H10B109.9
C3—C2—C1121.56 (16)C9—C10—H10B109.9
C3—C2—H2119.2H10A—C10—H10B108.3
C1—C2—H2119.2C10—C11—S1A124.27 (14)
C2—C3—C4120.15 (16)C10—C11—C12124.27 (14)
C2—C3—H3119.9C10—C11—C12A123.11 (13)
C4—C3—H3119.9S1A—C11—C12A112.62 (12)
C5—C4—C3120.09 (16)C10—C11—S1123.11 (13)
C5—C4—H4120.0C12—C11—S1112.62 (12)
C3—C4—H4120.0C13—C12—C11101.85 (12)
C4—C5—C6119.01 (15)C13—C12—H12129.1
C4—C5—H5120.5C11—C12—H12129.1
C6—C5—H5120.5C13—S1A—C11101.85 (12)
C5—C6—C1122.46 (15)C14—C13—C12116.81 (17)
C5—C6—Br1116.44 (12)C14—C13—S1A116.81 (17)
C1—C6—Br1121.09 (13)C14—C13—H13121.6
N1—C7—C1118.82 (15)C12—C13—H13121.6
N1—C7—H7120.6C13—C14—C12A113.69 (17)
C1—C7—H7120.6C13—C14—S1113.69 (17)
N2—C8—H8A109.5C13—C14—H14123.2
N2—C8—H8B109.5S1—C14—H14123.2
H8A—C8—H8B109.5C7—N1—N2118.76 (14)
N2—C8—H8C109.5N1—N2—C9117.80 (14)
H8A—C8—H8C109.5N1—N2—C8121.80 (14)
H8B—C8—H8C109.5C9—N2—C8120.38 (14)
O1—C9—N2120.96 (16)C14—S1—C1194.95 (10)
O1—C9—C10120.78 (16)C14—C12A—C1194.95 (10)
N2—C9—C10118.20 (15)C14—C12A—H12A132.5
C11—C10—C9108.77 (14)C11—C12A—H12A132.5
C6—C1—C2—C30.5 (3)S1—C11—C12—C132.72 (14)
C7—C1—C2—C3179.45 (16)C10—C11—S1A—C13176.72 (15)
C1—C2—C3—C40.0 (3)C12A—C11—S1A—C132.72 (14)
C2—C3—C4—C51.0 (3)C11—C12—C13—C141.9 (2)
C3—C4—C5—C61.3 (3)C11—S1A—C13—C141.9 (2)
C4—C5—C6—C10.7 (3)S1A—C13—C14—C12A0.4 (2)
C4—C5—C6—Br1178.15 (13)C12—C13—C14—S10.4 (2)
C2—C1—C6—C50.2 (2)C1—C7—N1—N2179.85 (14)
C7—C1—C6—C5179.79 (16)C7—N1—N2—C9179.36 (15)
C2—C1—C6—Br1179.02 (12)C7—N1—N2—C82.2 (2)
C7—C1—C6—Br11.0 (2)O1—C9—N2—N1179.36 (16)
C6—C1—C7—N1179.85 (16)C10—C9—N2—N13.3 (2)
C2—C1—C7—N10.1 (2)O1—C9—N2—C82.2 (2)
O1—C9—C10—C1185.9 (2)C10—C9—N2—C8175.12 (15)
N2—C9—C10—C1191.44 (18)C13—C14—S1—C111.24 (17)
C9—C10—C11—S1A72.27 (19)C10—C11—S1—C14177.05 (15)
C9—C10—C11—C1272.27 (19)C12—C11—S1—C142.39 (13)
C9—C10—C11—C12A107.11 (16)C13—C14—C12A—C111.24 (17)
C9—C10—C11—S1107.11 (16)C10—C11—C12A—C14177.05 (15)
C10—C11—C12—C13176.72 (15)S1A—C11—C12A—C142.39 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring, Cg2 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.533.424 (2)156
C3—H3···Cg1ii0.952.823.6021 (18)141
C8—H8A···Cg2iii0.982.673.495 (2)142
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
(III) top
Crystal data top
C14H13ClN2OSF(000) = 608
Mr = 292.77Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 4.2194 (2) ÅCell parameters from 9584 reflections
b = 13.0131 (9) Åθ = 2.9–27.5°
c = 25.0758 (18) ŵ = 0.42 mm1
β = 93.752 (4)°T = 100 K
V = 1373.90 (15) Å3Needle, colourless
Z = 40.22 × 0.01 × 0.01 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1766 reflections with I > 2σ(I)
ω scansRint = 0.127
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 27.4°, θmin = 2.9°
Tmin = 0.615, Tmax = 1.000h = 55
12868 measured reflectionsk = 1616
3121 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.116H-atom parameters constrained
wR(F2) = 0.297 w = 1/[σ2(Fo2) + (0.0832P)2 + 8.0037P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.006
3121 reflectionsΔρmax = 1.00 e Å3
184 parametersΔρmin = 0.45 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2176 (17)0.2480 (6)0.1409 (2)0.0278 (15)
C20.0167 (16)0.2955 (6)0.1012 (3)0.0281 (15)
H20.01330.36790.10170.034*
C30.1373 (17)0.2366 (6)0.0613 (3)0.0339 (18)
H30.27160.26900.03440.041*
C40.0966 (18)0.1304 (6)0.0603 (3)0.0352 (17)
H40.20410.09010.03320.042*0.854 (7)
C50.098 (2)0.0838 (6)0.0994 (3)0.0383 (18)
H50.12840.01150.09870.046*0.146 (7)
C60.2538 (18)0.1414 (6)0.1398 (3)0.0322 (17)
H60.38520.10820.16680.039*
C70.3910 (16)0.3074 (5)0.1837 (3)0.0258 (15)
H70.52130.27330.21050.031*
C80.7209 (18)0.4074 (6)0.2680 (3)0.0335 (17)
H8A0.59030.35570.28470.050*
H8B0.79490.45820.29490.050*
H8C0.90420.37390.25340.050*
C90.5187 (17)0.5634 (6)0.2228 (3)0.0307 (17)
C100.3000 (17)0.6118 (6)0.1778 (3)0.0324 (17)
H10A0.11890.56510.16910.039*
H10B0.21370.67740.19070.039*
C110.4715 (15)0.6322 (5)0.1277 (2)0.0245 (14)
C120.5901 (13)0.7328 (5)0.11266 (19)0.048 (2)0.795 (9)
H120.58070.79560.13190.058*0.795 (9)
S1A0.5901 (13)0.7328 (5)0.11266 (19)0.048 (2)0.205 (9)
C130.7313 (18)0.7147 (6)0.0596 (3)0.0353 (17)
H130.82660.76810.04040.042*
C140.7127 (17)0.6182 (6)0.0416 (3)0.0342 (17)
H140.79210.59750.00870.041*
N10.3638 (13)0.4055 (4)0.1843 (2)0.0250 (13)
N20.5314 (14)0.4588 (5)0.2249 (2)0.0302 (13)
O10.6759 (12)0.6183 (4)0.25450 (18)0.0362 (13)
Cl10.1534 (7)0.04694 (19)0.09763 (10)0.0537 (9)0.854 (7)
Cl20.296 (5)0.0407 (14)0.0203 (7)0.067 (7)0.146 (7)
S10.5363 (5)0.53654 (16)0.08241 (8)0.0261 (7)0.795 (9)
C12A0.5363 (5)0.53654 (16)0.08241 (8)0.0261 (7)0.205 (9)
H12A0.49030.46510.08100.031*0.205 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (4)0.031 (4)0.018 (3)0.001 (3)0.007 (3)0.000 (3)
C20.026 (4)0.026 (4)0.033 (4)0.000 (3)0.008 (3)0.001 (3)
C30.025 (4)0.053 (5)0.024 (3)0.002 (3)0.001 (3)0.000 (3)
C40.032 (4)0.035 (4)0.038 (4)0.006 (3)0.001 (3)0.010 (4)
C50.046 (5)0.030 (4)0.039 (4)0.002 (4)0.001 (3)0.007 (3)
C60.042 (4)0.028 (4)0.027 (3)0.000 (3)0.003 (3)0.001 (3)
C70.027 (4)0.029 (4)0.022 (3)0.003 (3)0.002 (3)0.001 (3)
C80.041 (4)0.035 (4)0.024 (3)0.008 (3)0.003 (3)0.004 (3)
C90.029 (4)0.045 (5)0.019 (3)0.004 (3)0.007 (3)0.005 (3)
C100.030 (4)0.035 (4)0.032 (4)0.004 (3)0.002 (3)0.008 (3)
C110.024 (3)0.025 (4)0.024 (3)0.005 (3)0.004 (3)0.001 (3)
C120.051 (4)0.063 (4)0.029 (3)0.004 (3)0.008 (2)0.013 (2)
S1A0.051 (4)0.063 (4)0.029 (3)0.004 (3)0.008 (2)0.013 (2)
C130.041 (4)0.035 (4)0.029 (4)0.003 (4)0.007 (3)0.008 (3)
C140.032 (4)0.045 (5)0.024 (3)0.001 (3)0.007 (3)0.004 (3)
N10.030 (3)0.028 (3)0.017 (2)0.001 (2)0.001 (2)0.005 (2)
N20.035 (3)0.034 (3)0.020 (3)0.001 (3)0.003 (2)0.004 (3)
O10.047 (3)0.042 (3)0.020 (2)0.005 (3)0.003 (2)0.008 (2)
Cl10.085 (2)0.0220 (12)0.0519 (15)0.0009 (12)0.0112 (13)0.0015 (11)
Cl20.086 (13)0.059 (11)0.059 (10)0.023 (9)0.028 (9)0.035 (9)
S10.0310 (12)0.0240 (11)0.0228 (10)0.0019 (9)0.0021 (7)0.0015 (8)
C12A0.0310 (12)0.0240 (11)0.0228 (10)0.0019 (9)0.0021 (7)0.0015 (8)
Geometric parameters (Å, º) top
C1—C61.395 (10)C9—C101.545 (10)
C1—C21.408 (10)C10—C111.514 (9)
C1—C71.478 (10)C10—H10A0.9900
C2—C31.388 (10)C10—H10B0.9900
C2—H20.9500C11—S1A1.461 (9)
C3—C41.394 (11)C11—C121.461 (9)
C3—H30.9500C11—C12A1.718 (7)
C4—C51.377 (11)C11—S11.718 (7)
C4—Cl21.724 (17)C12—C131.511 (9)
C4—H40.9500C12—H120.9500
C5—C61.392 (10)S1A—C131.511 (9)
C5—Cl11.718 (8)C13—C141.334 (11)
C5—H50.9500C13—H130.9500
C6—H60.9500C14—C12A1.682 (8)
C7—N11.281 (9)C14—S11.682 (8)
C7—H70.9500C14—H140.9500
C8—N21.464 (9)N1—N21.387 (8)
C8—H8A0.9800Cl1—H50.7679
C8—H8B0.9800Cl2—Cl2i2.21 (3)
C8—H8C0.9800Cl2—H40.8086
C9—O11.229 (8)C12A—H12A0.9500
C9—N21.364 (10)
C6—C1—C2119.0 (7)C11—C10—C9112.5 (6)
C6—C1—C7119.0 (7)C11—C10—H10A109.1
C2—C1—C7122.0 (7)C9—C10—H10A109.1
C3—C2—C1119.9 (7)C11—C10—H10B109.1
C3—C2—H2120.0C9—C10—H10B109.1
C1—C2—H2120.0H10A—C10—H10B107.8
C2—C3—C4120.5 (7)S1A—C11—C10124.1 (6)
C2—C3—H3119.7C12—C11—C10124.1 (6)
C4—C3—H3119.7S1A—C11—C12A114.0 (5)
C5—C4—C3119.5 (7)C10—C11—C12A121.8 (5)
C5—C4—Cl2111.2 (9)C12—C11—S1114.0 (5)
C3—C4—Cl2128.8 (10)C10—C11—S1121.8 (5)
C5—C4—H4120.0C11—C12—C13104.4 (6)
C3—C4—H4120.4C11—C12—H12127.8
Cl2—C4—H410.5C13—C12—H12127.8
C4—C5—C6120.8 (7)C11—S1A—C13104.4 (6)
C4—C5—Cl1119.6 (6)C14—C13—C12115.3 (7)
C6—C5—Cl1119.6 (6)C14—C13—S1A115.3 (7)
C4—C5—H5120.0C14—C13—H13122.4
C6—C5—H5119.2C12—C13—H13122.4
Cl1—C5—H50.5C13—C14—C12A114.1 (6)
C5—C6—C1120.2 (7)C13—C14—S1114.1 (6)
C5—C6—H6119.9C13—C14—H14123.0
C1—C6—H6119.9S1—C14—H14123.0
N1—C7—C1119.3 (6)C7—N1—N2117.7 (6)
N1—C7—H7120.3C9—N2—N1117.0 (6)
C1—C7—H7120.3C9—N2—C8120.2 (6)
N2—C8—H8A109.5N1—N2—C8122.7 (6)
N2—C8—H8B109.5C5—Cl1—H50.6
H8A—C8—H8B109.5C4—Cl2—Cl2i158.2 (15)
N2—C8—H8C109.5C4—Cl2—H412.4
H8A—C8—H8C109.5Cl2i—Cl2—H4154.9
H8B—C8—H8C109.5C14—S1—C1192.3 (4)
O1—C9—N2122.5 (7)C14—C12A—C1192.3 (4)
O1—C9—C10120.5 (7)C14—C12A—H12A133.9
N2—C9—C10117.1 (6)C11—C12A—H12A133.9
C6—C1—C2—C31.1 (10)S1—C11—C12—C130.5 (6)
C7—C1—C2—C3179.0 (6)C10—C11—S1A—C13178.3 (6)
C1—C2—C3—C40.4 (10)C12A—C11—S1A—C130.5 (6)
C2—C3—C4—C50.1 (11)C11—C12—C13—C140.1 (8)
C2—C3—C4—Cl2171.4 (9)C11—S1A—C13—C140.1 (8)
C3—C4—C5—C60.1 (12)S1A—C13—C14—C12A0.3 (8)
Cl2—C4—C5—C6172.7 (8)C12—C13—C14—S10.3 (8)
C3—C4—C5—Cl1179.0 (6)C1—C7—N1—N2179.6 (6)
Cl2—C4—C5—Cl18.3 (10)O1—C9—N2—N1174.7 (6)
C4—C5—C6—C10.8 (11)C10—C9—N2—N14.3 (9)
Cl1—C5—C6—C1178.3 (6)O1—C9—N2—C84.1 (10)
C2—C1—C6—C51.3 (10)C10—C9—N2—C8176.9 (6)
C7—C1—C6—C5178.8 (7)C7—N1—N2—C9175.3 (6)
C6—C1—C7—N1178.6 (6)C7—N1—N2—C83.5 (9)
C2—C1—C7—N11.5 (10)C5—C4—Cl2—Cl2i123 (4)
O1—C9—C10—C1188.1 (8)C3—C4—Cl2—Cl2i49 (5)
N2—C9—C10—C1190.9 (8)C13—C14—S1—C110.6 (6)
C9—C10—C11—S1A100.6 (8)C12—C11—S1—C140.6 (5)
C9—C10—C11—C12100.6 (8)C10—C11—S1—C14178.3 (6)
C9—C10—C11—C12A80.6 (7)C13—C14—C12A—C110.6 (6)
C9—C10—C11—S180.6 (7)S1A—C11—C12A—C140.6 (5)
C10—C11—C12—C13178.3 (6)C10—C11—C12A—C14178.3 (6)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1ii0.952.623.474 (9)150
C7—H7···O1ii0.952.523.381 (9)152
C12—H12···Cl1iii0.952.833.415 (7)121
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x, y+1, z.
(IV) top
Crystal data top
C14H13ClN2OSF(000) = 608
Mr = 292.77Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7454 (5) ÅCell parameters from 14502 reflections
b = 20.2993 (14) Åθ = 2.3–27.5°
c = 10.1592 (7) ŵ = 0.42 mm1
β = 97.510 (2)°T = 100 K
V = 1379.14 (17) Å3Block, colourless
Z = 40.30 × 0.17 × 0.10 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2929 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.843, Tmax = 1.000h = 78
14763 measured reflectionsk = 2526
3165 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.4663P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3165 reflectionsΔρmax = 0.53 e Å3
174 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.30559 (18)0.18484 (6)0.17665 (11)0.0232 (2)
C20.29278 (19)0.11619 (6)0.16729 (12)0.0258 (3)
H20.40400.08990.20200.031*
C30.1195 (2)0.08611 (6)0.10784 (13)0.0277 (3)
H30.11090.03950.10190.033*
C40.04180 (18)0.12533 (6)0.05692 (12)0.0251 (2)
C50.03348 (19)0.19335 (7)0.06381 (12)0.0266 (3)
H50.14460.21940.02810.032*
C60.14082 (19)0.22248 (6)0.12410 (12)0.0260 (3)
H60.14840.26910.12980.031*
C70.48613 (18)0.21894 (6)0.23753 (11)0.0245 (2)
H70.49460.26550.23130.029*
C80.8228 (2)0.29167 (6)0.32415 (13)0.0273 (3)
H8A0.79620.29980.22840.041*
H8B0.95950.30550.35710.041*
H8C0.72790.31680.36950.041*
C90.94915 (18)0.18717 (6)0.42531 (11)0.0236 (2)
C100.91435 (19)0.11392 (6)0.44594 (13)0.0266 (3)
H10A0.78160.10760.47560.032*
H10B0.91450.09050.36050.032*
C111.0726 (2)0.08513 (6)0.54718 (13)0.0259 (3)
C121.03317 (13)0.06569 (4)0.68966 (8)0.0410 (3)0.671 (2)
H120.91320.06770.72910.049*0.671 (2)
S1A1.03317 (13)0.06569 (4)0.68966 (8)0.0410 (3)0.329 (2)
C131.2424 (3)0.04236 (7)0.74842 (14)0.0396 (3)
H131.27060.02780.83780.048*
C141.3836 (2)0.04368 (7)0.66669 (16)0.0395 (3)
H141.51740.02980.69340.047*
N10.63255 (15)0.18647 (5)0.29910 (10)0.0232 (2)
N20.80022 (16)0.22142 (5)0.35017 (10)0.0236 (2)
O11.10231 (14)0.21470 (5)0.47402 (9)0.0312 (2)
Cl10.26110 (5)0.08829 (2)0.01956 (3)0.03259 (11)
S11.30619 (7)0.07115 (3)0.51710 (5)0.03532 (17)0.671 (2)
C12A1.30619 (7)0.07115 (3)0.51710 (5)0.03532 (17)0.329 (2)
H12A1.37120.07700.44050.042*0.329 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (6)0.0282 (6)0.0185 (5)0.0020 (5)0.0043 (4)0.0013 (4)
C20.0234 (6)0.0285 (6)0.0252 (6)0.0048 (5)0.0019 (4)0.0040 (5)
C30.0269 (6)0.0266 (6)0.0293 (6)0.0026 (5)0.0024 (5)0.0024 (5)
C40.0214 (6)0.0320 (6)0.0220 (5)0.0012 (5)0.0031 (4)0.0006 (5)
C50.0235 (6)0.0321 (6)0.0242 (6)0.0077 (5)0.0034 (5)0.0020 (5)
C60.0273 (6)0.0259 (6)0.0253 (6)0.0047 (5)0.0054 (5)0.0012 (4)
C70.0268 (6)0.0260 (6)0.0212 (5)0.0016 (5)0.0052 (4)0.0000 (4)
C80.0329 (7)0.0230 (6)0.0257 (6)0.0020 (5)0.0027 (5)0.0011 (4)
C90.0260 (6)0.0250 (6)0.0196 (5)0.0025 (5)0.0025 (4)0.0024 (4)
C100.0261 (6)0.0239 (6)0.0283 (6)0.0027 (5)0.0026 (5)0.0009 (5)
C110.0279 (6)0.0225 (6)0.0261 (6)0.0031 (5)0.0008 (5)0.0014 (4)
C120.0490 (5)0.0350 (4)0.0364 (4)0.0036 (3)0.0046 (3)0.0007 (3)
S1A0.0490 (5)0.0350 (4)0.0364 (4)0.0036 (3)0.0046 (3)0.0007 (3)
C130.0586 (10)0.0293 (7)0.0281 (6)0.0053 (6)0.0050 (6)0.0039 (5)
C140.0347 (7)0.0341 (7)0.0459 (8)0.0038 (6)0.0088 (6)0.0062 (6)
N10.0231 (5)0.0272 (5)0.0191 (5)0.0023 (4)0.0026 (4)0.0017 (4)
N20.0256 (5)0.0227 (5)0.0221 (5)0.0025 (4)0.0019 (4)0.0009 (4)
O10.0304 (5)0.0282 (5)0.0325 (5)0.0069 (4)0.0050 (4)0.0004 (4)
Cl10.02389 (17)0.03644 (19)0.03586 (19)0.00052 (12)0.00205 (12)0.00053 (12)
S10.0304 (3)0.0429 (3)0.0313 (3)0.00544 (19)0.00098 (18)0.00246 (18)
C12A0.0304 (3)0.0429 (3)0.0313 (3)0.00544 (19)0.00098 (18)0.00246 (18)
Geometric parameters (Å, º) top
C1—C61.3961 (17)C9—N21.3693 (16)
C1—C21.3987 (18)C9—C101.5241 (17)
C1—C71.4656 (17)C10—C111.5007 (17)
C2—C31.3851 (18)C10—H10A0.9900
C2—H20.9500C10—H10B0.9900
C3—C41.3922 (18)C11—S1A1.5564 (15)
C3—H30.9500C11—C121.5564 (15)
C4—C51.3834 (19)C11—C12A1.6679 (14)
C4—Cl11.7484 (13)C11—S11.6679 (14)
C5—C61.3852 (18)C12—C131.5337 (19)
C5—H50.9500C12—H120.9500
C6—H60.9500S1A—C131.5337 (19)
C7—N11.2805 (16)C13—C141.343 (2)
C7—H70.9500C13—H130.9500
C8—N21.4619 (16)C14—C12A1.6388 (16)
C8—H8A0.9800C14—S11.6388 (16)
C8—H8B0.9800C14—H140.9500
C8—H8C0.9800N1—N21.3778 (14)
C9—O11.2210 (15)C12A—H12A0.9500
C6—C1—C2118.70 (11)C11—C10—H10A109.3
C6—C1—C7118.62 (11)C9—C10—H10A109.3
C2—C1—C7122.67 (11)C11—C10—H10B109.3
C3—C2—C1120.66 (11)C9—C10—H10B109.3
C3—C2—H2119.7H10A—C10—H10B108.0
C1—C2—H2119.7C10—C11—S1A122.91 (11)
C2—C3—C4118.94 (12)C10—C11—C12122.91 (11)
C2—C3—H3120.5C10—C11—C12A123.03 (10)
C4—C3—H3120.5S1A—C11—C12A114.06 (9)
C5—C4—C3121.82 (12)C10—C11—S1123.03 (10)
C5—C4—Cl1118.56 (10)C12—C11—S1114.06 (9)
C3—C4—Cl1119.61 (10)C13—C12—C11100.36 (9)
C4—C5—C6118.35 (11)C13—C12—H12129.8
C4—C5—H5120.8C11—C12—H12129.8
C6—C5—H5120.8C13—S1A—C11100.36 (9)
C5—C6—C1121.52 (12)C14—C13—C12116.37 (12)
C5—C6—H6119.2C14—C13—S1A116.37 (12)
C1—C6—H6119.2C14—C13—H13121.8
N1—C7—C1120.55 (11)C12—C13—H13121.8
N1—C7—H7119.7C13—C14—C12A114.47 (12)
C1—C7—H7119.7C13—C14—S1114.47 (12)
N2—C8—H8A109.5C13—C14—H14122.8
N2—C8—H8B109.5S1—C14—H14122.8
H8A—C8—H8B109.5C7—N1—N2117.49 (11)
N2—C8—H8C109.5C9—N2—N1117.06 (10)
H8A—C8—H8C109.5C9—N2—C8120.64 (10)
H8B—C8—H8C109.5N1—N2—C8122.29 (10)
O1—C9—N2120.92 (11)C14—S1—C1194.72 (8)
O1—C9—C10121.88 (11)C14—C12A—C1194.72 (8)
N2—C9—C10117.20 (10)C14—C12A—H12A132.6
C11—C10—C9111.45 (10)C11—C12A—H12A132.6
C6—C1—C2—C30.44 (18)C10—C11—S1A—C13178.00 (11)
C7—C1—C2—C3179.43 (11)C12A—C11—S1A—C131.98 (11)
C1—C2—C3—C40.27 (19)C11—C12—C13—C141.60 (14)
C2—C3—C4—C50.17 (19)C11—S1A—C13—C141.60 (14)
C2—C3—C4—Cl1179.53 (9)S1A—C13—C14—C12A0.63 (17)
C3—C4—C5—C60.41 (19)C12—C13—C14—S10.63 (17)
Cl1—C4—C5—C6179.78 (9)C1—C7—N1—N2177.91 (10)
C4—C5—C6—C10.23 (18)O1—C9—N2—N1179.97 (11)
C2—C1—C6—C50.18 (18)C10—C9—N2—N10.43 (15)
C7—C1—C6—C5179.22 (11)O1—C9—N2—C81.27 (18)
C6—C1—C7—N1172.64 (11)C10—C9—N2—C8179.20 (11)
C2—C1—C7—N18.36 (17)C7—N1—N2—C9174.66 (10)
O1—C9—C10—C118.78 (17)C7—N1—N2—C86.59 (16)
N2—C9—C10—C11170.75 (11)C13—C14—S1—C110.60 (13)
C9—C10—C11—S1A106.71 (12)C10—C11—S1—C14178.36 (11)
C9—C10—C11—C12106.71 (12)C12—C11—S1—C141.62 (10)
C9—C10—C11—C12A73.26 (14)C13—C14—C12A—C110.60 (13)
C9—C10—C11—S173.26 (14)C10—C11—C12A—C14178.36 (11)
C10—C11—C12—C13178.00 (11)S1A—C11—C12A—C141.62 (10)
S1—C11—C12—C131.98 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.183.1250 (15)172
C3—H3···Cl1ii0.952.953.8044 (14)151
C12—H12···Cl1iii0.952.983.7960 (10)145
C8—H8C···Cg1iv0.982.733.5592 (14)142
Symmetry codes: (i) x3/2, y+1/2, z1/2; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z+1/2.
Hirshfeld contact interactions (%) top
Contact type(I)(II)(III)(IV)
H···H43.643.038.541.5
C···H/H···C21.320.818.123.5
Hal···H/H···Hal12.513.015.216.0
O···H/H···O9.49.69.77.1
C···C2.52.44.71.6
N···H/H···N1.41.33.93.3
S···H/H···S1.91.82.92.0
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X.-Y., Harrowfield, J., Nitschke, J., Ramírez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944–2965.  Web of Science CSD CrossRef Google Scholar
First citationCardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448.  Web of Science CrossRef CAS Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de & Harrison, W. T. A. (2017). Acta Cryst. E73, 1636–1641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677–1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–187.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationNora de Souza, M., Ferreira, M. L., Mendonca Nogueira, T., Borges Goncalves, R., Peralta, M. A., Silva Lourenco, M. & Vicente, F. R. (2008). Lett. Drug. Des. Discov. 5, 221–224.  CrossRef CAS Google Scholar
First citationRamírez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20–24.  Google Scholar
First citationRamírez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456–2463.  Web of Science PubMed Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. E61, o933–o935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia; https://hirshfeldsurface.netGoogle Scholar
First citationWagner, P., Officer, D. L. & Kubicki, M. (2006). Acta Cryst. E62, o5931–o5932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds