research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-di­benzyl-3,3′-di­meth­­oxy­benzidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 10 January 2018; accepted 29 January 2018; online 2 February 2018)

The title compound, (systematic name: N,N′-dibenzyl-3,3′-dimeth­oxy-1,1′-biphenyl-4,4′-di­amine), C28H28N2O2, was synthesized by the reduction of a Schiff base prepared via a condensation reaction between o-dianisidine and benzaldehyde under acidic conditions. The mol­ecule lies on a crystallographic inversion centre so that the asymmetric unit contains one half-mol­ecule. The biphenyl moiety compound is essentially planar. Two intra­molecular N—H⋯O hydrogen bonds occur. The dihedral angle between the terminal phenyl and phenyl­ene rings of a benzidine unit is 48.68 (6)°. The methyl­ene C atom of the benzyl group is disordered over two sets of sites, with occupancy ratio 0.779 (18):0.221 (18). In the crystal, mol­ecules are connected by hydrogen bonding between o-dianisidine O atoms and H atoms of the terminal benzyl groups, forming a one-dimensional ladder-like structure. In the data from DFT calculations, the central biphenyl showed a twisted conformation.

1. Chemical context

Benzidine derivatives have received increasing attention in recent years beacuse of their applications in a wide variety of domains, for instance as building blocks in the construction of functionalized organic/organometallic materials and as sensor materials (Hmadeh et al., 2008[Hmadeh, M., Traboulsi, H., Elhabiri, M., Braunstein, P., Albrecht-Gary, A. & Siri, O. (2008). Tetrahedron, 64, 6522-6529.]; Satapathi, 2015[Satapathi, S. (2015). Inorg. Chem. Commun. 56, 22-34.]; Nagaraja et al., 2017[Nagaraja, V., Kumar, M. K. & Giddappa, N. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 407-417.]). The chemical and physical properties of benzidine-based compounds have enabled their use in cell biology as staining reagents (Liu et al., 2004[Liu, L. F., Yulan, Z. & Qian, X. H. (2004). Dyes Pigments, 60, 17-21.]). Benzidine derivatives are also relevant examples of simple redox systems, which could find applications as OLEDs (Zhang et al., 2004[Zhang, S. T., Wang, Z. J., Zhao, J. M., Zhan, Y. Q., Wu, Y., Zhou, Y. C., Ding, X. M. & Hou, X. Y. (2004). Appl. Phys. Lett. 84, 2916-2918.]) or electroactive organic polymeric compounds (D'Eramo et al., 1994[D'Eramo, F., Arévalo, A. H., Silber, J. J. & Sereno, L. (1994). J. Braz. Chem. Soc. 5, 213-218.]). Recently, we have reported copper(I) coordination polymers based on pyromellitic di­imide derivatives, and shown that photoluminescence emission peaks are shifted depending on the solvent (Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]). In an extension of previous research, we have synthesized a benzidine derivative as a di­amine inter­mediate, in which a benzidine moiety was used instead of a pyromellitic di­imide spacer unit, and report its crystal structure here.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of a central di­meth­oxy­benzidine unit and two terminal benzyl groups (Fig. 1[link]). The mol­ecule lies about a crystallographic inversion centre at the midpoint of the C4—C4(−x, −y, −z + 1) bond, thus the asymmetric unit contains one half-mol­ecule. The dihedral angle between the terminal phenyl and phenyl­ene rings of a benzidine unit is 48.68 (6)°. Disorder was modelled for the methyl­ene C atom of the benzyl group over two sets of sites with an occupancy ratio of 0.779 (18):0.221 (18). The biphenyl moiety is strictly planar [dihedral angle between rings = 0°; maximum deviation of 0.015 (2) Å for atom C3]. There is no pronounced anisotropy in the aryl anisotropic displacement parameters, indicating that there is no disorder or dynamic twisting process to accommodate the steric crowding of the ortho H atoms of the biphenyl moiety (El-Shafei et al., 2003[El-Shafei, A., Boyle, P. D., Hinks, D. & Freeman, H. S. (2003). Acta Cryst. C59, o71-o73.]). The mol­ecular conformation is in part influenced by the formation of weak intra­molecular N1—H1⋯O1 hydrogen bonds that enclose S(5) rings (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.66 3.400 (2) 135
N1—H1⋯O1 0.88 2.33 2.6464 (19) 101
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow dashed lines represent the intra­molecular N—H⋯O hydrogen bonds. Unlabelled atoms are generated by the symmetry operation (−x, −y, −z + 1).

3. Supra­molecular features

In the crystal, neighbouring mol­ecules are linked by C10—H10⋯O1 hydrogen bonds (Table 1[link]; yellow dashed lines in Fig. 2[link]) that generate R22(24) rings. These contacts stack adjacent mol­ecules, forming a one-dimensional ladder-like structure (Fig. 2[link]). Neighbouring stacks of mol­ecules in these ladders are not connected but lie parallel to the (01[\overline{2}]) plane (Fig. 3[link]).

[Figure 2]
Figure 2
C—H⋯O hydrogen bonds (orange dashed lines) link adjacent mol­ecules. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
Overall packing diagram of title compound, showing the one-dimensional ladder structure (hydrogen bonds drawn as orange dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Database survey

The Cambridge Database (Version 5.27, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals polymorphs of related biphenyl derivatives that have both twisted and planar biphenyl conformations (Hoser et al., 2012[Hoser, A. A., Jarzembska, K. N., Dobrzycki, Ł., Łukasz, , Gutmann, M. J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3526-3539.]). However, in the biphenyl compounds 4,4′-di­amino-2,2′,6,6′-tetra­methyl­biphenyl (Batsanov et al., 2006[Batsanov, A. S., Low, P. J. & Paterson, M. A. J. (2006). Acta Cryst. E62, o2973-o2975.]), 2,2′-di­chloro-5,5′-dipropoxy­benzidine and 2,2′-dimethyl-5,5′-dipropoxybenzidine (El-Shafei et al., 2004[El-Shafei, A., Hinks, D., Boyle, P. D. & Freeman, H. S. (2004). Acta Cryst. C60, o569-o571.]), in which atoms other than hydrogen are substituted in the ortho positions of the biphenyl unit, adopt twisted biphenyl conformations due to steric repulsion between substituted atoms. Hybrid inorganic–organic complexes with benzidine dications display structures with either twisted or planar conformations for the benzidine unit and, in some case, even both conformations (Dobrzycki & Woźniak, 2009[Dobrzycki, L. & Woźniak, K. (2009). J. Mol. Struct. 921, 18-33.]). Related structures with an essentially planar benzidine conformation include 3,3′-dipropoxybenzidine (El-Shafei et al., 2003[El-Shafei, A., Boyle, P. D., Hinks, D. & Freeman, H. S. (2003). Acta Cryst. C59, o71-o73.]), N,N-bis­(di­phenyl­phosphino)benzidine (Kayan et al., 2012[Kayan, C., Biricik, N., Aydemir, M. & Scopelliti, R. (2012). Inorg. Chim. Acta, 385, 164-169.]) and N,N′-bis­(4-chloro­benzyl­idene)-3,3′-di­meth­oxy­biphenyl-4,4′-di­amine (Subashini et al., 2011[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, o1296-o1297.]).

5. Theoretical calculations

DFT calculations have been performed to support the experimental values on the basis of the diffraction study using the GAUSSIAN09 software package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.]). Full geometry optimizations were performed using B3LYP levels of theory with a 6-311G* basis set. The bond lengths of the optimized parameter are in excellent agreement with the experimental crystallographic data (Table 2[link]). Inter­estingly, however, while the central biphenyl conformation from the crystal structure is found to be planar, that from the DFT calculations shows an angle of 37.67° between the two aromatic rings, Fig. 4[link]. Furthermore, the dihedral angle between the terminal phenyl and phenyl­ene rings of the title compound is 48.68 (6)° from the crystallographic data but 76.69° from the DFT calculation. Similarly, as a result of the twisted conformation found in the DFT calculations, the lengths of the intra­molecular N—H⋯O hydrogen bonds from the X-ray and DFT calculation data are also slightly different, at 2.33 and 2.21 Å, respectively.

Table 2
Experimental and calculated bond lengths (Å)

Bond X-ray B3LYP (6–311G*)
O1—C1 1.425 (2) 1.4208
O1—C2 1.374 (3) 1.3744
N1—C7 1.394 (2) 1.3872
N1—C8 1.438 (5) 1.4567
C2—C3 1.378 (2) 1.3859
C3—C4 1.399 (2) 1.4104
C4—C5 1.389 (2) 1.3951
C5—C6 1.386 (2) 1.3964
C6—C7 1.385 (2) 1.3972
C2—C7 1.408 (2) 1.4189
C8—C9 1.498 (6) 1.5139
C9—C10 1.389 (3) 1.400)
C10—C11 1.379 (3) 1.3921
C11—C12 1.380 (2) 1.3966
C12—C13 1.377 (3) 1.3923
C13—C14 1.383 (3) 1.3965
C9—C14 1.382 (2) 1.3976
C4—C4i 1.491 (2) 1.4823
Symmetry code: (i) −x, −y, −z + 1.
[Figure 4]
Figure 4
The central biphenyl conformation from the crystallographic data is planar (a), while that from the DFT calculations is twisted (b).

6. Synthesis and crystallization

A mixture of o-dianisidine (4.88 g, 20 mmol), benzaldehyde (4.71 g, 40 mmol) and acetic acid (2.47 g, 40 mmol) in 30 mL of toluene and 7 mL of ethanol was heated at refluxed for 6 h. Sodium borohydride (1.62 g, 40 mmol) was added and the mixture was refluxed for two h. After cooling to room temperature, water was added to the reaction mixture. The organic layer was collected and the water layer was extracted with di­chloro­methane. The combined organic layer was dried with anhydrous sodium sulfate then evaporated to give a solid. Column chromatography (silica gel, ethyl acetate/hexane = 30/70 (v/v) gave the pure product. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/n-hexane solution (v/v = 30/70) of the title compound. 1H NMR (300 MHz, DMSO): δ = 8.31 (s, 2H, CHCO), 7.28 (m, 10H, phen­yl), 6.64 (d, 2H, CCHC), 6.41 (d, 2H, CHCN), 5.52 (t, 2H, NH), 4.33 (d, 4H, CH2), 3.88 (s, 6H, CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). The methyl­ene C8 atom of the benzyl group is disordered over two sets of sites. Their occupancies refined to 0.779 (18) and 0.221 (18).

Table 3
Experimental details

Crystal data
Chemical formula C28H28N2O2
Mr 424.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 4.7089 (2), 9.6760 (4), 12.1952 (5)
α, β, γ (°) 93.387 (3), 92.165 (2), 103.180 (2)
V3) 539.32 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.31 × 0.18 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.659, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 6528, 1888, 1683
Rint 0.019
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.10
No. of reflections 1888
No. of parameters 156
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

N,N'-dibenzyl-3,3'-dimethoxy-1,1'-biphenyl-4,4'-diamine top
Crystal data top
C28H28N2O2Z = 1
Mr = 424.52F(000) = 226
Triclinic, P1Dx = 1.307 Mg m3
a = 4.7089 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6760 (4) ÅCell parameters from 5519 reflections
c = 12.1952 (5) Åθ = 2.6–28.0°
α = 93.387 (3)°µ = 0.08 mm1
β = 92.165 (2)°T = 173 K
γ = 103.180 (2)°Plate, yellow
V = 539.32 (4) Å30.31 × 0.18 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1683 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.7°
Tmin = 0.659, Tmax = 0.746h = 55
6528 measured reflectionsk = 1111
1888 independent reflectionsl = 1314
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.2226P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1888 reflectionsΔρmax = 0.37 e Å3
156 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2453 (3)0.22554 (13)0.81729 (9)0.0350 (4)
N10.6872 (3)0.38961 (16)0.72486 (12)0.0367 (4)
H10.68900.38620.79680.044*
C10.0076 (4)0.15213 (19)0.86818 (14)0.0355 (4)
H1A0.18270.17010.83120.053*
H1B0.00240.18600.94590.053*
H1C0.01630.04980.86250.053*
C20.2594 (3)0.19646 (17)0.70622 (13)0.0275 (4)
C30.0682 (3)0.08840 (16)0.64431 (13)0.0270 (4)
H30.09110.03160.67860.032*
C40.1022 (3)0.06000 (16)0.53238 (13)0.0261 (4)
C50.3347 (4)0.14802 (18)0.48559 (14)0.0328 (4)
H50.36460.13180.40980.039*
C60.5243 (4)0.25895 (18)0.54660 (14)0.0329 (4)
H60.67900.31780.51140.039*
C70.4931 (3)0.28575 (17)0.65775 (14)0.0284 (4)
C80.8843 (16)0.5024 (3)0.6758 (5)0.0414 (13)0.779 (18)
H8A0.77100.55310.62910.050*0.779 (18)
H8B1.01440.46130.62820.050*0.779 (18)
C8'0.791 (3)0.4999 (12)0.7085 (11)0.023 (3)0.221 (18)
H8'10.63260.55130.71580.028*0.221 (18)
H8'20.82680.49490.62910.028*0.221 (18)
C91.0656 (4)0.60586 (18)0.76161 (15)0.0336 (4)
C101.1686 (4)0.56526 (18)0.86005 (15)0.0373 (5)
H101.10670.46950.87870.045*
C111.3596 (4)0.66246 (19)0.93095 (14)0.0368 (4)
H111.43020.63340.99780.044*
C121.4480 (4)0.80198 (18)0.90472 (15)0.0370 (4)
H121.57810.86930.95380.044*
C131.3474 (4)0.84355 (18)0.80734 (15)0.0357 (4)
H131.40980.93940.78890.043*
C141.1558 (4)0.74595 (18)0.73633 (14)0.0339 (4)
H141.08550.77540.66960.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (7)0.0396 (7)0.0222 (6)0.0042 (5)0.0004 (5)0.0061 (5)
N10.0347 (8)0.0398 (9)0.0262 (8)0.0081 (7)0.0009 (6)0.0086 (6)
C10.0359 (9)0.0416 (10)0.0252 (9)0.0021 (7)0.0029 (7)0.0022 (7)
C20.0303 (8)0.0285 (8)0.0224 (8)0.0056 (6)0.0033 (6)0.0015 (6)
C30.0277 (8)0.0256 (8)0.0253 (8)0.0017 (6)0.0015 (6)0.0008 (6)
C40.0270 (8)0.0258 (8)0.0244 (8)0.0050 (7)0.0047 (7)0.0001 (6)
C50.0333 (9)0.0375 (9)0.0228 (8)0.0001 (7)0.0019 (7)0.0028 (7)
C60.0307 (9)0.0339 (9)0.0286 (9)0.0033 (7)0.0007 (7)0.0001 (7)
C70.0265 (8)0.0285 (8)0.0273 (9)0.0025 (6)0.0043 (6)0.0023 (6)
C80.048 (2)0.0322 (14)0.037 (3)0.0026 (15)0.014 (2)0.0002 (13)
C8'0.022 (4)0.029 (4)0.018 (4)0.005 (3)0.011 (3)0.003 (3)
C90.0356 (9)0.0290 (9)0.0328 (9)0.0032 (7)0.0054 (7)0.0041 (7)
C100.0454 (10)0.0255 (8)0.0366 (10)0.0003 (7)0.0055 (8)0.0017 (7)
C110.0429 (10)0.0362 (10)0.0272 (9)0.0023 (8)0.0065 (8)0.0008 (7)
C120.0346 (9)0.0331 (9)0.0367 (10)0.0027 (7)0.0055 (8)0.0056 (7)
C130.0351 (9)0.0276 (9)0.0405 (10)0.0009 (7)0.0001 (8)0.0033 (7)
C140.0368 (9)0.0337 (9)0.0298 (9)0.0055 (7)0.0010 (7)0.0033 (7)
Geometric parameters (Å, º) top
O1—C21.374 (2)C6—H60.9500
O1—C11.425 (2)C8—C91.498 (3)
N1—C8'1.100 (12)C8—H8A0.9900
N1—C71.394 (2)C8—H8B0.9900
N1—C81.438 (7)C8'—C91.549 (11)
N1—H10.8800C8'—H8'10.9900
C1—H1A0.9800C8'—H8'20.9900
C1—H1B0.9800C9—C141.382 (2)
C1—H1C0.9800C9—C101.389 (3)
C2—C31.378 (2)C10—C111.379 (2)
C2—C71.408 (2)C10—H100.9500
C3—C41.399 (2)C11—C121.379 (2)
C3—H30.9500C11—H110.9500
C4—C51.389 (2)C12—C131.377 (3)
C4—C4i1.491 (3)C12—H120.9500
C5—C61.386 (2)C13—C141.383 (2)
C5—H50.9500C13—H130.9500
C6—C71.385 (2)C14—H140.9500
C2—O1—C1117.19 (12)C9—C8—H8A109.3
C8'—N1—C7129.4 (6)N1—C8—H8B109.3
C7—N1—C8119.6 (2)C9—C8—H8B109.3
C7—N1—H1120.2H8A—C8—H8B108.0
C8—N1—H1120.2N1—C8'—C9131.8 (9)
O1—C1—H1A109.5N1—C8'—H8'1104.3
O1—C1—H1B109.5C9—C8'—H8'1104.3
H1A—C1—H1B109.5N1—C8'—H8'2104.3
O1—C1—H1C109.5C9—C8'—H8'2104.3
H1A—C1—H1C109.5H8'1—C8'—H8'2105.6
H1B—C1—H1C109.5C14—C9—C10118.83 (15)
O1—C2—C3124.56 (15)C14—C9—C8117.8 (2)
O1—C2—C7114.59 (14)C10—C9—C8123.1 (2)
C3—C2—C7120.84 (15)C14—C9—C8'124.5 (4)
C2—C3—C4121.84 (15)C10—C9—C8'114.0 (5)
C2—C3—H3119.1C11—C10—C9120.71 (16)
C4—C3—H3119.1C11—C10—H10119.6
C5—C4—C3116.84 (15)C9—C10—H10119.6
C5—C4—C4i122.18 (18)C10—C11—C12119.89 (16)
C3—C4—C4i120.98 (18)C10—C11—H11120.1
C6—C5—C4121.75 (16)C12—C11—H11120.1
C6—C5—H5119.1C13—C12—C11119.95 (16)
C4—C5—H5119.1C13—C12—H12120.0
C7—C6—C5121.41 (16)C11—C12—H12120.0
C7—C6—H6119.3C12—C13—C14120.10 (16)
C5—C6—H6119.3C12—C13—H13120.0
C6—C7—N1124.04 (15)C14—C13—H13120.0
C6—C7—C2117.31 (15)C9—C14—C13120.52 (16)
N1—C7—C2118.54 (15)C9—C14—H14119.7
N1—C8—C9111.4 (4)C13—C14—H14119.7
N1—C8—H8A109.3
C1—O1—C2—C39.3 (2)C3—C2—C7—N1177.38 (14)
C1—O1—C2—C7171.68 (14)C7—N1—C8—C9177.7 (3)
O1—C2—C3—C4176.98 (14)C7—N1—C8'—C9160.1 (9)
C7—C2—C3—C41.9 (2)N1—C8—C9—C14149.9 (3)
C2—C3—C4—C51.4 (2)N1—C8—C9—C1036.3 (6)
C2—C3—C4—C4i178.26 (16)N1—C8'—C9—C14175.1 (12)
C3—C4—C5—C60.1 (3)N1—C8'—C9—C1013.8 (19)
C4i—C4—C5—C6179.73 (17)C14—C9—C10—C110.6 (3)
C4—C5—C6—C71.0 (3)C8—C9—C10—C11173.1 (4)
C5—C6—C7—N1175.71 (16)C8'—C9—C10—C11163.1 (6)
C5—C6—C7—C20.5 (3)C9—C10—C11—C120.6 (3)
C8'—N1—C7—C643.5 (11)C10—C11—C12—C130.6 (3)
C8—N1—C7—C618.3 (4)C11—C12—C13—C140.6 (3)
C8'—N1—C7—C2140.3 (11)C10—C9—C14—C130.6 (3)
C8—N1—C7—C2165.6 (3)C8—C9—C14—C13173.5 (4)
O1—C2—C7—C6178.08 (14)C8'—C9—C14—C13161.1 (7)
C3—C2—C7—C60.9 (2)C12—C13—C14—C90.6 (3)
O1—C2—C7—N11.6 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1ii0.952.663.400 (2)135
N1—H1···O10.882.332.6464 (19)101
Symmetry code: (ii) x+1, y, z.
Experimental and calculated bond lengths (Å) top
BondX-rayB3LYP (6-311G*)
O1—C11.425 (2)1.4208
O1—C21.374 (3)1.3744
N1—C71.394 (2)1.3872
N1—C81.438 (5)1.4567
C2—C31.378 (2)1.3859
C3—C41.399 (2)1.4104
C4—C51.389 (2)1.3951
C5—C61.386 (2)1.3964
C6—C71.385 (2)1.3972
C2—C71.408 (2)1.4189
C8—C91.498 (6)1.5139
C9—C101.389 (3)1.400)
C10—C111.379 (3)1.3921
C11—C121.380 (2)1.3966
C12—C131.377 (3)1.3923
C13—C141.383 (3)1.3965
C9—C141.382 (2)1.3976
C4—C4i1.491 (2)1.4823
Symmetry code: (i) -x, -y, -z + 1.
 

Funding information

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. 2015R1D1A4A01020317 and 2017R1D1A3A03000534)

References

First citationBatsanov, A. S., Low, P. J. & Paterson, M. A. J. (2006). Acta Cryst. E62, o2973–o2975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationD'Eramo, F., Arévalo, A. H., Silber, J. J. & Sereno, L. (1994). J. Braz. Chem. Soc. 5, 213–218.  CAS Google Scholar
First citationDobrzycki, L. & Woźniak, K. (2009). J. Mol. Struct. 921, 18–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Shafei, A., Boyle, P. D., Hinks, D. & Freeman, H. S. (2003). Acta Cryst. C59, o71–o73.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Shafei, A., Hinks, D., Boyle, P. D. & Freeman, H. S. (2004). Acta Cryst. C60, o569–o571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHmadeh, M., Traboulsi, H., Elhabiri, M., Braunstein, P., Albrecht-Gary, A. & Siri, O. (2008). Tetrahedron, 64, 6522–6529.  Web of Science CrossRef CAS Google Scholar
First citationHoser, A. A., Jarzembska, K. N., Dobrzycki, Ł., Łukasz, , Gutmann, M. J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3526–3539.  Google Scholar
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS Google Scholar
First citationKayan, C., Biricik, N., Aydemir, M. & Scopelliti, R. (2012). Inorg. Chim. Acta, 385, 164–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, L. F., Yulan, Z. & Qian, X. H. (2004). Dyes Pigments, 60, 17–21.  Web of Science CrossRef CAS Google Scholar
First citationNagaraja, V., Kumar, M. K. & Giddappa, N. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 407–417.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSatapathi, S. (2015). Inorg. Chem. Commun. 56, 22–34.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. T., Wang, Z. J., Zhao, J. M., Zhan, Y. Q., Wu, Y., Zhou, Y. C., Ding, X. M. & Hou, X. Y. (2004). Appl. Phys. Lett. 84, 2916–2918.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds