research communications
E)-4-[({4-[(pyridin-2-ylmethylidene)amino]phenyl}amino)methyl]phenol
and DFT study of (aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net
In the title Schiff base compound, C19H17N3O, the configuration about the C=N bond is E. The molecule is non-planar, with the phenolic and pyridine rings being inclined to the central benzene ring by 56.59 (4) and 15.13 (14)°, respectively. In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are connected to neighbouring dimers by N—H⋯O hydrogen bonds and C—H⋯π interactions, forming layers parallel to the bc plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.779 (2) Å], forming a three-dimensional supramolecular structure. Quantum chemical calculations of the molecule are in good agreement with the solid-state structure.
Keywords: crystal structure; Schiff base; pyridine-2-carbaldehyde; aminophenylaminomethylphenol; hydrogen bonding; offset π–π interactions.
CCDC reference: 1542988
1. Chemical context
et al., 1975). Hydroxy have been studied extensively for their biological, photochromic and thermochromic properties (Garnovskii et al., 1993; Hadjoudis et al., 2004). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007). derived from pyridinecarbaldehydes have also attracted considerable interest in synthetic chemistry. This category covers a diverse range of bidentate or polydentate bridging (Wu & Liang, 2008; Dong et al., 2000; Knödler et al., 2000), which played a significant role in coordination chemistry (Faizi & Hussain, 2014). Transition metal complexes of pyridyl have found applications in laser dyes (Genady et al., 2008), catalysis (Wang et al., 2008) and in crystal engineering, as they form coordination polymers (Huh & Lee, 2007) or grid-type complexes (Nitschke et al., 2004). The present work is part of an ongoing structural study of (Faizi et al., 2016) and their utilization in the synthesis of metal complexes (Faizi & Prisyazhnaya, 2015). We report herein on the and DFT computational calculation of the title Schiff base compound.
often exhibit various biological activities and, in many cases, have been shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The compound is non-planar; the dihedral angle between the central benzene ring (C8–C13) and the terminal phenolic ring (C1–C6) being 56.60 (13)°. The central benzene ring (C8–C13) is situated in a trans position with respect to the terminal pyridine ring (N3/C15–C19); these rings are inclined to each other by 15.13 (14)°. The configuration about the C14=N2 bond is E, with a C11—N2—C14—C15 torsion angle of 176.40 (2)°. The C7—N1—C8 angle is 123.43 (1)° and the C7—N1—H1A—C8 fragment is approximately planar; the amine N1 atom exhibits a geometry what is typical for an sp2 rather than an sp3 atom. Bond angles C11—N2—C14 and C15—N3—C19 are also near 120° [121.54 (1) and 117.20 (1)°, respectively], and the imine group has a torsion angle C11—N2—C14—C15 of 176.40 (2)°.
3. Supramolecular features
In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules to form inversion dimers, with an R22(32) ring motif (Table 1 and Fig. 2). The dimers are linked by N—H⋯·O hydrogen bonds (Table 1 and Fig. 2) and C—H⋯π interactions (Table 1), forming slabs lying parallel to the bc plane (Fig. 3). The slabs are linked by offset π–π interactions involving the pyridine rings, forming a three-dimensional supramolecular structure [Cg⋯.Cgiii = 3.779 (2) Å; Cg is the centroid of the N3/C15–C19 ring; interplanar distance = 3.462 (1) Å and slippage = 1.516 Å; symmetry code (iii) −x + 1, −y + 2, −z + 1].
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for similar structures gave a number of hits for the principal moiety of the title compound, i.e. N-(2-pyridylmethylene)benzene-1,4-diamine (CSD refcode EXOQAK; Marjani et al., 2011), and its metal complexes. The pyridine ring in EXOQAK is inclined to the benzene ring by 24.69 (13)° and the adjacent amine and pyridine N atoms are trans to each another. In the title compound, the pyridine ring is inclined to the benzene ring by 15.13 (14)° and the N atoms are also trans to each another. This is in contrast to the situation in the metal complexes of EXOQAK, e.g. dichloro{N-[(pyridin-2-yl)methylene]benzene-1,4-diamine}zinc(II) (CSD refcode TUJXIG; Marjani et al., 2009), where on coordination, the pyridine ring rotates and the adjacent amine and pyridine N atoms are then cis to each other.
5. DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). In general, the calculated values are in good agreement with the experimental data.
|
The highest occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO) are named . Molecular orbitals of HOMO contain both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density, while LUMO+1 is composed of both σ and π electron density. The HOMO–LUMO energy gap is very important for the chemical activity and explains the eventual charge transfer interaction within the molecule. The HOMO–LUMO gap was found to be 0.128907 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO were found to be as −0.19367 and −0.06476 a.u., respectively.
(FMOs). The LUMO and HOMO parameters are considerably answerable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of a molecule 1. The DFT study of the title compound revealed that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the pyridine ring and electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 46. Synthesis and crystallization
The title compound was prepared from an equimolar mixture of 4-aminophenylaminomethylphenol (0.50 g, 2.3 mmol) and pyridine-2-carbaldehyde (0.20 g, 2.30 mmol) in (50 ml) methanol. The yellow reaction mixture was stirred for 3 h at room temperature and solvent was evaporated to 5 ml. The resulting yellow solid was isolated by filtration, washed successively with a cold water and methanol mixture (10 ml) and hexane (20 ml). The compound was recrystallized from hot methanol, giving yellow plate-like crystals. Finally, the yellow solid was dried in a vacuum desiccator (yield 0.50 g, 70%; m.p. 446–448 K).
Spectroscopic data: UV–Vis (MeOH): λmax nm (∊, M−1 cm−1): 258 (13,000), 383 (16,000). IR (KBr, cm−1): ν(C=N) 1625, ν(N—H) 3265.
1H NMR (400 MHz, DMSO-d6): δ 8.6 (1H, s, CH=N), 7.4 (1H, s), 7.8 (1H, t, J = 8.4, 6.8 Hz), 8.0 (1H, d, J = 6.4 Hz), 8.5 (1H, s), 6.7 (2H, d, J = 6.0 Hz), 6.6 (2H, d, J = 6.4 Hz), 4.1 (2H, s), 7.1 (2H, d, J = 6.4 Hz), 7.2 (2H, d, J = 6.4 Hz), 9.3 (–OH), 6.5 (NH).
HRMS (ESI) m/z [M + H]+ calculated for C19H17N3O: 304.1444; found: 304.1455.
7. Refinement
Crystal data, data collection and structure . The crystal diffracted very weakly beyond 20° in θ, and only ca 40% of the data can be considered to be observed; hence the large value for Rint of 0.122. The N—H and O—H H atoms were located in difference Fourier maps. The OH H atom was freely refined, while during the N- and C-bound H atoms were included in calculated positions and treated as riding, with N—H = 0.86 Å and C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C,N).
details are summarized in Table 3Supporting information
CCDC reference: 1542988
https://doi.org/10.1107/S2056989018003043/su5421sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003043/su5421Isup2.hkl
Data collection: SMART (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C19H17N3O | F(000) = 640 |
Mr = 303.22 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5652 (7) Å | Cell parameters from 1114 reflections |
b = 7.9136 (6) Å | θ = 2.8–18.2° |
c = 20.8153 (13) Å | µ = 0.08 mm−1 |
β = 118.408 (4)° | T = 296 K |
V = 1530.77 (19) Å3 | Plate, yellow |
Z = 4 | 0.21 × 0.15 × 0.11 mm |
Bruker SMART CCD area detector diffractometer | 2664 independent reflections |
Radiation source: sealed tube | 1087 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.122 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −12→12 |
Tmin = 0.785, Tmax = 0.856 | k = −9→9 |
17211 measured reflections | l = −24→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.73 | w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3 |
2664 reflections | (Δ/σ)max < 0.001 |
212 parameters | Δρmax = 0.14 e Å−3 |
7 restraints | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.2029 (2) | 0.4843 (3) | −0.37245 (9) | 0.0677 (6) | |
N2 | 0.3840 (2) | 0.9002 (3) | 0.25128 (10) | 0.0575 (6) | |
N1 | 0.0654 (2) | 0.8060 (2) | −0.05048 (10) | 0.0584 (6) | |
H1A | 0.104122 | 0.846064 | −0.075424 | 0.070* | |
N3 | 0.4388 (2) | 0.7338 (3) | 0.42061 (11) | 0.0551 (6) | |
C6 | −0.2709 (3) | 0.6253 (3) | −0.29168 (13) | 0.0618 (8) | |
H6 | −0.363931 | 0.638443 | −0.329860 | 0.074* | |
C1 | −0.1675 (3) | 0.5496 (3) | −0.30408 (13) | 0.0536 (7) | |
C2 | −0.0284 (3) | 0.5374 (3) | −0.24837 (13) | 0.0569 (7) | |
H2 | 0.042773 | 0.490422 | −0.257010 | 0.068* | |
C3 | 0.0050 (3) | 0.5955 (3) | −0.17948 (12) | 0.0560 (7) | |
H3 | 0.099320 | 0.587513 | −0.142046 | 0.067* | |
C4 | −0.0990 (3) | 0.6653 (3) | −0.16507 (12) | 0.0517 (7) | |
C5 | −0.2366 (3) | 0.6822 (3) | −0.22213 (13) | 0.0611 (8) | |
H5 | −0.307393 | 0.732180 | −0.213979 | 0.073* | |
C8 | 0.1329 (3) | 0.8340 (3) | 0.02322 (13) | 0.0489 (7) | |
C7 | −0.0669 (3) | 0.7130 (3) | −0.08846 (12) | 0.0603 (8) | |
H7A | −0.145423 | 0.781051 | −0.090815 | 0.072* | |
H7B | −0.060997 | 0.611176 | −0.061241 | 0.072* | |
C13 | 0.0849 (3) | 0.7669 (3) | 0.06958 (13) | 0.0584 (7) | |
H13 | −0.001697 | 0.708081 | 0.050074 | 0.070* | |
C12 | 0.1648 (3) | 0.7869 (3) | 0.14445 (13) | 0.0579 (8) | |
H12 | 0.131692 | 0.738651 | 0.174403 | 0.069* | |
C11 | 0.2923 (3) | 0.8763 (3) | 0.17598 (13) | 0.0508 (7) | |
C10 | 0.3358 (3) | 0.9513 (3) | 0.12946 (13) | 0.0567 (7) | |
H10 | 0.419007 | 1.016616 | 0.149006 | 0.068* | |
C9 | 0.2582 (3) | 0.9308 (3) | 0.05489 (13) | 0.0554 (7) | |
H9 | 0.290049 | 0.982488 | 0.025065 | 0.066* | |
C14 | 0.3648 (3) | 0.8223 (3) | 0.29852 (13) | 0.0590 (7) | |
H14 | 0.285013 | 0.752151 | 0.283243 | 0.071* | |
C15 | 0.4635 (3) | 0.8382 (3) | 0.37661 (13) | 0.0515 (7) | |
C16 | 0.5780 (3) | 0.9501 (3) | 0.40340 (13) | 0.0598 (8) | |
H16 | 0.592239 | 1.021323 | 0.371868 | 0.072* | |
C17 | 0.6708 (3) | 0.9544 (3) | 0.47755 (14) | 0.0647 (8) | |
H17 | 0.748321 | 1.028674 | 0.496625 | 0.078* | |
C18 | 0.6472 (3) | 0.8476 (3) | 0.52292 (14) | 0.0616 (8) | |
H18 | 0.708703 | 0.847287 | 0.573011 | 0.074* | |
C19 | 0.5308 (3) | 0.7418 (3) | 0.49240 (14) | 0.0594 (7) | |
H19 | 0.514376 | 0.670992 | 0.523359 | 0.071* | |
H1 | −0.278 (3) | 0.416 (4) | −0.3883 (16) | 0.133 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0697 (15) | 0.0891 (15) | 0.0397 (11) | −0.0111 (13) | 0.0222 (11) | −0.0157 (10) |
N2 | 0.0604 (15) | 0.0689 (15) | 0.0356 (13) | −0.0049 (11) | 0.0167 (12) | 0.0004 (10) |
N1 | 0.0669 (16) | 0.0712 (16) | 0.0359 (13) | −0.0119 (13) | 0.0236 (12) | −0.0055 (11) |
N3 | 0.0579 (15) | 0.0626 (15) | 0.0346 (13) | −0.0040 (12) | 0.0137 (12) | −0.0020 (11) |
C6 | 0.0483 (18) | 0.083 (2) | 0.0389 (17) | 0.0012 (16) | 0.0083 (15) | −0.0036 (14) |
C1 | 0.063 (2) | 0.0563 (19) | 0.0415 (17) | −0.0068 (15) | 0.0248 (16) | −0.0053 (13) |
C2 | 0.0477 (19) | 0.071 (2) | 0.0448 (17) | 0.0031 (15) | 0.0160 (15) | −0.0046 (14) |
C3 | 0.0480 (18) | 0.0675 (19) | 0.0385 (16) | 0.0028 (15) | 0.0091 (14) | −0.0027 (13) |
C4 | 0.0574 (19) | 0.0574 (18) | 0.0360 (16) | 0.0008 (14) | 0.0187 (15) | −0.0017 (12) |
C5 | 0.056 (2) | 0.077 (2) | 0.0458 (17) | 0.0045 (15) | 0.0208 (16) | −0.0058 (14) |
C8 | 0.0572 (19) | 0.0510 (18) | 0.0332 (15) | 0.0044 (14) | 0.0172 (14) | 0.0008 (12) |
C7 | 0.0610 (19) | 0.072 (2) | 0.0436 (17) | −0.0006 (16) | 0.0216 (15) | −0.0059 (14) |
C13 | 0.0591 (18) | 0.073 (2) | 0.0391 (17) | −0.0132 (15) | 0.0198 (15) | −0.0047 (13) |
C12 | 0.0629 (19) | 0.068 (2) | 0.0411 (17) | −0.0106 (16) | 0.0237 (15) | −0.0001 (13) |
C11 | 0.0574 (19) | 0.0553 (18) | 0.0352 (16) | −0.0046 (14) | 0.0182 (15) | 0.0004 (13) |
C10 | 0.0584 (19) | 0.0597 (19) | 0.0475 (17) | −0.0085 (14) | 0.0216 (16) | −0.0041 (13) |
C9 | 0.063 (2) | 0.062 (2) | 0.0435 (17) | −0.0077 (15) | 0.0272 (16) | −0.0019 (13) |
C14 | 0.0554 (17) | 0.0665 (19) | 0.0426 (17) | −0.0065 (14) | 0.0130 (14) | −0.0040 (13) |
C15 | 0.0539 (18) | 0.0554 (19) | 0.0398 (16) | 0.0045 (15) | 0.0179 (15) | −0.0044 (13) |
C16 | 0.066 (2) | 0.065 (2) | 0.0465 (18) | −0.0075 (16) | 0.0251 (16) | −0.0048 (14) |
C17 | 0.060 (2) | 0.068 (2) | 0.0556 (19) | −0.0099 (15) | 0.0192 (17) | −0.0072 (15) |
C18 | 0.061 (2) | 0.067 (2) | 0.0398 (16) | 0.0021 (16) | 0.0099 (15) | −0.0047 (15) |
C19 | 0.069 (2) | 0.0624 (19) | 0.0396 (18) | −0.0046 (17) | 0.0198 (16) | −0.0007 (13) |
O1—C1 | 1.388 (3) | C8—C9 | 1.394 (3) |
O1—H1 | 0.879 (17) | C7—H7A | 0.9700 |
N2—C14 | 1.256 (3) | C7—H7B | 0.9700 |
N2—C11 | 1.409 (3) | C13—C12 | 1.384 (3) |
N1—C8 | 1.368 (3) | C13—H13 | 0.9300 |
N1—C7 | 1.439 (3) | C12—C11 | 1.380 (3) |
N1—H1A | 0.8600 | C12—H12 | 0.9300 |
N3—C19 | 1.341 (3) | C11—C10 | 1.387 (3) |
N3—C15 | 1.347 (3) | C10—C9 | 1.377 (3) |
C6—C1 | 1.374 (3) | C10—H10 | 0.9300 |
C6—C5 | 1.390 (3) | C9—H9 | 0.9300 |
C6—H6 | 0.9300 | C14—C15 | 1.460 (3) |
C1—C2 | 1.376 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.382 (3) | C15—C16 | 1.385 (3) |
C2—H2 | 0.9300 | C16—C17 | 1.380 (3) |
C3—C4 | 1.384 (3) | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C17—C18 | 1.376 (3) |
C4—C5 | 1.378 (3) | C17—H17 | 0.9300 |
C4—C7 | 1.512 (3) | C18—C19 | 1.369 (3) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C8—C13 | 1.391 (3) | C19—H19 | 0.9300 |
C1—O1—H1 | 112 (2) | C12—C13—C8 | 120.6 (2) |
C14—N2—C11 | 121.5 (2) | C12—C13—H13 | 119.7 |
C8—N1—C7 | 123.4 (2) | C8—C13—H13 | 119.7 |
C8—N1—H1A | 118.3 | C11—C12—C13 | 121.9 (2) |
C7—N1—H1A | 118.3 | C11—C12—H12 | 119.0 |
C19—N3—C15 | 117.2 (2) | C13—C12—H12 | 119.0 |
C1—C6—C5 | 120.0 (2) | C12—C11—C10 | 117.4 (2) |
C1—C6—H6 | 120.0 | C12—C11—N2 | 126.7 (2) |
C5—C6—H6 | 120.0 | C10—C11—N2 | 116.0 (2) |
C6—C1—C2 | 119.9 (2) | C9—C10—C11 | 121.2 (2) |
C6—C1—O1 | 120.3 (2) | C9—C10—H10 | 119.4 |
C2—C1—O1 | 119.8 (3) | C11—C10—H10 | 119.4 |
C1—C2—C3 | 119.6 (2) | C10—C9—C8 | 121.3 (2) |
C1—C2—H2 | 120.2 | C10—C9—H9 | 119.3 |
C3—C2—H2 | 120.2 | C8—C9—H9 | 119.3 |
C2—C3—C4 | 121.3 (2) | N2—C14—C15 | 122.2 (3) |
C2—C3—H3 | 119.3 | N2—C14—H14 | 118.9 |
C4—C3—H3 | 119.3 | C15—C14—H14 | 118.9 |
C5—C4—C3 | 118.2 (2) | N3—C15—C16 | 122.2 (2) |
C5—C4—C7 | 120.0 (2) | N3—C15—C14 | 115.9 (2) |
C3—C4—C7 | 121.7 (2) | C16—C15—C14 | 121.9 (2) |
C4—C5—C6 | 120.8 (2) | C17—C16—C15 | 119.1 (2) |
C4—C5—H5 | 119.6 | C17—C16—H16 | 120.5 |
C6—C5—H5 | 119.6 | C15—C16—H16 | 120.5 |
N1—C8—C13 | 123.3 (2) | C18—C17—C16 | 119.2 (3) |
N1—C8—C9 | 119.4 (2) | C18—C17—H17 | 120.4 |
C13—C8—C9 | 117.3 (2) | C16—C17—H17 | 120.4 |
N1—C7—C4 | 112.3 (2) | C19—C18—C17 | 118.3 (2) |
N1—C7—H7A | 109.2 | C19—C18—H18 | 120.9 |
C4—C7—H7A | 109.2 | C17—C18—H18 | 120.9 |
N1—C7—H7B | 109.2 | N3—C19—C18 | 124.0 (2) |
C4—C7—H7B | 109.2 | N3—C19—H19 | 118.0 |
H7A—C7—H7B | 107.9 | C18—C19—H19 | 118.0 |
C5—C6—C1—C2 | −3.1 (4) | C13—C12—C11—N2 | −178.0 (2) |
C5—C6—C1—O1 | 176.5 (2) | C14—N2—C11—C12 | 8.6 (4) |
C6—C1—C2—C3 | 2.6 (4) | C14—N2—C11—C10 | −171.5 (2) |
O1—C1—C2—C3 | −177.0 (2) | C12—C11—C10—C9 | −2.9 (4) |
C1—C2—C3—C4 | 0.3 (4) | N2—C11—C10—C9 | 177.2 (2) |
C2—C3—C4—C5 | −2.6 (4) | C11—C10—C9—C8 | 0.0 (4) |
C2—C3—C4—C7 | 173.8 (2) | N1—C8—C9—C10 | −174.9 (2) |
C3—C4—C5—C6 | 2.1 (4) | C13—C8—C9—C10 | 3.5 (4) |
C7—C4—C5—C6 | −174.3 (2) | C11—N2—C14—C15 | 176.4 (2) |
C1—C6—C5—C4 | 0.7 (4) | C19—N3—C15—C16 | −0.2 (3) |
C7—N1—C8—C13 | 3.9 (4) | C19—N3—C15—C14 | 177.8 (2) |
C7—N1—C8—C9 | −177.7 (2) | N2—C14—C15—N3 | −173.0 (2) |
C8—N1—C7—C4 | −166.3 (2) | N2—C14—C15—C16 | 5.0 (4) |
C5—C4—C7—N1 | −137.0 (2) | N3—C15—C16—C17 | 0.4 (4) |
C3—C4—C7—N1 | 46.7 (3) | C14—C15—C16—C17 | −177.5 (2) |
N1—C8—C13—C12 | 174.1 (2) | C15—C16—C17—C18 | 0.0 (4) |
C9—C8—C13—C12 | −4.3 (4) | C16—C17—C18—C19 | −0.7 (4) |
C8—C13—C12—C11 | 1.5 (4) | C15—N3—C19—C18 | −0.5 (4) |
C13—C12—C11—C10 | 2.1 (4) | C17—C18—C19—N3 | 1.0 (4) |
Cg is the centroid of the pyridine ring, N3/C15-C19. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3i | 0.88 (2) | 1.92 (2) | 2.796 (3) | 179 (3) |
N1—H1A···O1ii | 0.86 | 2.13 | 2.982 (3) | 170 |
C7—H7A···Cgiii | 0.97 | 2.93 | 3.687 (3) | 136 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y+1/2, −z−1/2; (iii) −x, −y+2, −z. |
Bonds | X-ray | B3LYP/6-311G(d,p). |
N1—C7 | 1.439 (3) | 1.438 |
N1—C8 | 1.368 (3) | 1.368 |
N2—C11 | 1.409 (3) | 1.409 |
N2—C14 | 1.256 (3) | 1.256 |
C1—O1 | 1.388 (3) | 1.388 |
C4—C7 | 1.512 (3) | 1.512 |
C14—C15 | 1.460 (3) | 1.460 |
N1—C7—C4 | 112.3 (2) | 112.28 |
C8—N1—C7 | 123.4 (2) | 123.45 |
C11—N2—C14 | 121.5 (2) | 121.54 |
N2—C14—C15 | 122.2 (3) | 122.23 |
C4—C7—N1—C8 | -166.3 (2) | -166.34 |
C15—C14—N2—C11 | 176.4 (2) | 176.39 |
Acknowledgements
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156–1161. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. CrossRef CAS Web of Science Google Scholar
Genady, A. R., Fayed, T. A. & Gabel, D. (2008). J. Organomet. Chem. 693, 1065–1072. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530. Web of Science CSD CrossRef CAS Google Scholar
Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248. Web of Science CSD CrossRef CAS Google Scholar
Knödler, A., Hübler, K., Sixt, T. & Kaim, W. (2000). Inorg. Chem. Commun. 3, 182–184. Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637. Web of Science CSD CrossRef CAS Google Scholar
Marjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451–1455. Web of Science CSD CrossRef CAS Google Scholar
Nitschke, J. R., Hutin, M. & Bernardinelli, G. (2004). Angew. Chem. Int. Ed. 116, 6892–6895. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, K., Wedeking, K., Zuo, W., Zhang, D. & Sun, W.-H. (2008). J. Organomet. Chem. 693, 1073–1080. CrossRef CAS Google Scholar
Wu, C.-M. & Liang, B. (2008). Acta Cryst. C64, o142–o144. CrossRef IUCr Journals Google Scholar
Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120–1125. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.