research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2-(4-hy­dr­oxy­benzo­yl)hydrazin-1-yl­­idene]meth­yl}pyridin-1-ium nitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Atatürk University, Erzurum, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 February 2018; accepted 5 February 2018; online 7 February 2018)

The asymmetric unit of the title aroyl hydrazone Schiff base salt, C13H12N3O2+·N O3, consists of one mol­ecular cation in the keto tautomeric form, adopting an E configuration with respect to the azomethine bond, and one nitrate anion. The two units are linked via an N—H⋯O hydrogen bond. The mol­ecule overall is non-planar, with the pyridinium and benzene rings being inclined to each other by 4.21 (4)°. In the crystal, cations and anions are linked via inter­molecular O—H⋯O and bifurcated N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (101). These networks are further linked by C—H⋯O hydrogen bonds, forming slabs parallel to (101). The slabs are linked by offset ππ inter­actions, involving the benzene and pyridinium rings of adjacent slabs [inter­centroid distance = 3.610 (2) Å], forming a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (45.1%), H⋯H (19.3%), H⋯C/C⋯H (14.5%), H⋯N/N⋯H (7.9%) and C⋯C (6.0%) inter­actions.

1. Chemical context

Hydrazone Schiff bases and their coordination compounds have gained importance recently because of their application as models in biological, analytical and anti­microbial systems, and also due to their anti­cancer, anti­bacterial as well as anti­fungal activities (Ruben et al., 2003[Ruben, M., Lehn, J. M. & Vaughan, G. (2003). Chem. Commun. pp. 1338-1339.]). Aroyl hydrazones are a class of versatile ligands, capable of generating various mol­ecular architectures and coordination polyhedra (Ruben et al., 2003[Ruben, M., Lehn, J. M. & Vaughan, G. (2003). Chem. Commun. pp. 1338-1339.]; Uppadine Gisselbrecht & Lehn, 2004[Uppadine, L. H., Gisselbrecht, J. P. & Lehn, J. M. (2004). Chem. Commun. pp. 718-719.]; Uppadine & Lehn, 2004[Uppadine, L. H. & Lehn, J. M. (2004). Angew. Chem. Int. Ed. 43, 240-243.]; Wood et al., 2004[Wood, A., Aris, W. & Brook, D. J. R. (2004). Inorg. Chem. 43, 8355-8360.]). Aroyl hydrazones are obtainable through hydrazide-ketone/aldehyde condensation, and they exhibit flexible metal-chelating capabilities through their keto–enol tautomerism and possible reversible deprotonation. The empty N,O-donor chelating pockets of aroyl hydrazones that are incorporated into frameworks can potentially make them amenable to post-synthetic metalation (Evans et al., 2014[Evans, J. D., Sumby, C. J. & Doonan, C. J. (2014). Chem. Soc. Rev. 43, 5933-5951.]). The structure determination of the title aroyl hydrazone Schiff base salt was undertaken in order to compare the results obtained with those reported previously. In this context, we synthesized the title compound, (E)-4-{[2-(4-hy­droxy­benzo­yl)hydrazin-1-yl­idene]meth­yl}pyridin-1-ium nitrate, and report herein on its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title aroyl hydrazone Schiff base salt contains one mol­ecular cation and one nitrate anion, which are linked via an N+—H ⋯ O hydrogen bond (Fig. 1[link], Table 1[link]). The organic cation is in the keto tautomeric form, which can be verified from the C=O and C—NH bond lengths of the amide unit: O2=C7 is 1.228 (2) Å and N1—C7 is 1.359 (2) Å. Amide unit bond lengths for aroyl hydrazones are in the ranges 1.218–1.292 Å for C=O bonds and 1.313–1.365 Å for C–N bonds in the keto tautomeric form, and 1.284–1.314 Å for C=O bonds and 1.291–1.331 Å for C—N bonds in the enol tautomeric form (Hosseini-Monfared et al., 2013[Hosseini-Monfared, H., Falakian, H., Bikas, R. & Mayer, P. (2013). Inorg. Chim. Acta, 394, 526-534.]). The three bond angles around atom C7, viz. O2—C7—N1 [121.65 (15)°], O2—C7—C5 [122.00 (15)°] and N1—C7—C5 [116.35 (14)°], differ from 120°, probably in order to decrease the repulsion between the lone pairs present on atoms N1 and O2.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.96 (2) 1.79 (2) 2.742 (2) 170 (2)
N1—H1B⋯O4iii 0.84 (2) 2.25 (2) 3.057 (2) 161 (2)
N1—H1B⋯O5iii 0.84 (2) 2.47 (2) 3.174 (3) 141 (2)
N3—H3A⋯O4 0.97 (2) 1.80 (2) 2.763 (2) 178 (2)
C1—H1⋯O2i 0.93 2.58 3.258 (2) 130
C8—H8⋯O4iii 0.93 2.42 3.243 (2) 148
C10—H10⋯O1ii 0.93 2.48 3.375 (2) 162
C11—H11⋯O5iv 0.93 2.42 3.104 (3) 130
C12—H12⋯O3v 0.93 2.34 3.191 (2) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title aroyl hydrazone Schiff base salt, with the atom-numbering scheme. The N—HPym⋯ON (Pym = pyridinium and N = nitrate) hydrogen bond (see Table 1[link]) is shown as a dashed line. Displacement ellipsoids are drawn at the 50% probability level.

The configuration at the N2=C8 [1.276 (2) Å] bond is E, where torsion angle N1—N2—C8—C9 is −177.58 (14)°. On the other hand, torsion angles N2—N1—C7—C5 and C8—N2—N1—C7 are −179.66 (13) and −178.09 (15)°, respectively, and the benzene (C1–C6) and pyridinium (N3/C9–C13) rings are oriented at a dihedral angle of 4.21 (4)°, probably due to the steric inter­actions between the hydrogen atoms (Table 2[link]). Thus, the mol­ecule is non-planar as a whole. The central C9—C8=N2—N1—C7=O2 moiety of the mol­ecular cation adopts an extended double-bonded conformation and has a maximum deviation of 0.0331 (18) Å for atom C8, from the mean plane.

Table 2
Selected interatomic distances (Å)

O1⋯H10i 2.48 C7⋯H1Aii 2.72 (2)
O2⋯H1ii 2.58 H1⋯H1A 2.28
O2⋯H1Aii 1.79 (2) H1B⋯O4iii 2.25 (2)
O2⋯H4 2.52 H1B⋯O5iii 2.47 (2)
O3⋯H3A 2.48 (2) H1B⋯N4iii 2.73 (2)
O3⋯H12 2.59 H6⋯O4iii 2.71
O4⋯H3A 1.80 (2) H6⋯O5iii 2.75
N1⋯H6 2.59 H6⋯N4iii 2.81
N2⋯H1Aii 2.56 (2) H6⋯H1B 2.11
N2⋯H10 2.62 H8⋯O4iii 2.42
N4⋯H3A 2.47 (2) H8⋯H1B 2.12
C6⋯H1B 2.61 (2) H8⋯H13 2.46
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

3. Supra­molecular features

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, O—HHydr⋯OHydrz, N—HPym⋯ON and bifurcated N—HHydrz⋯ON (Hydr = hy­droxy, Hydrz = hydrazide, Pym = pyridinium and N = nitrate) hydrogen bonds (Table 1[link]) link the cations and anions into a two-dimensional network parallel to (101), as illustrated in Fig. 2[link]. A series of C—H⋯O hydrogen bonds [C—HBnz⋯OHydrz, C—HPym⋯ON, C—HPym⋯OHydr and C—HMeth⋯ON (Bnz = benzene and Meth = methine)] link adjacent layers, forming slabs parallel to (101); see Fig. 3[link]. The slabs are linked by offset ππ inter­actions, forming a three-dimensional structure. The offset ππ inter­action between the benzene (Cg1 is the centroid of atoms C1–C6) and pyridinium (Cg2 is the centroid of atoms N3/C9–C13) rings of adjacent slabs has an inter­centroid Cg1⋯Cg2(−x + 2, −y + 1, −z + 1) distance of 3.610 (2) Å, while α is 4.2 (1)°, and the inter­planar distances are 3.263 (7) and 3.366 (7) Å, with an offset distance of 1.303 Å.

[Figure 2]
Figure 2
Part of the crystal structure, viewed normal to (101). The O—H⋯O and N—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines, and C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and only H atoms involved in these inter­actions have been included.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title aroyl hydrazone Schiff base salt, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A 153, 625-636.]). The bright-red spots appearing near N—O4, N—O5 and hydrogen atoms H1A, H1B and H3A indicate their role as the respective donors and acceptors in the dominant O—H⋯O and N—H⋯O hydrogen bonds (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO -- A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot and those delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, C⋯N/N⋯C, C⋯O/O⋯C, O⋯O, N⋯N and N⋯O/O⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link] ak, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯O/O⋯H contributing 45.1% to the overall crystal packing, which is reflected in Fig. 6[link]b as pair of spikes with the tips at de + di ∼1.75 Å. The short H⋯O/O⋯H contacts are masked by strong O—H⋯O hydrogen bonding in this plot. In the fingerprint plot delineated into H⋯H contacts (Fig. 6[link]c), the 19.3% contribution to the overall crystal packing is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The single spike in the centre at de = di = 1.2 Å in Fig. 5[link]c is due to the short inter­atomic H ⋯ H contacts (Table 2[link]). In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with 14.5% contribution to the HS, Fig. 6[link]d, and the pair of thin edges at de + di ∼1.93 Å result from short inter­atomic H⋯C/C⋯H contacts (Table 2[link]). The H⋯N/N⋯H contacts in the structure with 7.9% contribution to the HS has a symmetrical distribution of points, Fig. 5[link]e, with the tips at de + di ∼1.52 Å arising from the short inter­atomic H⋯N/N⋯H contacts listed in Table 2[link]. The C⋯C contacts assigned to short inter­atomic C⋯C contacts with 6.0% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 6[link]f, with the vertex at de = di ∼1.65 Å. Finally, the C⋯N/N⋯C (Fig. 6[link]g) and C⋯O/O⋯C (Fig. 6[link]h) contacts in the structure with 3.4% and 1.9% contributions to the HS have nearly symmetrical distributions of points, with the scattered points of low densities.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title aroyl hydrazone Schiff base salt plotted over dnorm in the range −0.6521 to 1.7041 a.u.
[Figure 5]
Figure 5
Hirshfeld surface of the title aroyl hydrazone Schiff base salt plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title aroyl hydrazone Schiff base salt, showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) C⋯C, (g) C⋯N/N⋯C, (h) C⋯O/O⋯C, (i) O⋯O, (j) N⋯N and (k) N⋯O/O⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C and C⋯N/N⋯C inter­actions in Fig. 7[link]af, respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) C⋯C and (f) C⋯N/N⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of Cd(NO3)2·4H2O (0.15 g, 0.5 mmol) and 4-[(4-hy­droxybenzo­yl)hydrazonemeth­yl]pyridin (0.12 g, 0.5 mmol) in ethanol by using a branched-tube method (Shaabani et al., 2017[Shaabani, B., Khandar, A. A., Ramazani, N., Fleck, M., Mobaiyen, M. & Cunha-Silva, L. (2017). J. Coord. Chem. 70, 696-708.]). After two months, the formation of yellow-coloured crystals was observed. They were filtered off and washed several times with hot ethanol for purification (yield: 0.20 g, 74%, m.p. 613 K). Analysis calculated for C13H12N4O5: C, 51.32; H, 3.98; N, 17.41. Found: C, 51.08; H, 4.14; N, 17.09. Characteristic IR bands (cm−1): 3526 m, ν(OH); 1375 m, ν(N—O); 1644 s, ν(C=N); 1501 s, ν(N=O); 1105 s, ν(NN).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of the OH and NH groups were located in a difference-Fourier map and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 2.48 Å from atom H1.

Table 3
Experimental details

Crystal data
Chemical formula C13H12N3O2+·NO3
Mr 304.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.335 (3), 13.929 (5), 12.184 (4)
β (°) 95.902 (10)
V3) 1407.1 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.945, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 44410, 3499, 2508
Rint 0.052
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.04
No. of reflections 3499
No. of parameters 211
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.75, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

(E)-4-{[2-(4-Hydroxybenzoyl)hydrazin-1-ylidene]methyl}pyridin-1-ium nitrate top
Crystal data top
C13H12N3O2+·NO3F(000) = 632
Mr = 304.27Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9700 reflections
a = 8.335 (3) Åθ = 3.1–27.5°
b = 13.929 (5) ŵ = 0.11 mm1
c = 12.184 (4) ÅT = 296 K
β = 95.902 (10)°Block, colourless
V = 1407.1 (8) Å30.15 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1110
Tmin = 0.945, Tmax = 0.976k = 1818
44410 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.4149P]
where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.15687 (19)0.08055 (9)0.24127 (12)0.0576 (4)
H1A1.207 (3)0.1109 (18)0.183 (2)0.080 (8)*
O20.82328 (18)0.32288 (9)0.59284 (11)0.0549 (4)
O30.3316 (2)0.99298 (10)0.57667 (11)0.0619 (4)
O40.37385 (19)0.95570 (10)0.74819 (11)0.0595 (4)
O50.22205 (19)1.07556 (11)0.69841 (15)0.0730 (5)
N10.81569 (17)0.43407 (10)0.45738 (12)0.0392 (3)
H1B0.830 (3)0.4512 (15)0.3928 (19)0.055 (6)*
N20.74051 (16)0.49881 (10)0.51883 (11)0.0368 (3)
N30.50122 (17)0.80177 (10)0.64341 (12)0.0408 (3)
H3A0.456 (3)0.8548 (17)0.6811 (19)0.069 (7)*
N40.30832 (18)1.00915 (10)0.67253 (13)0.0438 (4)
C11.08209 (19)0.24460 (12)0.27240 (13)0.0367 (4)
H11.12860.26550.21040.044*
C21.0865 (2)0.14803 (12)0.30031 (14)0.0386 (4)
C31.0173 (2)0.11743 (13)0.39341 (15)0.0452 (4)
H31.02080.05280.41290.054*
C40.9439 (2)0.18265 (12)0.45671 (14)0.0410 (4)
H40.89800.16160.51890.049*
C50.93716 (18)0.27990 (11)0.42900 (13)0.0334 (3)
C61.00883 (18)0.30970 (12)0.33645 (13)0.0353 (4)
H61.00730.37440.31760.042*
C70.85500 (18)0.34613 (11)0.50025 (13)0.0352 (3)
C80.7030 (2)0.57893 (12)0.47233 (14)0.0417 (4)
H80.72360.58930.39970.050*
C90.62801 (18)0.65447 (11)0.53250 (13)0.0347 (3)
C100.56331 (19)0.63741 (12)0.63168 (14)0.0377 (4)
H100.56290.57580.66100.045*
C110.5004 (2)0.71264 (12)0.68521 (15)0.0402 (4)
H110.45650.70190.75130.048*
C120.5620 (2)0.82024 (12)0.54903 (15)0.0441 (4)
H120.56130.88270.52210.053*
C130.6257 (2)0.74791 (12)0.49147 (14)0.0401 (4)
H130.66730.76100.42510.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0805 (10)0.0412 (7)0.0580 (9)0.0054 (6)0.0395 (8)0.0132 (6)
O20.0797 (10)0.0457 (7)0.0451 (7)0.0120 (6)0.0345 (7)0.0058 (6)
O30.0884 (11)0.0562 (9)0.0452 (8)0.0093 (7)0.0264 (7)0.0067 (6)
O40.0837 (10)0.0566 (8)0.0401 (7)0.0142 (7)0.0156 (7)0.0006 (6)
O50.0723 (10)0.0593 (9)0.0875 (12)0.0217 (8)0.0090 (9)0.0260 (8)
N10.0496 (8)0.0387 (8)0.0316 (7)0.0066 (6)0.0145 (6)0.0011 (6)
N20.0385 (7)0.0374 (7)0.0360 (7)0.0026 (5)0.0107 (6)0.0047 (6)
N30.0446 (8)0.0330 (7)0.0466 (8)0.0026 (6)0.0132 (6)0.0013 (6)
N40.0502 (8)0.0359 (7)0.0473 (9)0.0017 (6)0.0142 (7)0.0056 (6)
C10.0379 (8)0.0441 (9)0.0296 (8)0.0016 (7)0.0103 (6)0.0001 (7)
C20.0416 (8)0.0398 (9)0.0364 (8)0.0050 (7)0.0134 (7)0.0096 (7)
C30.0586 (11)0.0329 (9)0.0479 (10)0.0051 (7)0.0236 (8)0.0023 (7)
C40.0500 (9)0.0389 (9)0.0373 (9)0.0059 (7)0.0198 (7)0.0004 (7)
C50.0327 (7)0.0369 (8)0.0315 (8)0.0005 (6)0.0080 (6)0.0027 (6)
C60.0355 (8)0.0375 (8)0.0340 (8)0.0018 (6)0.0085 (6)0.0034 (6)
C70.0359 (8)0.0368 (8)0.0343 (8)0.0011 (6)0.0104 (6)0.0018 (6)
C80.0496 (9)0.0437 (9)0.0333 (8)0.0058 (8)0.0110 (7)0.0005 (7)
C90.0346 (8)0.0363 (8)0.0334 (8)0.0004 (6)0.0046 (6)0.0009 (6)
C100.0421 (8)0.0314 (8)0.0412 (9)0.0028 (6)0.0113 (7)0.0022 (7)
C110.0434 (9)0.0373 (9)0.0422 (9)0.0030 (7)0.0154 (7)0.0006 (7)
C120.0522 (10)0.0350 (9)0.0464 (10)0.0042 (7)0.0106 (8)0.0088 (7)
C130.0449 (9)0.0425 (9)0.0342 (8)0.0030 (7)0.0096 (7)0.0070 (7)
Geometric parameters (Å, º) top
O1—C21.354 (2)C4—C31.376 (2)
O1—H1A0.96 (3)C4—H40.9300
O2—C71.228 (2)C5—C41.396 (2)
O3—N41.224 (2)C5—C61.393 (2)
O4—N41.264 (2)C5—C71.482 (2)
N1—C71.359 (2)C6—C11.379 (2)
N1—H1B0.84 (2)C6—H60.9300
N2—N11.3649 (19)C8—H80.9300
N2—C81.276 (2)C9—C81.459 (2)
N3—C111.342 (2)C9—C101.393 (2)
N3—C121.329 (2)C9—C131.394 (2)
N3—H3A0.97 (2)C10—C111.367 (2)
N4—O51.2325 (19)C10—H100.9300
C1—H10.9300C11—H110.9300
C2—C11.387 (2)C12—H120.9300
C2—C31.391 (2)C13—C121.366 (2)
C3—H30.9300C13—H130.9300
O1···H10i2.48C7···H1Aii2.72 (2)
O2···H1ii2.58H1···H1A2.28
O2···H1Aii1.79 (2)H1B···O4iii2.25 (2)
O2···H42.52H1B···O5iii2.47 (2)
O3···H3A2.48 (2)H1B···N4iii2.73 (2)
O3···H122.59H6···O4iii2.71
O4···H3A1.80 (2)H6···O5iii2.75
N1···H62.59H6···N4iii2.81
N2···H1Aii2.56 (2)H6···H1B2.11
N2···H102.62H8···O4iii2.42
N4···H3A2.47 (2)H8···H1B2.12
C6···H1B2.61 (2)H8···H132.46
C2—O1—H1A109.6 (15)C6—C5—C7123.46 (15)
N2—N1—H1B116.3 (15)C1—C6—C5120.92 (15)
C7—N1—N2119.41 (14)C1—C6—H6119.5
C7—N1—H1B124.2 (15)C5—C6—H6119.5
C8—N2—N1116.08 (14)O2—C7—N1121.65 (15)
C11—N3—H3A120.6 (14)O2—C7—C5122.00 (15)
C12—N3—C11121.66 (15)N1—C7—C5116.35 (14)
C12—N3—H3A117.7 (14)N2—C8—C9120.38 (15)
O3—N4—O4119.23 (15)N2—C8—H8119.8
O3—N4—O5122.40 (17)C9—C8—H8119.8
O5—N4—O4118.37 (16)C10—C9—C8122.46 (15)
C2—C1—H1120.0C10—C9—C13118.54 (14)
C6—C1—C2120.06 (14)C13—C9—C8118.96 (15)
C6—C1—H1120.0C9—C10—H10120.5
O1—C2—C1123.03 (15)C11—C10—C9119.00 (15)
O1—C2—C3117.33 (16)C11—C10—H10120.5
C1—C2—C3119.64 (15)N3—C11—C10120.71 (16)
C2—C3—H3120.0N3—C11—H11119.6
C4—C3—C2120.02 (16)C10—C11—H11119.6
C4—C3—H3120.0N3—C12—C13120.30 (16)
C3—C4—C5120.96 (15)N3—C12—H12119.9
C3—C4—H4119.5C13—C12—H12119.9
C5—C4—H4119.5C9—C13—H13120.1
C4—C5—C7118.16 (14)C12—C13—C9119.79 (15)
C6—C5—C4118.38 (14)C12—C13—H13120.1
N2—N1—C7—O20.7 (2)C7—C5—C6—C1179.26 (15)
N2—N1—C7—C5179.66 (13)C4—C5—C7—O215.3 (2)
C8—N2—N1—C7178.09 (15)C4—C5—C7—N1164.34 (15)
N1—N2—C8—C9177.58 (14)C6—C5—C7—O2164.23 (16)
C12—N3—C11—C100.3 (3)C6—C5—C7—N116.1 (2)
C11—N3—C12—C130.1 (3)C5—C6—C1—C20.6 (2)
O1—C2—C1—C6179.76 (15)C10—C9—C8—N213.9 (3)
C3—C2—C1—C60.3 (3)C13—C9—C8—N2163.87 (16)
O1—C2—C3—C4179.94 (17)C8—C9—C10—C11177.61 (16)
C1—C2—C3—C40.6 (3)C13—C9—C10—C110.1 (2)
C5—C4—C3—C20.0 (3)C8—C9—C13—C12177.27 (16)
C6—C5—C4—C30.9 (3)C10—C9—C13—C120.6 (2)
C7—C5—C4—C3179.50 (16)C9—C10—C11—N30.3 (3)
C4—C5—C6—C11.2 (2)C9—C13—C12—N30.6 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.96 (2)1.79 (2)2.742 (2)170 (2)
N1—H1B···O4iii0.84 (2)2.25 (2)3.057 (2)161 (2)
N1—H1B···O5iii0.84 (2)2.47 (2)3.174 (3)141 (2)
N3—H3A···O40.97 (2)1.80 (2)2.763 (2)178 (2)
C1—H1···O2i0.932.583.258 (2)130
C8—H8···O4iii0.932.423.243 (2)148
C10—H10···O1ii0.932.483.375 (2)162
C11—H11···O5iv0.932.423.104 (3)130
C12—H12···O3v0.932.343.191 (2)152
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for use of the Bruker D8 QUEST diffractometer.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationEvans, J. D., Sumby, C. J. & Doonan, C. J. (2014). Chem. Soc. Rev. 43, 5933–5951.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHosseini-Monfared, H., Falakian, H., Bikas, R. & Mayer, P. (2013). Inorg. Chim. Acta, 394, 526–534.  CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO -- A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRuben, M., Lehn, J. M. & Vaughan, G. (2003). Chem. Commun. pp. 1338–1339.  Web of Science CSD CrossRef Google Scholar
First citationShaabani, B., Khandar, A. A., Ramazani, N., Fleck, M., Mobaiyen, M. & Cunha-Silva, L. (2017). J. Coord. Chem. 70, 696–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationUppadine, L. H., Gisselbrecht, J. P. & Lehn, J. M. (2004). Chem. Commun. pp. 718–719.  Web of Science CrossRef Google Scholar
First citationUppadine, L. H. & Lehn, J. M. (2004). Angew. Chem. Int. Ed. 43, 240–243.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWood, A., Aris, W. & Brook, D. J. R. (2004). Inorg. Chem. 43, 8355–8360.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds