research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two CuII complexes of 3,4,5-tri­methyl-1H-pyrazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Washington College, 300 Washington Ave., Chestertown, MD 21620, USA, and bCBMSE, Code 6910, U. S. Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375, USA
*Correspondence e-mail: ian.giles@nrl.navy.mil

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 December 2017; accepted 8 February 2018; online 16 February 2018)

The crystal structure of complexes of 3,4,5-tri­methyl-1H-pyrazole with CuCl2·2H2O and Cu(NO3)2·2.5H2O are presented, namely di-μ-chlorido-bis[chloridobis(3,4,5-trimethyl-1H-pyrazole-κN2)copper(II)], [Cu2Cl4(C6H10N2)4] (1) and aquatetrakis(3,4,5-trimethyl-1H-pyrazole-κN2)copper(II) dinitrate, [Cu(C6H10N2)4(H2O)](NO3)2 (2), and compared to the previously determined structures for 3-methyl-1H-pyrazole and 3,5-di­methyl-1H-pyrazole. CuCl2 forms a 2:1 ligand-to-metal chloride-bridged complex with 3,4,5-tri­methyl-1H-pyrazole, with a square-pyramidal coordination geometry about each copper(II) center. Similarly to the previously obtained 3,5-di­methyl-1H-pyrazole complex with CuCl2, the pyrazole ligands are cis to each other, with two chloride ions bridging the two copper(II) centers, and a terminal chloride ion occupying the axial position. Cu(NO3)2 forms a 4:1 ligand-to-metal complex with 3,4,5-tri­methyl-1H-pyrazole that is also arranged in a square-pyramidal geometry about CuII. The newly obtained copper(II) complex has the same coordination geometry as the 3,5-di­methyl-1H-pyrazole complex, including an axial water mol­ecule, two nitrate ions hydrogen-bonded to the water mol­ecule, and four pyrazole ligands in the equatorial plane, suggesting that similar steric forces are at play in the formation of these complexes.

1. Chemical context

Pyrazoles are a useful class of mol­ecules because they coordinate with metal ions, form conjugated π-systems, and can be tuned electronically and sterically through a number of possible substituent groups. It is therefore important to gain a better understanding of how changes in reaction conditions, including solvent, substituents, and counter-ions, affect the structures of compounds incorporating pyrazole and its deriv­atives. Previous work using mono- and dimethyl pyrazole ligands demonstrated the effect of the counter-ion on the final structure and electronic properties of their respective Cu­II complexes from water (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]). Absent in this analysis were complexes incorporating 1-H-3,4,5-tri­methyl­pyrazole. Work presented herein adds structural determinations of complexes of 1-H-3,4,5-tri­methyl­pyrazole under the same reaction conditions to complete the series. Complexes incorporating this final ligand are important to obtain a complete understanding of how different pyrazole substituents and their locations affect the coordination environment about the central CuII atom. CuCl2 and Cu(NO3)2 were used to assess counter-ion effects on the crystal structure in a manner consistent with the previous work.

[Scheme 1]

2. Structural commentary

In the CuCl2 complex with 1-H-3,4,5-tri­methyl­pyrazole (1, Fig. 1[link]), there are two tri­methyl­pyrazole ligands and three chloride ions bound to each CuII center. Two of the chloride ions bridge asymmetrically to a second copper(II), which is related to the first CuII by an inversion center. The overall geometry around each CuII center is square pyramidal, with the axial position occupied by the elongated bridging chloride contact, and the equatorial positions occupied by the two tri­methyl­pyrazole ligands in a cis configuration, one terminal chloride ion, and the shorter bridging chloride contact. In 1, the tri­methyl­pyrazole ligands are tilted off-perpendicular from the basal plane of the square-pyramidal CuII coordination environment. The dihedral angles of the pyrazole ligands to the basal plane and to each other are as follows: between the mean N9/N10/C11–C13 plane and the mean Cl2/Cl1/N2/N10 plane, 53.9 (2)°; between the mean N2/N1/C3–C5 plane and the mean Cl2/Cl1/N2/N10 plane, 47.1 (2)°; between the mean N9/N10/C11–C13 and the mean N2/N1/C3–C5 plane, 51.5 (2)°. The tri­methyl­pyrazole ligand is not deprotonated in the complex as there are two chloride ions per CuII ion. Additionally, the bond distances within the tri­methyl­pyrazole ring are more characteristic of a non-aromatic, conjugated ring [C3—C4, C11—C12, 1.403 (6) and 1.410 (6) Å; C4—C5, C12—C13, 1.383 (6)–1.388 (6) Å; C13—N9, C11—N10, 1.341 (5) Å, C3—N2, C5—N1, 1.335 (5) and 1.339 (5) Å; N9—N10, N1—N2, 1.353 (5) and 1.356 (5) Å], rather than the heteroaromatic species obtained upon deprotonation (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The structure produced is similar to the previously reported 1-H-3,5-di­methyl­pyrazole CuII complex. These structures differ from the 1-H-3-methyl­pyrazole-CuII complex primarily through the positioning of the pyrazole ligands, which are oriented trans to one another in the mono­methyl­pyrazole complex rather than cis as in the di- and tri­methyl­pyrazole complexes (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]).

[Figure 1]
Figure 1
Mol­ecular structure of 1, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The complex resides on an inversion center, with half of the mol­ecule generated by the symmetry operator −x, 1 − y, 1 − z. Only one set of disordered methyl protons are shown. Hydrogen-atom labels are omitted for clarity.

In 2 (Fig. 2[link]), the complex produced by mixing Cu(NO3)2 and 1-H-3,4,5-tri­methyl­pyrazole, the structure consists of a single CuII center exhibiting a square-pyramidal coordination geometry, oriented such that the pyrazole ligands occupy the four planar positions around CuII, with a water mol­ecule occupying the axial position. The pyrazole ligands are oriented so that the non-coordinated pyrazole nitro­gen atoms are cis across the N—Cu—N bonds on opposite sides of the structure, and are trans across the N—Cu—N bonds on adjacent pyrazoles. Additionally, in 2 as in 1, the tri­methyl­pyrazole ligands are tilted off-perpendicular from the basal plane of the square-pyramidal CuII coordination environment. The dihedral angles of the pyrazole ligands to the basal plane and to each other are as follows: between the mean N9/N10/C11–C13 and the mean N2/N10/N10*/N2* plane, 49.2 (2)°; between the mean N2/N1/C3–C5 plane and the mean N2/N10/N10*/N2* plane, 61.3 (2)°; between the mean N9/N10/C11—C13 and the mean N2/N1/C3–C5 plane, 78.7 (2)° (N10* and N2* are symmetry-equivalent atoms generated by the symmetry operator [{1\over 2}] − x, y, 1 − z). The nitrate ions are not directly coordinated to CuII. This structure is similar to that obtained from 1-H-3,5-di­methyl­pyrazole and Cu(NO3)2 in water, which reinforces the conclusion that steric effects likely play a part in determining how the ligands orient themselves in this complex (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]). As in 1, the bond distances within the pyrazole ring are indicative of discrete single and double bonds [C3—C4, C11—C12, 1.401 (4)–1.405 (4) Å; C4—C5, C12—C13, 1.379 (4) and 1.373 (4) Å, respectively; C13—N9, 1.341 (3) Å; C11—N10, 1.336 (3) Å, C3—N2, 1.332 (3) Å; C5—N1, 1.349 (4) Å; N9—N10, 1.369 (3) Å; N1—N2, 1.358 (3) Å] providing further evidence for a neutral tri­methyl­pyrazole ligand (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Figure 2]
Figure 2
Mol­ecular structure of 2, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one set of disordered methyl protons are shown. The Cu—OH2 bond resides on a twofold rotation axis, with half of the mol­ecule generated by the symmetry operator [{1\over 2}] − x, y, 1 − z. Hydrogen-atom labels are omitted for clarity.

3. Supra­molecular features

In 1, there is limited intra­molecular hydrogen bonding, specifically between the terminal chloride ions (Cl2) and very weak intermolecular interactions involving the same Cl2 atoms and N—H groups of adjacent complexes (Table 1[link]). The distances between translation-related Cu atoms of adjacent complexes is 8.89 (2) Å, which is greater than the 8.68 (2) Å for the comparable Cu⋯Cu distance in the di­methyl­pyrazole complex, suggesting additional steric crowding due to the third methyl group. The packing (Fig. 3[link]) is also different in that the tri­methyl­pyrazole complexes are oriented in the same direction within the crystal, whereas the di­methyl­pyrazole complexes alternate their orientation. Both the di- and tri­methyl­pyrazole complexes pack in space group P[\overline{1}].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14E⋯N2 0.98 2.49 3.199 (5) 129
C14—H14E⋯N1 0.98 2.54 3.401 (6) 147
C14—H14E⋯N2 0.98 2.49 3.199 (5) 129
C14—H14E⋯N1 0.98 2.54 3.401 (6) 147
C16—H16F⋯Cl2i 0.98 2.85 3.776 (5) 158
C6—H6E⋯N9 0.98 2.67 3.521 (6) 146
C6—H6E⋯N10 0.98 2.55 3.240 (6) 128
C6—H6B⋯Cl1ii 0.98 2.86 3.692 (5) 144
N1—H1⋯Cl2 0.75 (4) 2.66 (4) 3.102 (4) 120 (3)
N1—H1⋯Cl2iii 0.75 (4) 2.54 (4) 3.214 (4) 151 (3)
N9—H9⋯Cl1ii 0.86 (6) 2.94 (6) 3.506 (4) 125 (5)
N9—H9⋯Cl2ii 0.86 (6) 2.37 (6) 3.188 (4) 159 (5)
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x-1, -y+1, -z+1.
[Figure 3]
Figure 3
Packing of 1 viewed down the crystallographic b-axis direction, highlighting the alignment of the copper complexes in the same orientation throughout the crystal. Hydrogen atoms are omitted for clarity.

In 2, there is hydrogen bonding present between the oxygen atoms of the nitrate ions and both the pyrazole N—H and coordinated water O—H atoms on the complex, limiting the positional disorder of the nitrate ions (Table 2[link]). Surprisingly, 2 packs more closely together (Fig. 4[link]) than its congener incorporating 1-H-3,5-di­methyl­pyrazole (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]). The positioning of the pyrazole ligands in the tri­methyl­pyrazole complex is such that the pyrazole–pyrazole overlap occurs between two different portions of the pyrazole ring, allowing for a closer contact [centroid–centroid distance between N9/N10/C11–C13 rings = 4.49 (2) Å, distance between ring planes = 3.35 (2) Å], likely the result of pyrazole ring polarization that leaves one region electron-withdrawn while the other is more electron-rich. In the di­methyl­pyrazole complex, the pyrazole ligands overlap with the same region of the ring, which have similar electronic properties and therefore are more repulsive, increasing the ring–ring overlap distance as measured between the comparable ring centroids [4.98 (2) Å] and the inter­plane distance [3.97 (2) Å]. The result is closer packing for the tri­methyl­pyrazole complex [10.06 (2) Å between CuII centers of complexes in adjacent columns, 7.89 (2) Å between CuII centers of complexes within stacked columns] when compared to the di­methyl­pyrazole [10.15 (2) Å between CuII centers in adjacent complexes, 8.23 (2) Å between CuII centers in stacked complexes]. Both structures crystallize in space group I2/a (reported as C2/c for the di­methyl­pyrazole complex).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6E⋯N9i 0.98 2.50 3.355 (4) 145
C6—H6E⋯N10i 0.98 2.60 3.274 (4) 126
C6—H6F⋯O19ii 0.98 2.56 3.367 (4) 140
C6—H6E⋯N9i 0.98 2.50 3.355 (4) 145
C6—H6E⋯N10i 0.98 2.60 3.274 (4) 126
C14—H14B⋯O17 0.98 2.38 3.193 (3) 140
C16—H16B⋯O20iii 0.98 2.62 3.525 (4) 153
C16—H16B⋯N18iii 0.98 2.66 3.342 (4) 127
C16—H16D⋯O21ii 0.98 2.57 3.430 (4) 146
C8—H8D⋯O20 0.98 2.60 3.411 (4) 140
N1—H1⋯O20 0.75 (3) 2.10 (3) 2.801 (3) 158 (3)
N9—H9⋯N2 0.92 (3) 2.54 (3) 3.039 (3) 114 (2)
N9—H9⋯O21ii 0.92 (3) 2.24 (3) 3.033 (3) 144 (2)
N9—H9⋯O19ii 0.92 (3) 2.52 (3) 3.150 (3) 126 (2)
O17—H17⋯O19 0.79 (3) 1.97 (3) 2.755 (3) 174 (3)
C6—H6F⋯O19ii 0.98 2.56 3.367 (4) 140
C6—H6E⋯N9i 0.98 2.50 3.355 (4) 145
C6—H6E⋯N10i 0.98 2.60 3.274 (4) 126
C6—H6E⋯N9i 0.98 2.50 3.355 (4) 145
C6—H6E⋯N10i 0.98 2.60 3.274 (4) 126
C14—H14B⋯O17 0.98 2.38 3.193 (3) 140
C16—H16B⋯O20iii 0.98 2.62 3.525 (4) 153
C16—H16B⋯N18iii 0.98 2.66 3.342 (4) 127
C16—H16D⋯O21ii 0.98 2.57 3.430 (4) 146
C8—H8D⋯O20 0.98 2.60 3.411 (4) 140
N1—H1⋯O20 0.75 (3) 2.10 (3) 2.801 (3) 158 (3)
N9—H9⋯N2 0.92 (3) 2.54 (3) 3.039 (3) 114 (2)
N9—H9⋯O21ii 0.92 (3) 2.24 (3) 3.033 (3) 144 (2)
N9—H9⋯O19ii 0.92 (3) 2.52 (3) 3.150 (3) 126 (2)
O17—H17⋯O19 0.79 (3) 1.97 (3) 2.755 (3) 174 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+1]; (ii) x, y+1, z; (iii) -x, -y+1, -z+1.
[Figure 4]
Figure 4
Packing of 2 viewed down the crystallographic c-axis direction, highlighting the alternating columns of stacked copper complexes. Hydrogen atoms are omitted for clarity.

4. Database survey

A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Version 5.38, May 2017 update) for structures containing 1-H-3,4,5-tri­methyl­pyrazole yields only 17 entries. The structure with CSD refcode FITQEE is of the neutral ligand only (Infantes et al., 1999[Infantes, L., Foces-Foces, C. & Elguero, J. (1999). Acta Cryst. B55, 441-447.]). In this structure, one tri­methyl­pyrazole mol­ecule resides on a twofold rotation axis, with positional disorder of the pyrazole N—H proton, and a C—C bond length of 1.389 Å, a C—N bond length of 1.341 Å, and a N—N bond length of 1.346 Å. The C—C and C—N bond lengths are equivalent because of the twofold rotation. The other tri­methyl­pyrazole mol­ecule does not reside on a symmetry element, but still contains C—C and C—N bonds that are close in distance (C—C range from 1.385 to 1.388 Å and C—N is 1.336 Å), with an N—N distance of 1.357 Å. These distances are comparable to those seen in 1 and 2, although both 1 and 2 show wider ranges of bond lengths than the free ligand.

The closest match to 1, CSD refcode CENJIO, is a fluoride-bridged CuII complex containing three 1-H-3,4,5,-tri­methyl­pyrazole ligands per copper(II) center (Rietmeijer et al., 1984[Rietmeijer, F. J., De Graaff, R. A. G. & Reedijk, J. (1984). Inorg. Chem. 23, 151-156.]) and tetra­fluoro­borate as counter-ion. In this complex, the pyrazole C—C (1.356–1.396 Å), C—N (1.321–1.334 Å), and N—N (1.355–1.356 Å) bond lengths are as expected in a neutral pyrazole group, and similar to those seen in 1 and 2, athough the bond lengths in CENJIO span a wider range. The closest match to 2, CSD refcode RIDHAP, is a 4: 1 1-H-3,4,5-tri­methyl­pyrazole complex with coordinated perchlorate anions (Ardizzoia et al., 2013[Ardizzoia, G. A., Brenna, S., Durini, S., Therrien, B. & Trentin, I. (2013). Dalton Trans. 42, 12265-12273.]). The pyrazole C—C (1.363–1.411 Å), C—N (1.329–1.356 Å), and N—N (1.352–1.353 Å) bond lengths are within expected lengths for a neutral pyrazole group and are comparable to, but cover a wider range of distances than, those in 1 and 2.

A complex structurally similar to 1 is found in the CSD with refcode NURPEX (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]), incorporating 1-H-3,5-di­methyl­pyrazole. The C—C (1.345–1.417 Å), C—N (1.308–1.365 Å), and N—N (1.338–1.374 Å) bond distances within the pyrazole group are similar to those in 1, but cover a wider range. Complexes structurally similar to 2 can be found in the CSD with refcodes FAYTOO (Pervukhina et al., 1986[Pervukhina, N. V., Podberezskaya, N. V., Lavrenova, L. G., Larionov, S. V. & Bakakin, V. V. (1986). Zh. Strukt. Khim. 27, 110-113.]), MIFYUW (Denisova et al., 2006[Denisova, T. O., Amelchenkova, E. V., Pruss, I. V., Dobrokhotova, Zh. V., Fialkovskii, O. P. & Nifedov, S. E. (2006). Zh. Neorg. Khim. 51, 1098-1142.]), and YUXSEP/YUXSEP01 (Pervukhina et al., 1995[Pervukhina, N. V., Podberezskaya, N. V. & Lavrenova, L. G. (1995). Zh. Strukt. Khim. 36, 157-167.] and Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.], respectively), all incorporating 1-H-3,5-di­methyl­pyrazole as the ligand with perchlorate, tri­fluoro­methyl­sulfonate, and nitrate anions, respectively. In these complexes, the C—C, C—N, and N—N bond lengths are as expected for neutral pyrazole ligands, with C—C bond-length ranges of 1.263–1.520 Å (FAYTOO), 1.366–1.389 Å (MIFYUW), and 1.369–1.400 Å (YUXSEP01); C—N bond length ranges of 1.270–1.433 Å (FAYTOO), 1.329–1.346 Å (MIFYUW), and 1.334–1.350 Å (YUXSEP01); and N—N bond length ranges of 1.322–1.477 Å (FAYTOO), 1.361–1.375 Å (MIFYUW), and 1.360–1.365 Å (YUXSEP01).

5. Synthesis and crystallization

All manipulations were carried out in air at room temperature with reagents as obtained from the manufacturer, unless otherwise stated. 3-Methyl-2,4-penta­nedione was purchased from Alfa–Aesar, while the hydrazine monohydrate was purchased from Sigma–Aldrich. CuCl2·2H­2O was purchased from Aldrich, and Cu(NO3)2·2.5H­2O was purchased from Fisher. Deionized water was used in all reactions.

1-H-3,4,5-tri­methyl­pyrazole: Following literature procedure (Morin et al., 2011[Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024-8034.]), clear, colorless hydrazine monohydrate (5.08 mL, 105 mmol) was slowly dissolved in 20 mL of methanol. Yellow 3-methyl-2,4-penta­nedione (11.9 g, 104 mmol) was dissolved in 50 mL of methanol and cooled in an ice bath. The hydrazine monohydrate in methanol was added dropwise to the stirring 3-methyl-2,4-penta­nedione solution. The reaction was stirred for about 15 minutes, during which time condensation appeared on the inside of the flask. The reaction remained clear yellow. The reaction mixture was then refluxed for about an hour. The methanol was evaporated using rotary evaporation at 333K, resulting in an off-white solid. The product was recrystallized from hot hexa­nes, producing pale-yellow crystals, collected by vacuum filtration (9.47 g, 82.5%). Identity confirmed by 1H NMR and IR spectroscopy.

cis-[{CuCl[3,4,5-(CH3)3(C3H2N2)]2}2(μ-Cl)2] (1): 1-H-3,4,5-tri­methyl­pyrazole (0.16704 g, 1.5163 mmol) was dissolved in 5 mL of H2O, with 1 mL of acetone added to aid dissolution. A light-blue solution of 0.13531 g (0.79369 mmol) CuCl2·2H2O in 5 mL H2O was added via pipette to this solution while stirring. A 1 mL rinse of the CuII vessel with H2O was added to the reaction. There was an immediate change of color to light green as the CuII solution was added, which darkened upon further addition of the CuII solution, reaching dark green. Upon complete addition of CuII, the solution became teal green with a small amount of precipitate. The reaction was stirred overnight, filtered, and the solvent slowly evaporated to yield dark-green crystals.

[Cu{3,4,5-(CH3)3(C3HN2)}4(H2O)](NO3)2 (2) 1-H-3,4,5-tri­methyl­pyrazole (0.16601 g, 1.5070 mmol) was dissolved in 5 mL of H2O, with 1 mL of acetone added to aid dissolution. A light-blue solution of 0.18296 g (0.78655 mmol) Cu(NO3)2·2.5 H2O in 5 mL H2O was added via pipette to this solution while stirring. A 1 mL rinse of the CuII vessel with H2O was added to the reaction. There was an immediate change of color to light green as the CuII solution was added, which darkened upon further addition of the CuII solution, reaching dark green. Upon complete addition of CuII, the solution became teal green with a small amount of precipitate. The reaction was stirred overnight, filtered, and the solvent slowly evaporated to yield dark-blue crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For 1, five reflections (110), (100), (010), (001), and (111) were omitted from the final refinement on account of beamstop truncation. For 2, five reflections (110), (200), (011), ([\overline{2}]02), and (002) were omitted from the final refinement on account of beamstop truncation. N—H H atoms were freely refined. Hydrogen atoms on methyl groups in both 1 and 2 were placed at calculated positions incorporating two-position rotational disorder and refined using a riding model, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Cu2(C24H40Cl4N8)] [Cu(C6H10N2)4(H2O)](NO3)2
Mr 709.52 646.21
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, I2/a
Temperature (K) 150 150
a, b, c (Å) 8.887 (3), 9.460 (3), 11.214 (3) 20.107 (7), 7.8939 (16), 20.472 (4)
α, β, γ (°) 85.408 (4), 69.978 (4), 64.097 (4) 90, 102.651 (2), 90
V3) 794.1 (4) 3170.5 (14)
Z 1 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.70 0.75
Crystal size (mm) 0.07 × 0.05 × 0.03 0.16 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.746 0.654, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7770, 3620, 2472 13530, 3636, 2719
Rint 0.048 0.057
(sin θ/λ)max−1) 0.652 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 0.88 0.045, 0.135, 0.91
No. of reflections 3620 3636
No. of parameters 180 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.87, −0.62 0.78, −0.61
Computer programs: APEX2, SAINT and XPREP (Bruker, 2014[Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and X-SEED (Barbour, 2001).

Di-µ-chlorido-bis[chloridobis(3,4,5-trimethyl-1H-pyrazole-\ κN2)copper(II)] (1) top
Crystal data top
[Cu2Cl4(C6H10N2)4]Z = 1
Mr = 709.52F(000) = 366
Triclinic, P1Dx = 1.484 Mg m3
a = 8.887 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.460 (3) ÅCell parameters from 1932 reflections
c = 11.214 (3) Åθ = 5.8–55.1°
α = 85.408 (4)°µ = 1.70 mm1
β = 69.978 (4)°T = 150 K
γ = 64.097 (4)°Block, green
V = 794.1 (4) Å30.07 × 0.05 × 0.03 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3620 independent reflections
Radiation source: fine focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.6°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.660, Tmax = 0.746k = 1212
7770 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
3620 reflectionsΔρmax = 0.87 e Å3
180 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections omitted from final refinement on account of beamstop truncation: (h k l) 1 1 0; 1 0 0; 0 1 0; 0 0 1; 1 1 1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.10296 (6)0.41056 (5)0.43296 (5)0.01719 (16)
Cl10.07621 (13)0.41784 (11)0.63096 (9)0.0204 (2)
Cl20.38433 (13)0.61388 (11)0.50173 (10)0.0216 (2)
N90.2606 (5)0.1725 (4)0.3862 (3)0.0218 (8)
N20.1329 (4)0.3931 (4)0.2643 (3)0.0197 (7)
N100.0972 (4)0.1950 (4)0.3908 (3)0.0201 (7)
N10.2889 (5)0.3999 (4)0.2661 (4)0.0201 (7)
C110.1218 (5)0.0584 (5)0.3422 (4)0.0186 (8)
C130.3867 (6)0.0275 (5)0.3368 (4)0.0222 (9)
C30.0190 (6)0.3394 (5)0.1455 (4)0.0211 (9)
C50.2781 (6)0.3542 (5)0.1527 (4)0.0224 (9)
C40.1062 (6)0.3149 (5)0.0708 (4)0.0252 (9)
C140.0313 (6)0.0362 (5)0.3344 (4)0.0250 (9)
H14D0.01200.07030.29650.037*0.5
H14F0.11820.05020.42010.037*0.5
H14E0.08800.11410.28140.037*0.5
H14B0.14150.13300.36880.037*0.5
H14A0.01130.01250.24530.037*0.5
H14C0.04150.05140.38400.037*0.5
C120.3018 (6)0.0507 (5)0.3073 (4)0.0213 (9)
C160.5772 (6)0.0243 (5)0.3215 (5)0.0316 (11)
H16B0.64750.13340.28390.047*0.5
H16A0.62210.04420.26560.047*0.5
H16C0.58730.01760.40500.047*0.5
H16D0.59040.06220.35250.047*0.5
H16F0.61580.11540.37070.047*0.5
H16E0.65060.05360.23130.047*0.5
C60.1712 (6)0.3110 (6)0.1056 (4)0.0282 (10)
H6D0.23130.27210.01550.042*0.5
H6F0.17660.40990.11800.042*0.5
H6E0.23050.23250.15710.042*0.5
H6B0.19420.33750.17820.042*0.5
H6A0.24900.19970.07570.042*0.5
H6C0.19510.37710.03660.042*0.5
C80.4341 (6)0.3511 (6)0.1316 (5)0.0308 (10)
H8B0.40000.31450.04280.046*0.5
H8A0.47200.27940.18810.046*0.5
H8C0.53250.45750.15000.046*0.5
H8D0.53630.38640.21110.046*0.5
H8F0.46430.42150.06580.046*0.5
H8E0.40380.24340.10400.046*0.5
C150.3862 (7)0.2166 (5)0.2485 (5)0.0344 (11)
H15B0.29470.24100.23830.052*0.5
H15A0.47620.22680.16500.052*0.5
H15C0.44280.29000.30380.052*0.5
H15D0.51440.26420.23310.052*0.5
H15F0.33290.27850.30650.052*0.5
H15E0.36630.21520.16760.052*0.5
C70.0263 (7)0.2544 (6)0.0659 (4)0.0376 (12)
H7B0.09830.23710.09890.056*0.5
H7A0.03210.15470.07390.056*0.5
H7C0.09260.33180.11460.056*0.5
H7D0.11590.24530.09270.056*0.5
H7F0.01450.32770.11770.056*0.5
H7E0.07500.15060.07710.056*0.5
H10.367 (5)0.427 (4)0.328 (4)0.000 (10)*
H90.270 (7)0.251 (7)0.412 (5)0.047 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0172 (3)0.0155 (2)0.0182 (3)0.00545 (19)0.0067 (2)0.00218 (18)
Cl10.0258 (5)0.0207 (5)0.0177 (5)0.0123 (4)0.0084 (4)0.0022 (4)
Cl20.0163 (5)0.0207 (5)0.0260 (6)0.0066 (4)0.0051 (4)0.0069 (4)
N90.0185 (18)0.0189 (17)0.027 (2)0.0056 (14)0.0095 (16)0.0028 (14)
N20.0162 (17)0.0203 (17)0.0198 (18)0.0043 (14)0.0074 (15)0.0010 (14)
N100.0198 (18)0.0211 (17)0.0218 (19)0.0084 (14)0.0102 (15)0.0005 (14)
N10.0163 (19)0.0218 (18)0.0173 (19)0.0060 (15)0.0027 (16)0.0018 (14)
C110.024 (2)0.0166 (18)0.019 (2)0.0097 (16)0.0095 (17)0.0002 (15)
C130.021 (2)0.020 (2)0.024 (2)0.0070 (17)0.0067 (18)0.0004 (17)
C30.021 (2)0.022 (2)0.018 (2)0.0072 (17)0.0064 (17)0.0006 (16)
C50.024 (2)0.020 (2)0.022 (2)0.0045 (17)0.0115 (18)0.0016 (16)
C40.027 (2)0.026 (2)0.018 (2)0.0064 (18)0.0089 (19)0.0007 (17)
C140.031 (2)0.021 (2)0.032 (2)0.0140 (19)0.018 (2)0.0071 (18)
C120.023 (2)0.0155 (19)0.021 (2)0.0056 (16)0.0060 (18)0.0032 (16)
C160.021 (2)0.027 (2)0.042 (3)0.0059 (19)0.011 (2)0.001 (2)
C60.022 (2)0.035 (2)0.025 (2)0.013 (2)0.0042 (19)0.0009 (19)
C80.031 (3)0.035 (3)0.033 (3)0.014 (2)0.018 (2)0.002 (2)
C150.032 (3)0.026 (2)0.040 (3)0.009 (2)0.010 (2)0.007 (2)
C70.040 (3)0.046 (3)0.020 (2)0.015 (2)0.004 (2)0.007 (2)
Geometric parameters (Å, º) top
Cu1—N101.988 (3)C16—H16B0.9800
Cu1—N22.026 (3)C16—H16A0.9800
Cu1—Cl22.2939 (12)C16—H16C0.9800
Cu1—Cl12.3220 (12)C16—H16D0.9800
Cu1—Cl1i2.6410 (12)C16—H16F0.9800
Cl1—Cu1i2.6410 (12)C16—H16E0.9800
N9—C131.341 (5)C6—H6D0.9800
N9—N101.356 (5)C6—H6F0.9800
N9—H90.86 (6)C6—H6E0.9800
N2—C31.339 (5)C6—H6B0.9800
N2—N11.353 (5)C6—H6A0.9800
N10—C111.341 (5)C6—H6C0.9800
N1—C51.335 (5)C8—H8B0.9800
N1—H10.75 (4)C8—H8A0.9800
C11—C121.403 (6)C8—H8C0.9800
C11—C141.497 (6)C8—H8D0.9800
C13—C121.388 (6)C8—H8F0.9800
C13—C161.492 (6)C8—H8E0.9800
C3—C41.410 (6)C15—H15B0.9800
C3—C61.495 (6)C15—H15A0.9800
C5—C41.383 (6)C15—H15C0.9800
C5—C81.497 (6)C15—H15D0.9800
C4—C71.490 (6)C15—H15F0.9800
C14—H14D0.9800C15—H15E0.9800
C14—H14F0.9800C7—H7B0.9800
C14—H14E0.9800C7—H7A0.9800
C14—H14B0.9800C7—H7C0.9800
C14—H14A0.9800C7—H7D0.9800
C14—H14C0.9800C7—H7F0.9800
C12—C151.503 (6)C7—H7E0.9800
N10—Cu1—N288.98 (14)C3—C6—H6F109.5
N10—Cu1—Cl2161.92 (10)H6D—C6—H6F109.5
N2—Cu1—Cl288.85 (10)C3—C6—H6E109.5
N10—Cu1—Cl189.71 (10)H6D—C6—H6E109.5
N2—Cu1—Cl1176.07 (10)H6F—C6—H6E109.5
Cl2—Cu1—Cl191.26 (4)C3—C6—H6B109.5
N10—Cu1—Cl1i100.25 (10)H6D—C6—H6B141.1
N2—Cu1—Cl1i99.04 (10)H6F—C6—H6B56.3
Cl2—Cu1—Cl1i97.81 (5)H6E—C6—H6B56.3
Cl1—Cu1—Cl1i84.83 (4)C3—C6—H6A109.5
Cu1—Cl1—Cu1i95.17 (4)H6D—C6—H6A56.3
C13—N9—N10112.5 (3)H6F—C6—H6A141.1
C13—N9—H9130 (4)H6E—C6—H6A56.3
N10—N9—H9118 (4)H6B—C6—H6A109.5
C3—N2—N1105.8 (3)C3—C6—H6C109.5
C3—N2—Cu1133.9 (3)H6D—C6—H6C56.3
N1—N2—Cu1118.3 (3)H6F—C6—H6C56.3
C11—N10—N9105.3 (3)H6E—C6—H6C141.1
C11—N10—Cu1134.0 (3)H6B—C6—H6C109.5
N9—N10—Cu1119.6 (2)H6A—C6—H6C109.5
C5—N1—N2112.0 (4)C5—C8—H8B109.5
C5—N1—H1129 (3)C5—C8—H8A109.5
N2—N1—H1119 (3)H8B—C8—H8A109.5
N10—C11—C12110.4 (3)C5—C8—H8C109.5
N10—C11—C14121.0 (4)H8B—C8—H8C109.5
C12—C11—C14128.6 (4)H8A—C8—H8C109.5
N9—C13—C12106.5 (4)C5—C8—H8D109.5
N9—C13—C16122.2 (4)H8B—C8—H8D141.1
C12—C13—C16131.4 (4)H8A—C8—H8D56.3
N2—C3—C4109.8 (4)H8C—C8—H8D56.3
N2—C3—C6122.3 (4)C5—C8—H8F109.5
C4—C3—C6127.8 (4)H8B—C8—H8F56.3
N1—C5—C4107.2 (4)H8A—C8—H8F141.1
N1—C5—C8121.7 (4)H8C—C8—H8F56.3
C4—C5—C8131.2 (4)H8D—C8—H8F109.5
C5—C4—C3105.2 (4)C5—C8—H8E109.5
C5—C4—C7128.0 (4)H8B—C8—H8E56.3
C3—C4—C7126.8 (4)H8A—C8—H8E56.3
C11—C14—H14D109.5H8C—C8—H8E141.1
C11—C14—H14F109.5H8D—C8—H8E109.5
H14D—C14—H14F109.5H8F—C8—H8E109.5
C11—C14—H14E109.5C12—C15—H15B109.5
H14D—C14—H14E109.5C12—C15—H15A109.5
H14F—C14—H14E109.5H15B—C15—H15A109.5
C11—C14—H14B109.5C12—C15—H15C109.5
H14D—C14—H14B141.1H15B—C15—H15C109.5
H14F—C14—H14B56.3H15A—C15—H15C109.5
H14E—C14—H14B56.3C12—C15—H15D109.5
C11—C14—H14A109.5H15B—C15—H15D141.1
H14D—C14—H14A56.3H15A—C15—H15D56.3
H14F—C14—H14A141.1H15C—C15—H15D56.3
H14E—C14—H14A56.3C12—C15—H15F109.5
H14B—C14—H14A109.5H15B—C15—H15F56.3
C11—C14—H14C109.5H15A—C15—H15F141.1
H14D—C14—H14C56.3H15C—C15—H15F56.3
H14F—C14—H14C56.3H15D—C15—H15F109.5
H14E—C14—H14C141.1C12—C15—H15E109.5
H14B—C14—H14C109.5H15B—C15—H15E56.3
H14A—C14—H14C109.5H15A—C15—H15E56.3
C13—C12—C11105.5 (3)H15C—C15—H15E141.1
C13—C12—C15127.0 (4)H15D—C15—H15E109.5
C11—C12—C15127.6 (4)H15F—C15—H15E109.5
C13—C16—H16B109.5C4—C7—H7B109.5
C13—C16—H16A109.5C4—C7—H7A109.5
H16B—C16—H16A109.5H7B—C7—H7A109.5
C13—C16—H16C109.5C4—C7—H7C109.5
H16B—C16—H16C109.5H7B—C7—H7C109.5
H16A—C16—H16C109.5H7A—C7—H7C109.5
C13—C16—H16D109.5C4—C7—H7D109.5
H16B—C16—H16D141.1H7B—C7—H7D141.1
H16A—C16—H16D56.3H7A—C7—H7D56.3
H16C—C16—H16D56.3H7C—C7—H7D56.3
C13—C16—H16F109.5C4—C7—H7F109.5
H16B—C16—H16F56.3H7B—C7—H7F56.3
H16A—C16—H16F141.1H7A—C7—H7F141.1
H16C—C16—H16F56.3H7C—C7—H7F56.3
H16D—C16—H16F109.5H7D—C7—H7F109.5
C13—C16—H16E109.5C4—C7—H7E109.5
H16B—C16—H16E56.3H7B—C7—H7E56.3
H16A—C16—H16E56.3H7A—C7—H7E56.3
H16C—C16—H16E141.1H7C—C7—H7E141.1
H16D—C16—H16E109.5H7D—C7—H7E109.5
H16F—C16—H16E109.5H7F—C7—H7E109.5
C3—C6—H6D109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14E···N20.982.493.199 (5)129
C14—H14E···N10.982.543.401 (6)147
C14—H14E···N20.982.493.199 (5)129
C14—H14E···N10.982.543.401 (6)147
C16—H16F···Cl2ii0.982.853.776 (5)158
C6—H6E···N90.982.673.521 (6)146
C6—H6E···N100.982.553.240 (6)128
C6—H6B···Cl1i0.982.863.692 (5)144
N1—H1···Cl20.75 (4)2.66 (4)3.102 (4)120 (3)
N1—H1···Cl2iii0.75 (4)2.54 (4)3.214 (4)151 (3)
N9—H9···Cl1i0.86 (6)2.94 (6)3.506 (4)125 (5)
N9—H9···Cl2i0.86 (6)2.37 (6)3.188 (4)159 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z+1.
Aquatetrakis(3,4,5-trimethyl-1H-pyrazole-κN2)copper(II) dinitrate (2) top
Crystal data top
[Cu(C6H10N2)4(H2O)](NO3)2F(000) = 1364
Mr = 646.21Dx = 1.354 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 20.107 (7) ÅCell parameters from 4118 reflections
b = 7.8939 (16) Åθ = 5.6–54.8°
c = 20.472 (4) ŵ = 0.75 mm1
β = 102.651 (2)°T = 150 K
V = 3170.5 (14) Å3Plate, blue
Z = 40.16 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3636 independent reflections
Radiation source: fine focus sealed tube2719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2626
Tmin = 0.654, Tmax = 0.746k = 109
13530 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3636 reflectionsΔρmax = 0.78 e Å3
203 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections omitted from final refinement on account of beamstop truncation: (h k l) 1 1 0; 2 0 0; 0 1 1; -2 0 2; 0 0 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.25000.50985 (5)0.50000.01754 (15)
O170.25000.2345 (3)0.50000.0297 (6)
N20.20222 (9)0.5683 (3)0.40597 (10)0.0207 (4)
N90.11241 (10)0.6406 (3)0.50436 (11)0.0224 (5)
N100.15931 (9)0.5173 (3)0.52824 (10)0.0203 (4)
N10.15514 (11)0.4676 (3)0.36661 (12)0.0234 (5)
C50.13309 (13)0.5350 (4)0.30513 (13)0.0271 (6)
C110.13728 (12)0.4445 (3)0.57851 (13)0.0222 (5)
C120.07613 (12)0.5194 (3)0.58642 (14)0.0241 (5)
C150.03256 (14)0.4712 (4)0.63443 (16)0.0355 (7)
H15B0.05400.37730.66270.053*0.5
H15A0.02780.56880.66270.053*0.5
H15C0.01260.43610.60930.053*0.5
H15D0.00780.54420.62710.053*0.5
H15F0.01840.35270.62710.053*0.5
H15E0.05870.48540.68050.053*0.5
C130.06302 (12)0.6451 (3)0.53899 (13)0.0236 (5)
C30.21029 (12)0.7012 (3)0.36840 (12)0.0226 (5)
C60.25867 (14)0.8425 (4)0.39353 (15)0.0321 (6)
H6D0.25670.92690.35800.048*0.5
H6F0.24600.89580.43230.048*0.5
H6E0.30510.79750.40680.048*0.5
H6B0.28180.81990.44000.048*0.5
H6A0.29250.85100.36580.048*0.5
H6C0.23340.94930.39130.048*0.5
C40.16753 (13)0.6859 (4)0.30470 (13)0.0277 (6)
C140.17411 (14)0.3017 (4)0.61920 (15)0.0326 (6)
H14D0.14920.26780.65320.049*0.5
H14F0.17710.20520.58990.049*0.5
H14E0.22010.33870.64120.049*0.5
H14B0.21510.27330.60290.049*0.5
H14A0.18720.33590.66630.049*0.5
H14C0.14420.20250.61500.049*0.5
C160.00746 (13)0.7757 (4)0.52520 (16)0.0336 (6)
H16B0.02350.75810.55550.050*0.5
H16A0.02760.88910.53240.050*0.5
H16C0.01800.76520.47870.050*0.5
H16D0.01420.85010.48890.050*0.5
H16F0.03690.71910.51200.050*0.5
H16E0.00870.84300.56570.050*0.5
C80.08068 (15)0.4500 (5)0.25270 (15)0.0398 (7)
H8B0.07170.51880.21190.060*0.5
H8A0.09730.33810.24300.060*0.5
H8C0.03850.43690.26880.060*0.5
H8D0.06660.34380.27050.060*0.5
H8F0.04100.52450.23940.060*0.5
H8E0.09990.42570.21360.060*0.5
C70.15739 (18)0.8152 (5)0.24974 (16)0.0456 (8)
H7B0.18900.90980.26330.068*0.5
H7A0.16620.76320.20900.068*0.5
H7C0.11040.85720.24110.068*0.5
H7D0.12140.77700.21230.068*0.5
H7F0.14420.92360.26660.068*0.5
H7E0.20000.82960.23450.068*0.5
O200.10612 (12)0.1364 (3)0.37019 (11)0.0430 (6)
O210.07101 (11)0.1135 (3)0.38872 (12)0.0459 (6)
O190.14070 (10)0.0169 (3)0.46693 (12)0.0411 (5)
N180.10557 (11)0.0134 (3)0.40797 (13)0.0297 (5)
H10.1460 (14)0.383 (4)0.3781 (14)0.021 (8)*
H90.1192 (14)0.702 (4)0.4685 (15)0.031 (8)*
H170.2176 (14)0.176 (4)0.4879 (15)0.029 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0159 (2)0.0155 (2)0.0221 (2)0.0000.00595 (15)0.000
O170.0234 (13)0.0158 (13)0.0498 (18)0.0000.0077 (13)0.000
N20.0208 (10)0.0173 (10)0.0246 (11)0.0015 (8)0.0062 (9)0.0010 (8)
N90.0201 (10)0.0177 (11)0.0305 (12)0.0032 (8)0.0081 (9)0.0019 (9)
N100.0155 (9)0.0210 (11)0.0251 (11)0.0038 (7)0.0059 (8)0.0048 (8)
N10.0221 (10)0.0208 (12)0.0266 (12)0.0041 (8)0.0039 (9)0.0003 (9)
C50.0236 (12)0.0353 (16)0.0228 (13)0.0038 (11)0.0059 (10)0.0024 (11)
C110.0203 (11)0.0198 (12)0.0275 (13)0.0017 (9)0.0074 (10)0.0007 (10)
C120.0184 (11)0.0267 (14)0.0286 (13)0.0056 (9)0.0079 (10)0.0052 (10)
C150.0283 (13)0.0450 (19)0.0368 (16)0.0099 (12)0.0153 (12)0.0027 (13)
C130.0180 (11)0.0220 (13)0.0314 (14)0.0015 (9)0.0068 (10)0.0065 (10)
C30.0252 (11)0.0197 (13)0.0254 (13)0.0040 (10)0.0110 (10)0.0028 (10)
C60.0364 (14)0.0246 (15)0.0361 (16)0.0030 (11)0.0098 (12)0.0016 (11)
C40.0297 (13)0.0279 (14)0.0267 (14)0.0079 (11)0.0092 (11)0.0060 (11)
C140.0322 (13)0.0293 (15)0.0384 (16)0.0059 (12)0.0123 (12)0.0120 (12)
C160.0260 (12)0.0285 (16)0.0478 (17)0.0066 (11)0.0112 (12)0.0046 (13)
C80.0327 (15)0.054 (2)0.0302 (16)0.0032 (14)0.0023 (13)0.0073 (14)
C70.0562 (19)0.046 (2)0.0343 (17)0.0078 (16)0.0099 (15)0.0147 (15)
O200.0552 (13)0.0259 (11)0.0454 (13)0.0093 (9)0.0053 (11)0.0081 (9)
O210.0524 (13)0.0278 (12)0.0618 (15)0.0154 (10)0.0218 (12)0.0101 (10)
O190.0271 (10)0.0432 (13)0.0493 (13)0.0067 (8)0.0003 (9)0.0158 (10)
N180.0257 (11)0.0198 (12)0.0458 (14)0.0016 (9)0.0128 (10)0.0018 (10)
Geometric parameters (Å, º) top
Cu1—N22.008 (2)C6—H6B0.9800
Cu1—N2i2.008 (2)C6—H6A0.9800
Cu1—N102.031 (2)C6—H6C0.9800
Cu1—N10i2.031 (2)C4—C71.499 (4)
Cu1—O172.174 (3)C14—H14D0.9800
O17—H170.79 (3)C14—H14F0.9800
N2—C31.332 (3)C14—H14E0.9800
N2—N11.358 (3)C14—H14B0.9800
N9—C131.341 (3)C14—H14A0.9800
N9—N101.369 (3)C14—H14C0.9800
N9—H90.92 (3)C16—H16B0.9800
N10—C111.336 (3)C16—H16A0.9800
N1—C51.349 (4)C16—H16C0.9800
N1—H10.75 (3)C16—H16D0.9800
C5—C41.379 (4)C16—H16F0.9800
C5—C81.489 (4)C16—H16E0.9800
C11—C121.405 (4)C8—H8B0.9800
C11—C141.497 (4)C8—H8A0.9800
C12—C131.373 (4)C8—H8C0.9800
C12—C151.502 (4)C8—H8D0.9800
C15—H15B0.9800C8—H8F0.9800
C15—H15A0.9800C8—H8E0.9800
C15—H15C0.9800C7—H7B0.9800
C15—H15D0.9800C7—H7A0.9800
C15—H15F0.9800C7—H7C0.9800
C15—H15E0.9800C7—H7D0.9800
C13—C161.501 (3)C7—H7F0.9800
C3—C41.401 (4)C7—H7E0.9800
C3—C61.495 (4)O20—N181.243 (3)
C6—H6D0.9800O21—N181.234 (3)
C6—H6F0.9800O19—N181.258 (3)
C6—H6E0.9800
N2—Cu1—N2i153.41 (13)H14D—C14—H14F109.5
N2—Cu1—N1089.73 (8)C11—C14—H14E109.5
N2i—Cu1—N1089.51 (8)H14D—C14—H14E109.5
N2—Cu1—N10i89.50 (8)H14F—C14—H14E109.5
N2i—Cu1—N10i89.73 (8)C11—C14—H14B109.5
N10—Cu1—N10i176.69 (12)H14D—C14—H14B141.1
N2—Cu1—O17103.30 (6)H14F—C14—H14B56.3
N2i—Cu1—O17103.29 (6)H14E—C14—H14B56.3
N10—Cu1—O1791.66 (6)C11—C14—H14A109.5
N10i—Cu1—O1791.66 (6)H14D—C14—H14A56.3
Cu1—O17—H17126 (2)H14F—C14—H14A141.1
C3—N2—N1106.0 (2)H14E—C14—H14A56.3
C3—N2—Cu1129.93 (17)H14B—C14—H14A109.5
N1—N2—Cu1124.01 (17)C11—C14—H14C109.5
C13—N9—N10111.2 (2)H14D—C14—H14C56.3
C13—N9—H9131.9 (18)H14F—C14—H14C56.3
N10—N9—H9116.9 (18)H14E—C14—H14C141.1
C11—N10—N9105.21 (19)H14B—C14—H14C109.5
C11—N10—Cu1132.58 (16)H14A—C14—H14C109.5
N9—N10—Cu1120.67 (16)C13—C16—H16B109.5
C5—N1—N2111.5 (2)C13—C16—H16A109.5
C5—N1—H1126 (2)H16B—C16—H16A109.5
N2—N1—H1122 (2)C13—C16—H16C109.5
N1—C5—C4106.5 (2)H16B—C16—H16C109.5
N1—C5—C8122.1 (3)H16A—C16—H16C109.5
C4—C5—C8131.4 (3)C13—C16—H16D109.5
N10—C11—C12110.7 (2)H16B—C16—H16D141.1
N10—C11—C14123.0 (2)H16A—C16—H16D56.3
C12—C11—C14126.2 (2)H16C—C16—H16D56.3
C13—C12—C11105.1 (2)C13—C16—H16F109.5
C13—C12—C15126.6 (2)H16B—C16—H16F56.3
C11—C12—C15128.3 (3)H16A—C16—H16F141.1
C12—C15—H15B109.5H16C—C16—H16F56.3
C12—C15—H15A109.5H16D—C16—H16F109.5
H15B—C15—H15A109.5C13—C16—H16E109.5
C12—C15—H15C109.5H16B—C16—H16E56.3
H15B—C15—H15C109.5H16A—C16—H16E56.3
H15A—C15—H15C109.5H16C—C16—H16E141.1
C12—C15—H15D109.5H16D—C16—H16E109.5
H15B—C15—H15D141.1H16F—C16—H16E109.5
H15A—C15—H15D56.3C5—C8—H8B109.5
H15C—C15—H15D56.3C5—C8—H8A109.5
C12—C15—H15F109.5H8B—C8—H8A109.5
H15B—C15—H15F56.3C5—C8—H8C109.5
H15A—C15—H15F141.1H8B—C8—H8C109.5
H15C—C15—H15F56.3H8A—C8—H8C109.5
H15D—C15—H15F109.5C5—C8—H8D109.5
C12—C15—H15E109.5H8B—C8—H8D141.1
H15B—C15—H15E56.3H8A—C8—H8D56.3
H15A—C15—H15E56.3H8C—C8—H8D56.3
H15C—C15—H15E141.1C5—C8—H8F109.5
H15D—C15—H15E109.5H8B—C8—H8F56.3
H15F—C15—H15E109.5H8A—C8—H8F141.1
N9—C13—C12107.7 (2)H8C—C8—H8F56.3
N9—C13—C16121.7 (2)H8D—C8—H8F109.5
C12—C13—C16130.5 (2)C5—C8—H8E109.5
N2—C3—C4110.0 (2)H8B—C8—H8E56.3
N2—C3—C6122.8 (2)H8A—C8—H8E56.3
C4—C3—C6127.2 (2)H8C—C8—H8E141.1
C3—C6—H6D109.5H8D—C8—H8E109.5
C3—C6—H6F109.5H8F—C8—H8E109.5
H6D—C6—H6F109.5C4—C7—H7B109.5
C3—C6—H6E109.5C4—C7—H7A109.5
H6D—C6—H6E109.5H7B—C7—H7A109.5
H6F—C6—H6E109.5C4—C7—H7C109.5
C3—C6—H6B109.5H7B—C7—H7C109.5
H6D—C6—H6B141.1H7A—C7—H7C109.5
H6F—C6—H6B56.3C4—C7—H7D109.5
H6E—C6—H6B56.3H7B—C7—H7D141.1
C3—C6—H6A109.5H7A—C7—H7D56.3
H6D—C6—H6A56.3H7C—C7—H7D56.3
H6F—C6—H6A141.1C4—C7—H7F109.5
H6E—C6—H6A56.3H7B—C7—H7F56.3
H6B—C6—H6A109.5H7A—C7—H7F141.1
C3—C6—H6C109.5H7C—C7—H7F56.3
H6D—C6—H6C56.3H7D—C7—H7F109.5
H6F—C6—H6C56.3C4—C7—H7E109.5
H6E—C6—H6C141.1H7B—C7—H7E56.3
H6B—C6—H6C109.5H7A—C7—H7E56.3
H6A—C6—H6C109.5H7C—C7—H7E141.1
C5—C4—C3106.0 (2)H7D—C7—H7E109.5
C5—C4—C7127.4 (3)H7F—C7—H7E109.5
C3—C4—C7126.5 (3)O21—N18—O20121.1 (3)
C11—C14—H14D109.5O21—N18—O19118.8 (2)
C11—C14—H14F109.5O20—N18—O19120.0 (2)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6E···N9i0.982.503.355 (4)145
C6—H6E···N10i0.982.603.274 (4)126
C6—H6F···O19ii0.982.563.367 (4)140
C6—H6E···N9i0.982.503.355 (4)145
C6—H6E···N10i0.982.603.274 (4)126
C14—H14B···O170.982.383.193 (3)140
C16—H16B···O20iii0.982.623.525 (4)153
C16—H16B···N18iii0.982.663.342 (4)127
C16—H16D···O21ii0.982.573.430 (4)146
C8—H8D···O200.982.603.411 (4)140
N1—H1···O200.75 (3)2.10 (3)2.801 (3)158 (3)
N9—H9···N20.92 (3)2.54 (3)3.039 (3)114 (2)
N9—H9···O21ii0.92 (3)2.24 (3)3.033 (3)144 (2)
N9—H9···O19ii0.92 (3)2.52 (3)3.150 (3)126 (2)
O17—H17···O190.79 (3)1.97 (3)2.755 (3)174 (3)
C6—H6F···O19ii0.982.563.367 (4)140
C6—H6E···N9i0.982.503.355 (4)145
C6—H6E···N10i0.982.603.274 (4)126
C6—H6E···N9i0.982.503.355 (4)145
C6—H6E···N10i0.982.603.274 (4)126
C14—H14B···O170.982.383.193 (3)140
C16—H16B···O20iii0.982.623.525 (4)153
C16—H16B···N18iii0.982.663.342 (4)127
C16—H16D···O21ii0.982.573.430 (4)146
C8—H8D···O200.982.603.411 (4)140
N1—H1···O200.75 (3)2.10 (3)2.801 (3)158 (3)
N9—H9···N20.92 (3)2.54 (3)3.039 (3)114 (2)
N9—H9···O21ii0.92 (3)2.24 (3)3.033 (3)144 (2)
N9—H9···O19ii0.92 (3)2.52 (3)3.150 (3)126 (2)
O17—H17···O190.79 (3)1.97 (3)2.755 (3)174 (3)
Symmetry codes: (i) x+1/2, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Funding information

IDG and JRD acknowledge funding from ONR under Contract N0001417WX00049. CJV acknowledges Washington College's John S. Toll Science and Mathematics Fellows Program.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationArdizzoia, G. A., Brenna, S., Durini, S., Therrien, B. & Trentin, I. (2013). Dalton Trans. 42, 12265–12273.  CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenisova, T. O., Amelchenkova, E. V., Pruss, I. V., Dobrokhotova, Zh. V., Fialkovskii, O. P. & Nifedov, S. E. (2006). Zh. Neorg. Khim. 51, 1098–1142.  CAS Google Scholar
First citationGiles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611–3635.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInfantes, L., Foces-Foces, C. & Elguero, J. (1999). Acta Cryst. B55, 441–447.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024–8034.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPervukhina, N. V., Podberezskaya, N. V. & Lavrenova, L. G. (1995). Zh. Strukt. Khim. 36, 157–167.  CAS Google Scholar
First citationPervukhina, N. V., Podberezskaya, N. V., Lavrenova, L. G., Larionov, S. V. & Bakakin, V. V. (1986). Zh. Strukt. Khim. 27, 110–113.  CAS Google Scholar
First citationRietmeijer, F. J., De Graaff, R. A. G. & Reedijk, J. (1984). Inorg. Chem. 23, 151–156.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds