research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Elaboration, structural study and validation of a new NASICON-type structure, Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 ElManar II, Tunis, Tunisia
*Correspondence e-mail: medfaouzi.zid57@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 2 February 2018; accepted 21 February 2018; online 28 February 2018)

The title compound, sodium chromium/aluminium molybdenum/aluminium dodeca­oxide, Na0.72Cr0.48Al1.74Mo2.77O12, was prepared by solid-state reaction. Its crystal structure is related to NaSICON-type compounds. The framework is built up from M1O6 (M1 = Cr/Al) octa­hedra and M2O4 (M2 = Mo/Al) tetra­hedra inter­connected by corners. The three-dimensional framework contains cavities in which sodium cations are located. Two validation models (BVS and CHARDI) were used to confirm the proposed structural model. The mobility of Na+ ions in the structure has been investigated by theoretical means.

1. Chemical context

The search for new and better solid electrolyte materials has grown considerably in recent years because of their amazing properties and their diverse applications in the field of solid-state chemistry. Indeed, many new molybdate phases with high ionic conductivity have been synthesized and structurally characterized by X-ray diffraction. A large number belong to the NASICON (`Na super ionic conductor') family, e.g. phosphate (Tkachev et al., 1984[Tkachev, V. V., Ponomarev, V. I. & Atovmyan, L. O. (1984). Zh. Strukt. Khim. 25, 128-134.]; Catti et al., 2004[Catti, M., Comotti, A., Di Blas, S. & Ibberson, R. M. (2004). J. Mater. Chem. 14, 835-839.]), arsenate (Harrison & Phillips, 2001[Harrison, W. T. A. & Phillips, M. L. F. (2001). Acta Cryst. C57, 2-3.]), sulfate (Slater & Greaves, 1994[Slater, P. R. & Greaves, C. (1994). J. Mater. Chem. 4, 1463-1467.]) and molybdate (Sun et al., 2012[Sun, Q., Ren, Q. Q. & Fu, Z. W. (2012). Electrochem. Commun. 23, 145-148.]; Kozhevnikova & Imekhenova, 2006[Kozhevnikova, N. M. & Imekhenova, A. V. (2006). Zh. Neorg. Khim. 51, 4, 589-592.]) based systems. The NASICON family groups together a set of phases of the same structural type with the general formula AM2(XO4)3 (A = alkali, M = Ti, Fe, V, Co, Ni and X = P, As, Mo, W, S; Prabaharan et al., 2004[Prabaharan, S. R. S., Fauzi, A., Michael, M. S. & Begam, K. M. (2004). Solid State Ionics, 171, 157-165.]). Apart from their superionic properties, a number of NASICON compounds have considerable potential for use in laser engin­eering, optics and electronics owing to their non-linear optical, electrical, magnetic and luminescent properties. It is in this context that we chose to explore A–Cr–Mo–O systems (A = monovalent ion). A new phase Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12 was synthesized by solid-state reaction. We present here its crystal structure and its validation by the CHARDI (charge distribution) and BVS (bond-valence-sum) methods.

2. Structural commentary

The structural unit of Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12 consists of one octa­hedron M1O6 (M1 = Cr1/Al2) and one tetra­hedron M2O4 (M2 = Mo1/Al1) that share corners. The charge compensation is provided by Na+ cations (Fig. 1[link]). The main construction unit in the anionic framework of the compound Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12 is formed by two M1O6 octa­hedra inter­connected by three M2O4 tetra­hedra located along the c axis. Geometrical parameters are given in Table 1[link]. This assembly forms M12M23O18 units (Fig. 2[link]). The junction between these units, provided by the formation of mixed bridges of the M1–O–M2 type, leads to a three-dimensional framework with cavities parallel to the [100] and [010] directions in which the Na+ cations are located (Fig. 3[link]). Indeed, each M1O6 octa­hedron share its six corners with different M2O4 tetra­hedra, leading to M1M26O24 clusters (Fig. 4[link]). The two validation models BVS (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. Oxford University Press.]; Adams, 2003[Adams, S. (2003). softBV. University of Göttingen, Germany.]) and CHARDI (Hoppe et al., 1989[Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105-122.]; Nespolo et al., 2001[Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652-664.]; Nespolo, 2001[Nespolo, M. (2001). CHARDI-IT. Laboratoire CRM2, Université de Lorraine, Nancy, France.]) confirm the proposed structural model, in particular the distribution at mixed sites. The calculated load values Q(i) and valences V(i) are in good agreement with the oxidation degrees weighted by the occupancy rates. The dispersion factor σcat, which measures the deviation of the calculated cationic charges, is equal to 0.3% (Table 2[link]). The variation of the bond-valence sum of sodium as a function of the distance travelled in different directions shows that the [011] and [111] directions are the most favorable directions for the mobility of sodium. The paths along these directions have the same shape when the distance travelled is about 13.5 Å and the maximum valence is about 1.4 valence units (Fig. 5[link]). The representation of the Na migration path in the direction [011] is shown in Fig. 6[link].

Table 1
Selected geometric parameters (Å, °)

Mo1—O2i 1.7358 (15) Cr1—O2v 1.9721 (16)
Mo1—O2 1.7359 (15) Cr1—O2vi 1.9721 (16)
Mo1—O1 1.7540 (16) Na1—O1ii 2.4987 (15)
Mo1—O1i 1.7540 (15) Na1—O1vii 2.4987 (15)
Cr1—O1ii 1.9668 (16) Na1—O1iii 2.4987 (15)
Cr1—O1iii 1.9668 (16) Na1—O1viii 2.4987 (15)
Cr1—O1iv 1.9669 (16) Na1—O1iv 2.4987 (15)
Cr1—O2 1.9720 (16) Na1—O1ix 2.4987 (15)
       
O2i—Mo1—O2 109.56 (11) O1iv—Cr1—O2vi 88.68 (7)
O2i—Mo1—O1 107.85 (8) O2—Cr1—O2vi 91.35 (7)
O2—Mo1—O1 111.40 (8) O2v—Cr1—O2vi 91.35 (7)
O2i—Mo1—O1i 111.40 (8) O1ii—Na1—O1vii 180.0
O2—Mo1—O1i 107.86 (8) O1ii—Na1—O1iii 65.74 (6)
O1—Mo1—O1i 108.80 (11) O1vii—Na1—O1iii 114.26 (6)
O1ii—Cr1—O1iii 87.18 (7) O1ii—Na1—O1viii 114.26 (6)
O1ii—Cr1—O1iv 87.18 (7) O1vii—Na1—O1viii 65.74 (6)
O1iii—Cr1—O1iv 87.18 (7) O1iii—Na1—O1viii 180.0
O1ii—Cr1—O2 92.79 (7) O1ii—Na1—O1iv 65.74 (6)
O1iii—Cr1—O2 88.68 (7) O1vii—Na1—O1iv 114.26 (6)
O1iv—Cr1—O2 175.86 (7) O1iii—Na1—O1iv 65.74 (6)
O1ii—Cr1—O2v 88.68 (7) O1viii—Na1—O1iv 114.26 (6)
O1iii—Cr1—O2v 175.86 (7) O1ii—Na1—O1ix 114.26 (6)
O1iv—Cr1—O2v 92.79 (7) O1vii—Na1—O1ix 65.74 (6)
O2—Cr1—O2v 91.35 (7) O1iii—Na1—O1ix 114.26 (6)
O1ii—Cr1—O2vi 175.85 (7) O1viii—Na1—O1ix 65.74 (6)
O1iii—Cr1—O2vi 92.79 (7) O1iv—Na1—O1ix 180.0
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [x-y-{\script{1\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (iii) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (iv) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (v) -x+y, -x, z; (vi) -y, x-y, z; (vii) [-x+y+{\script{1\over 3}}, -x+{\script{2\over 3}}, z-{\script{1\over 3}}]; (viii) [x-{\script{2\over 3}}, y-{\script{1\over 3}}, z-{\script{1\over 3}}]; (ix) [-y+{\script{1\over 3}}, x-y-{\script{1\over 3}}, z-{\script{1\over 3}}].

Table 2
CHARDI and BVS analyses for the cations in the Na0.72Cr0.48Al1.76Mo2.77O12 compound

q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = coordination number; dmean(i) = mean distance; dmed(i) = median distance.

Cation q(i)·sof(i) Q(i) V(i) CN(i) ECoN(i) dmean dmed
Mo1/Al1 5.78 5.77 5.8426 4 4.00 1.7448 1.7443
M(Cr1/Al2) 3.000 2.99 2.9397 6 6.00 1.9694 1.9696
Na1 0.72 0.71 0.6893 6 6.00 2.4989 2.4989
σcat is the dispersion factor for cationic charges where σcat = [Σi(qi − Qi)2/N − 1]1/2 = 0.025.
[Figure 1]
Figure 1
Structural unit of Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) [{2\over 3}] − x, [{1\over 3}] − y, [{1\over 3}] − z; (ii) −[{1\over 3}] + x − y, −[{2\over 3}] + x, [{1\over 3}] − z; (iii) −[{1\over 3}] + y, [{1\over 3}] − x + y, [{4\over 3}] − z; (iv) −x + y, −x, z; (v) −x, x − z, z; (vi) x − y, −y, [{3\over 2}] − z.]
[Figure 2]
Figure 2
Projection of an M12M23O18 unit along the a axis.
[Figure 3]
Figure 3
Projection of Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12 along the a axis.
[Figure 4]
Figure 4
Projection of Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)O12 along the c axis.
[Figure 5]
Figure 5
Ionic pathway valence curves of the title compound.
[Figure 6]
Figure 6
Modelling of the Na+ pathway in Na0.72(Cr0.48,Al1.52)(Mo2.77, Al0.23)O12.

3. Database survey

A comparison between the structures of the title compound and those of other NASICON-type compounds reveals that other compounds also crystallize in the R[\overline{3}]c space group with similar unit-cell parameters. When compared to NaZr2(AsO4)3 (Coquerel et al., 1983[Coquerel, G., Gicquel-Mayer, C., Mayer, M. & Perez, G. (1983). Acta Cryst. C39, 1602-1604.]) and Na4Co3Mo22.33O72 (Chakir et al., 2003[Chakir, M., Jazouli, A. E. & de Waal, D. (2003). Mater. Res. Bull. 38, 1773-1779.]), the only difference observed is the occupancy of the sites 6b, 12c and 18e. In NaZr2(AsO4)3, the sites are fully occupied, whereas in Na4Co3Mo22.33O72, the 6b site is not totally occupied, and the 12c site is occupied by both Co and Mo. In the title compound, the 6b site is partially occupied and the 12c and 18e sites are mixed Cr/Al and Mo/Al sites, respectively.

4. Synthesis and crystallization

During the investigation of the A–Mo–Cr–O phase diagrams (A = Li, Na, Ag), the new compound Na0.72(Cr0.48,Al1.52)(Mo2.77,Al0.23)12 was established. The crystals were obtained by grinding in an agate mortar the reagents NaNO3, Cr(NO3)3·9H2O and (NH4)6Mo7O24·4H2O in a Na:Cr:Mo molar ratio of 1:1:4, respectively. The resulting mixture was calcined at 673 K to remove volatiles including NO2, NH3 and H2O. The residual powder thus obtained was finely ground and then returned to the oven at a temperature close to the melting point at 973 K for three days to promote germination and crystal growth. After cooling, crystals of parallelepipedal shape and optimal size for data collection were obtained. A crystal of a good quality, selected under a polarizing microscope, was used for intensity measurements

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. After processing the data, the structure was solved successfully in the R[\overline{3}]c space group, using direct methods implemented in the SHELXS97 program (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The molybdenum, chromium and oxygen atoms were located first. At this stage, an empirical ψ-scan correction (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) was applied. Difference-Fourier syntheses using the program SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), allowed the rest of the atoms in the cell to be localized. We obtained intense peaks close to Cr and Mo; the liberation of the occupancy factors led to values different from the full site occupancy (0.62530 for Mo and 0.24035 for Cr). The EDX analysis (Fig. 7[link]) of the sample confirmed the presence of aluminium and we then used EADP and EXYZ constraints as well as SUMP to refine Al1 with the Mo1 site and Al2 with the Cr1 site. After refinement and verification of the electrical neutrality, the final formula was Na0.72 (1)(Cr0.48 (1),Al1.52 (2))(Mo2.77 (3),Al0.23 (2))O12. The remaining maximum and minimum electron densities in the difference-Fourier map are acceptable and are at 0.78 Å from the Mo1 site and at 0.89 Å from the Mo2, respectively.

Table 3
Experimental details

Crystal data
Chemical formula Na0.72(Cr0.48·Al1.52)(Mo2.77·Al0.23)O12
Mr 546.34
Crystal system, space group Trigonal, R[\overline{3}]c
Temperature (K) 298
a, c (Å) 9.217 (2), 22.646 (2)
V3) 1666.1 (7)
Z 6
Radiation type Mo Kα
μ (mm−1) 3.74
Crystal size (mm) 0.24 × 0.21 × 0.18
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.491, 0.599
No. of measured, independent and observed [I > 2σ(I)] reflections 2878, 414, 401
Rint 0.026
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.024, 1.25
No. of reflections 414
No. of parameters 35
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.23, −0.43
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 7]
Figure 7
EDX analysis of the sample confirming the presence of aluminium in Na0.72(Cr0.48,Al1.52)(Mo2.77, Al0.23)O12.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Sodium chromium/aluminium molybdenum/aluminium dodecaoxide top
Crystal data top
Na0.72(Cr0.48·Al1.52)(Mo2.77·Al0.23)O12Dx = 3.267 Mg m3
Mr = 546.34Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 25 reflections
a = 9.217 (2) Åθ = 12.1–14.8°
c = 22.646 (2) ŵ = 3.74 mm1
V = 1666.1 (7) Å3T = 298 K
Z = 6Prism, red
F(000) = 15260.24 × 0.21 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 26.9°, θmin = 3.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 211
Tmin = 0.491, Tmax = 0.599l = 2828
2878 measured reflections2 standard reflections every 120 reflections
414 independent reflections intensity decay: 0.8%
401 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 4.1215P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.001
wR(F2) = 0.024Δρmax = 0.23 e Å3
S = 1.25Δρmin = 0.42 e Å3
414 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
35 parametersExtinction coefficient: 0.00046 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.28488 (2)0.00000.75000.01214 (9)0.921 (6)
Al10.28488 (2)0.00000.75000.01214 (9)0.080 (10)
Cr10.00000.00000.63854 (3)0.0109 (2)0.238 (11)
Al20.00000.00000.63854 (3)0.0109 (2)0.761 (19)
Na10.00000.00000.50000.0259 (9)0.724 (8)
O10.48491 (19)0.17851 (19)0.74736 (7)0.0326 (4)
O20.1686 (2)0.0152 (2)0.68761 (6)0.0376 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01265 (11)0.01229 (13)0.01137 (12)0.00614 (6)0.00085 (4)0.00169 (8)
Al10.01265 (11)0.01229 (13)0.01137 (12)0.00614 (6)0.00085 (4)0.00169 (8)
Cr10.0117 (3)0.0117 (3)0.0092 (3)0.00587 (14)0.0000.000
Al20.0117 (3)0.0117 (3)0.0092 (3)0.00587 (14)0.0000.000
Na10.0322 (11)0.0322 (11)0.0132 (12)0.0161 (6)0.0000.000
O10.0254 (8)0.0218 (8)0.0442 (9)0.0071 (7)0.0038 (6)0.0003 (7)
O20.0364 (9)0.0446 (11)0.0278 (8)0.0172 (8)0.0093 (7)0.0015 (7)
Geometric parameters (Å, º) top
Mo1—O2i1.7358 (15)Na1—O1ii2.4987 (15)
Mo1—O21.7359 (15)Na1—O1vii2.4987 (15)
Mo1—O11.7540 (16)Na1—O1iii2.4987 (15)
Mo1—O1i1.7540 (15)Na1—O1viii2.4987 (15)
Cr1—O1ii1.9668 (16)Na1—O1iv2.4987 (15)
Cr1—O1iii1.9668 (16)Na1—O1ix2.4987 (15)
Cr1—O1iv1.9669 (16)Na1—Al2x3.1373 (7)
Cr1—O21.9720 (16)Na1—Cr1x3.1373 (7)
Cr1—O2v1.9721 (16)O1—Al2iii1.9668 (16)
Cr1—O2vi1.9721 (16)O1—Cr1iii1.9668 (16)
Cr1—Na13.1374 (7)O1—Na1xi2.4987 (15)
O2i—Mo1—O2109.56 (11)O1iii—Na1—O1iv65.74 (6)
O2i—Mo1—O1107.85 (8)O1viii—Na1—O1iv114.26 (6)
O2—Mo1—O1111.40 (8)O1ii—Na1—O1ix114.26 (6)
O2i—Mo1—O1i111.40 (8)O1vii—Na1—O1ix65.74 (6)
O2—Mo1—O1i107.86 (8)O1iii—Na1—O1ix114.26 (6)
O1—Mo1—O1i108.80 (11)O1viii—Na1—O1ix65.74 (6)
O1ii—Cr1—O1iii87.18 (7)O1iv—Na1—O1ix180.0
O1ii—Cr1—O1iv87.18 (7)O1ii—Na1—Al2x141.20 (4)
O1iii—Cr1—O1iv87.18 (7)O1vii—Na1—Al2x38.80 (4)
O1ii—Cr1—O292.79 (7)O1iii—Na1—Al2x141.19 (4)
O1iii—Cr1—O288.68 (7)O1viii—Na1—Al2x38.81 (4)
O1iv—Cr1—O2175.86 (7)O1iv—Na1—Al2x141.19 (4)
O1ii—Cr1—O2v88.68 (7)O1ix—Na1—Al2x38.81 (4)
O1iii—Cr1—O2v175.86 (7)O1ii—Na1—Cr1x141.20 (4)
O1iv—Cr1—O2v92.79 (7)O1vii—Na1—Cr1x38.80 (4)
O2—Cr1—O2v91.35 (7)O1iii—Na1—Cr1x141.19 (4)
O1ii—Cr1—O2vi175.85 (7)O1viii—Na1—Cr1x38.81 (4)
O1iii—Cr1—O2vi92.79 (7)O1iv—Na1—Cr1x141.19 (4)
O1iv—Cr1—O2vi88.68 (7)O1ix—Na1—Cr1x38.81 (4)
O2—Cr1—O2vi91.35 (7)Al2x—Na1—Cr1x0.0
O2v—Cr1—O2vi91.35 (7)O1ii—Na1—Cr138.80 (4)
O1ii—Cr1—Na152.76 (5)O1vii—Na1—Cr1141.20 (4)
O1iii—Cr1—Na152.76 (5)O1iii—Na1—Cr138.81 (4)
O1iv—Cr1—Na152.76 (5)O1viii—Na1—Cr1141.19 (4)
O2—Cr1—Na1124.30 (5)O1iv—Na1—Cr138.81 (4)
O2v—Cr1—Na1124.30 (5)O1ix—Na1—Cr1141.19 (4)
O2vi—Cr1—Na1124.30 (5)Al2x—Na1—Cr1180.0
O1ii—Na1—O1vii180.0Cr1x—Na1—Cr1180.0
O1ii—Na1—O1iii65.74 (6)Mo1—O1—Al2iii144.66 (9)
O1vii—Na1—O1iii114.26 (6)Mo1—O1—Cr1iii144.66 (9)
O1ii—Na1—O1viii114.26 (6)Al2iii—O1—Cr1iii0.0
O1vii—Na1—O1viii65.74 (6)Mo1—O1—Na1xi126.81 (8)
O1iii—Na1—O1viii180.0Al2iii—O1—Na1xi88.43 (6)
O1ii—Na1—O1iv65.74 (6)Cr1iii—O1—Na1xi88.43 (6)
O1vii—Na1—O1iv114.26 (6)Mo1—O2—Cr1158.35 (10)
Symmetry codes: (i) xy, y, z+3/2; (ii) xy1/3, x2/3, z+4/3; (iii) x+2/3, y+1/3, z+4/3; (iv) y1/3, x+y+1/3, z+4/3; (v) x+y, x, z; (vi) y, xy, z; (vii) x+y+1/3, x+2/3, z1/3; (viii) x2/3, y1/3, z1/3; (ix) y+1/3, xy1/3, z1/3; (x) x, y, z+1; (xi) x+2/3, y+1/3, z+1/3.
CHARDI and BVS analyses for the cations in the Na0.72Cr0.48Al1.76Mo2.77O12 compound top
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i)= coordination number; dmean(i) = mean distance; dmed(i) = median distance.
Cationq(i)·sof(i)Q(i)V(i)CN(i)ECoN(i)dmeandmed
Mo1/Al15.785.775.842644.001.74481.7443
M(Cr1/Al2)3.0002.992.939766.001.96941.9696
Na10.720.710.689366.002.49892.4989
σcat is the dispersion factor for cationic charges where σcat = [Σi(qi - Qi)2/N - 1]1/2 = 0.025.
 

Acknowledgements

The authors wish to thank the Ministry of Higher Education and Scientific Research of Tunisia for the funding of the laboratory LMCTA LR15ES01.

References

First citationAdams, S. (2003). softBV. University of Göttingen, Germany.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry – The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCatti, M., Comotti, A., Di Blas, S. & Ibberson, R. M. (2004). J. Mater. Chem. 14, 835–839.  CrossRef CAS Google Scholar
First citationChakir, M., Jazouli, A. E. & de Waal, D. (2003). Mater. Res. Bull. 38, 1773–1779.  CrossRef CAS Google Scholar
First citationCoquerel, G., Gicquel-Mayer, C., Mayer, M. & Perez, G. (1983). Acta Cryst. C39, 1602–1604.  CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHarrison, W. T. A. & Phillips, M. L. F. (2001). Acta Cryst. C57, 2–3.  CrossRef CAS IUCr Journals Google Scholar
First citationHoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.  CrossRef CAS Web of Science Google Scholar
First citationKozhevnikova, N. M. & Imekhenova, A. V. (2006). Zh. Neorg. Khim. 51, 4, 589–592.  Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNespolo, M. (2001). CHARDI-IT. Laboratoire CRM2, Université de Lorraine, Nancy, France.  Google Scholar
First citationNespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrabaharan, S. R. S., Fauzi, A., Michael, M. S. & Begam, K. M. (2004). Solid State Ionics, 171, 157–165.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlater, P. R. & Greaves, C. (1994). J. Mater. Chem. 4, 1463–1467.  CrossRef CAS Google Scholar
First citationSun, Q., Ren, Q. Q. & Fu, Z. W. (2012). Electrochem. Commun. 23, 145–148.  CrossRef CAS Google Scholar
First citationTkachev, V. V., Ponomarev, V. I. & Atovmyan, L. O. (1984). Zh. Strukt. Khim. 25, 128–134.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds