research communications
κN)tetrakis(thiocyanato-κN)ferrate(III) bis[(4-methoxypyridine-κN)pentakis(thiocyanato-κN)ferrate(III)] hexakis(thiocyanato-κN)ferrate(III) with iron in three different octahedral coordination environments
of octakis(4-methoxypyridinium) bis(4-methoxypyridine-aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de
The 6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octahedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thiocyanate anions and 4-methoxypyridine ligands. Charge balance is achieved by 4-methoxypyridinium cations. The consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thiocyanate anions, two 4-methoxypyridine ligands and 4-methoxypyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic interactions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding interactions involving the pyridinium N—H groups of the cations and the thiocyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.
of the title salt, (CKeywords: crystal structure; ferrate complexes; 4-methoxypyridine; iron thiocyanate; octahedral coordination.
CCDC reference: 1821019
1. Chemical context
Recently, the synthesis of new coordination compounds based on paramagnetic metal cations has become increasingly interesting. In particular, compounds in which the paramagnetic metal cations are linked by small-sized anionic ligands that can mediate magnetic exchange are of special importance. For example, this can be achieved by thio- or selenocyanate anions that are able to coordinate to a central metal cation in different ways (Palion-Gazda et al., 2015; Guillet et al., 2016; Prananto et al., 2017). Most of the reported compounds contain terminally N-bonded thiocyanate ligands, whereas compounds with these ligands in a bridging mode are relatively rare. Nevertheless, the latter can be obtained by thermal decomposition of precursor complexes with terminal anionic ligands, as we have recently shown. With monodentate co-ligands, such as simple pyridine derivatives substituted in the 4-position, we were able to synthesize a number of compounds (predominantly including divalent cobalt or nickel), in which the metal cations are linked by pairs of anionic ligands into chains (Rams et al., 2017a,b; Wöhlert et al., 2012; Werner et al., 2015). In this context, divalent iron compounds are also of interest, but are scarce in comparison to divalent cobalt or nickel compounds because they are more difficult to synthesize in solution due to the poor oxidation stability of FeII. Therefore, we attempted to prepare either a coordination polymer with planned composition [Fe(NCS)2(4-methoxypyridine)2]n or a discrete complex with composition [Fe(NCS)2(4-methoxypyridine)4], which on thermal annealing might be transformed into the desired coordination polymer. 4-Methoxypyridine was selected because this ligand exhibits a strong donor substituent in the 4-position in comparison to the pyridine or 1,2-bis(4-pyridyl)ethylene ligands we have already investigated (Boeckmann & Näther, 2012; Wöhlert et al., 2013). In the course of these investigations, we accidently obtained crystals of the title compound, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], indicating that FeII was oxidized to FeIII.
2. Structural commentary
The
of the title compound comprises three iron(III) cations, of which one is located on a centre of inversion (Fe3), one on a twofold rotation axis (Fe1) and one in a general position (Fe2), as well as ten thiocyanate anions, two 4-methoxypyridine ligands and four 4-methoxypyridinium cations, one of which is disordered over two sets of sites.The three FeIII cations form discrete anionic complexes that are charge-balanced by the 4-methoxypyridinium cations. For each of the cations, the N—H hydrogen atom was clearly located, indicating an of +III for iron. Each of the three FeIII cations shows a different octahedral coordination environment. Fe1 is coordinated by two pairs of symmetry-related terminal-N-bonding thiocyanate anions defining the equatorial plane of the octahedron, whereas the two axial positions are occupied by the N atoms of two symmetry-related 4-methoxypyridine ligands (Fig. 1). The Fe1—N distances to the anionic ligands are similar and significantly shorter than those to the neutral 4-methoxypyridine co-ligands (Table 1). Fe2 is coordinated by five crystallographically independent N-bonding thiocyanate anions and by one 4-methoxypyridine ligand that occupies one of the axial positions (Fig. 1). The Fe2—N bond lengths are comparable to those of Fe1, except that of an equatorial thiocyanate anion (N4) that is somewhat elongated. Interestingly, the distance to the N7 atom of the thiocyanate anion that is trans to the 4-methoxypridine ligand is comparable to the other short Fe—N distances (Table 1). Fe3 is octahedrally coordinated by three pairs of N-bonding thiocyanate anions related by a centre of inversion (Fig. 1). The Fe—N distances scatter over a wider range between 2.030 (2) and 2.075 (2) Å (Table 1). To investigate the deviations of the N—Fe—N bond angles from the ideal values, the octahedral angle variance σθ〈oct〉2, which was introduced as a measure of distortion in octahedra (Robinson et al., 1971), was calculated for each of the discrete complexes. The greatest value of σθ〈oct〉2 is found for Fe1 (σθ〈oct〉2 = 8.89) followed by Fe2 (σθ〈oct〉2 = 2.34) and Fe3 (σθ〈oct〉2 = 0.28). Thus for Fe1, the bond angles deviate more from the ideal values compared to Fe2 and Fe3, with the latter showing the smallest distortion from an ideal octahedron.
It is noted that a number of discrete anionic complexes based, for example, on MnII or FeII thiocyanates, are reported in which the metal cations are four-, five-, or sixfold coordinated by anionic and additional neutral co-ligands. What makes the title compound so special is the fact that its contains three different coordination spheres for iron in one suggesting a snapshot of the species that might be present in equillibrium in solution. Therefore it is not surprising that pure samples were not obtained under the given conditions. X-ray powder diffraction revealed that for all batches, large amounts of additional crystalline phases were present that could not be identified (see Fig. S1 in the Supporting information).
The negative charges of the anionic complexes in the title compound (–1 for Fe1, 2× −2 for Fe2 and −3 for Fe3) are compensated by eight 4-methoxypyridinium cations, of which each two are pairwise related by symmetry (Fig. 2).
3. Supramolecular features
The discrete anionic complexes are linked with the cations through weak intermolecular N—H⋯S hydrogen bonds between the pyridinium hydrogen atoms and the thiocyanate sulfur atoms (Fig. 3, Table 2). The complex containing Fe3 is additionally involved in weak Caromatic—H⋯N hydrogen bonding. Other short contacts indicate further weak Caromatic—H⋯S and Cmethyl—H⋯S hydrogen bonds, respectively, connecting the cations and anionic complexes into a three-dimensional network.
|
4. Database survey
In the Cambridge Structure Database (Version 5.38, last update 2017; Groom et al., 2016) only one structure containing both 4-methoxypyridine and thiocyanate ligands is reported. It consists of discrete complexes with ruthenium(II) as the central cation coordinated by two thiocyanate anions and four 4-methoxypyridine molecules (Cadranel et al., 2016). The structures of several ferrate complexes are deposited where FeII or FeIII cations are present. With FeII, this includes ((C2H5)4N)4[Fe(NCS)6] (Krautscheid & Gerber, 1999) or (2,2′-Hbpe)4[Fe(NCS)6]·4H2O where 2,2′-Hbpe is 1-(2-pyridinium)-2-(2-pyridyl)ethylene (Briceño & Hill, 2012). Several complexes in which the FeIII cation is octahedrally coordinated by six thiocyanate anions are also known, like in (C4H12N)3[Fe(SCN)6]·4H2O (Addison et al., 2005), or in [Ru(phen)3](NCS)[Fe(NCS)4]·H2O (phen: 1,10-phenanthroline), in which it is tetrahedrally coordinated (Ghazzali et al., 2008). Moreover, with pyridine as ligand and pyridinium as cation, two structures are reported with a coordination identical to those in the title compound. In the structure of (C5H6N)2[Fe(SCN)5(C5H5N)]·C5H5N, the FeIII cations are octahedrally coordinated by five thiocyanate anions and one pyridine ligand (Wood et al., 2015). In the structure of (C5H6N)[Fe(SCN)4(C5H5N)2] the FeIII cations are coordinated by two neutral pyridine ligands and four thiocyanate anions (Shylin et al., 2013). However, structures in which three different coordination spheres are simultaneously present like in the title compound have not been reported to date.
5. Synthesis and crystallization
Iron(II) chloride tetrahydrate was obtained from Sigma Aldrich, potassium thiocyanate from Fluka and 4-methoxypyridine from TCI. No further purification was carried out.
49.7 mg iron(II) chloride tetrahydrate (0.25 mmol) and 48.6 mg potassium thiocyanate (0.50 mmol) were reacted with 50.8 µl 4-methoxypyridine (0.50 mmol) in 2.0 ml water at room temperature. After stirring the mixture for three hours, the resulting powder was filtered off and the filtrate was let to evaporate slowly at room temperature. After several weeks single crystals suitable for single crystal X-ray analysis were obtained. The synthesis of larger and pure amounts of the title compound was not successful because in all batches additional crystalline phases were present (Supplementary Fig. S1).
6. Refinement
Crystal data, data collection and structure . The C—H and N—H hydrogen atoms were located in a difference-Fourier map but were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip), and refined with Uiso(H) = 1.2Ueq(C or N) (1.5 for methyl H atoms) using a riding model with Caromatic—H = 0.95 Å, Cmethyl—H = 0.98 Å and N—H = 0.88 Å. One of the four crystallographically independent 4-methoxypyridinium cations is disordered over two sets of sites and was refined with a split model using restraints. The sites with minor occupation (occupancy 0.22) were refined with isotropic displacement parameters, the sites of the major component with anisotropic displacement parameters.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1821019
https://doi.org/10.1107/S2056989018001883/wm5434sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018001883/wm5434Isup2.hkl
Fig. S1 Experimental XRPD pattern of a representative batch obtained from the synthesis of the title compound (top) and XRPD pattern of the title compound calculated from single crystal data (bottom). DOI: https://doi.org/10.1107/S2056989018001883/wm5434sup3.tif
Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).(C6H8NO)8[Fe(NCS)4(C6H7NO)2] [Fe(NCS)5(C6H7NO)]2[Fe(NCS)6] | F(000) = 5552 |
Mr = 2702.57 | Dx = 1.470 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 35.5034 (8) Å | Cell parameters from 41955 reflections |
b = 10.5199 (1) Å | θ = 1.3–25.0° |
c = 35.7432 (8) Å | µ = 0.88 mm−1 |
β = 113.864 (2)° | T = 170 K |
V = 12208.5 (4) Å3 | Block, brown |
Z = 4 | 0.42 × 0.23 × 0.13 mm |
Stoe IPDS-2 diffractometer | 9204 reflections with I > 2σ(I) |
ω scans | Rint = 0.050 |
Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2008) | θmax = 25.0°, θmin = 1.3° |
Tmin = 0.607, Tmax = 0.806 | h = −42→42 |
41955 measured reflections | k = −11→12 |
10715 independent reflections | l = −42→40 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0524P)2 + 13.0479P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.106 | (Δ/σ)max = 0.003 |
S = 1.04 | Δρmax = 0.86 e Å−3 |
10715 reflections | Δρmin = −0.67 e Å−3 |
763 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00035 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.5000 | 0.79411 (4) | 0.7500 | 0.03724 (12) | |
Fe2 | 0.71066 (2) | 1.07287 (4) | 0.84000 (2) | 0.04926 (12) | |
Fe3 | 0.5000 | 0.0000 | 0.5000 | 0.03680 (12) | |
N1 | 0.52452 (6) | 0.9347 (2) | 0.79210 (6) | 0.0445 (5) | |
C1 | 0.53236 (7) | 1.0362 (2) | 0.80667 (7) | 0.0392 (5) | |
S1 | 0.54416 (2) | 1.17539 (7) | 0.82712 (2) | 0.05421 (18) | |
N2 | 0.52698 (7) | 0.6624 (2) | 0.79435 (8) | 0.0556 (6) | |
C2 | 0.54258 (8) | 0.5929 (2) | 0.82173 (8) | 0.0452 (6) | |
S2 | 0.56402 (3) | 0.49338 (7) | 0.85800 (2) | 0.0700 (2) | |
N3 | 0.68743 (8) | 0.9154 (3) | 0.85615 (8) | 0.0674 (7) | |
C3 | 0.67683 (8) | 0.8151 (4) | 0.86277 (9) | 0.0601 (8) | |
S3 | 0.66233 (3) | 0.67745 (10) | 0.87176 (3) | 0.0744 (3) | |
N4 | 0.73167 (7) | 1.2305 (3) | 0.81932 (8) | 0.0579 (6) | |
C4 | 0.74817 (8) | 1.3210 (3) | 0.81490 (9) | 0.0510 (6) | |
S4 | 0.77159 (3) | 1.44758 (9) | 0.80971 (3) | 0.0805 (3) | |
N5 | 0.74237 (7) | 0.9600 (3) | 0.81615 (7) | 0.0565 (6) | |
C5 | 0.76540 (8) | 0.8855 (3) | 0.81352 (8) | 0.0443 (6) | |
S5 | 0.79698 (2) | 0.78076 (7) | 0.81075 (3) | 0.0610 (2) | |
N6 | 0.67957 (8) | 1.1883 (3) | 0.86335 (8) | 0.0686 (7) | |
C6 | 0.67073 (8) | 1.2423 (3) | 0.88703 (8) | 0.0475 (6) | |
S6 | 0.65888 (3) | 1.31425 (9) | 0.92017 (4) | 0.0839 (3) | |
N7 | 0.76055 (8) | 1.0821 (3) | 0.89460 (8) | 0.0776 (9) | |
C7 | 0.78393 (8) | 1.1252 (3) | 0.92523 (8) | 0.0550 (7) | |
S7 | 0.81637 (3) | 1.18196 (10) | 0.96765 (3) | 0.0776 (3) | |
N8 | 0.55865 (7) | 0.0555 (2) | 0.53986 (7) | 0.0478 (5) | |
C8 | 0.59190 (8) | 0.0635 (3) | 0.56455 (8) | 0.0455 (6) | |
S8 | 0.63856 (2) | 0.07056 (9) | 0.59923 (2) | 0.0672 (2) | |
N9 | 0.47535 (7) | 0.1365 (2) | 0.52431 (7) | 0.0504 (5) | |
C9 | 0.46529 (8) | 0.2161 (2) | 0.54081 (8) | 0.0440 (6) | |
S9 | 0.45060 (3) | 0.32654 (7) | 0.56329 (3) | 0.0669 (2) | |
N10 | 0.49907 (7) | −0.1274 (2) | 0.54230 (7) | 0.0515 (5) | |
C10 | 0.49663 (8) | −0.2122 (3) | 0.56219 (8) | 0.0480 (6) | |
S10 | 0.49314 (3) | −0.33036 (9) | 0.58901 (3) | 0.0790 (3) | |
N11 | 0.44671 (6) | 0.77950 (18) | 0.76427 (6) | 0.0391 (4) | |
C11 | 0.40853 (7) | 0.7706 (2) | 0.73448 (8) | 0.0420 (5) | |
H11 | 0.4052 | 0.7838 | 0.7070 | 0.050* | |
C12 | 0.37417 (8) | 0.7434 (2) | 0.74160 (8) | 0.0439 (5) | |
H12 | 0.3478 | 0.7392 | 0.7196 | 0.053* | |
C13 | 0.37876 (8) | 0.7224 (2) | 0.78148 (8) | 0.0435 (6) | |
C14 | 0.41790 (8) | 0.7334 (2) | 0.81264 (8) | 0.0448 (6) | |
H14 | 0.4220 | 0.7209 | 0.8403 | 0.054* | |
C15 | 0.45048 (8) | 0.7622 (2) | 0.80300 (7) | 0.0419 (5) | |
H15 | 0.4770 | 0.7705 | 0.8246 | 0.050* | |
O11 | 0.34810 (6) | 0.6914 (2) | 0.79279 (6) | 0.0558 (5) | |
C16 | 0.30703 (8) | 0.6808 (3) | 0.76090 (10) | 0.0643 (8) | |
H16A | 0.2982 | 0.7638 | 0.7479 | 0.096* | |
H16B | 0.2880 | 0.6524 | 0.7728 | 0.096* | |
H16C | 0.3071 | 0.6190 | 0.7404 | 0.096* | |
N21 | 0.65815 (6) | 1.07258 (19) | 0.78190 (6) | 0.0390 (4) | |
C21 | 0.66158 (7) | 1.0628 (2) | 0.74598 (7) | 0.0402 (5) | |
H21 | 0.6884 | 1.0570 | 0.7464 | 0.048* | |
C22 | 0.62854 (7) | 1.0607 (2) | 0.70855 (7) | 0.0415 (5) | |
H22 | 0.6325 | 1.0533 | 0.6839 | 0.050* | |
C23 | 0.58915 (7) | 1.0696 (2) | 0.70784 (7) | 0.0401 (5) | |
C24 | 0.58506 (7) | 1.0811 (2) | 0.74488 (7) | 0.0394 (5) | |
H24 | 0.5586 | 1.0884 | 0.7453 | 0.047* | |
C25 | 0.61953 (7) | 1.0817 (2) | 0.78039 (7) | 0.0391 (5) | |
H25 | 0.6163 | 1.0889 | 0.8054 | 0.047* | |
O21 | 0.55360 (5) | 1.06869 (18) | 0.67422 (5) | 0.0500 (4) | |
C26 | 0.55563 (10) | 1.0511 (3) | 0.63513 (8) | 0.0603 (7) | |
H26C | 0.5717 | 1.1203 | 0.6304 | 0.091* | |
H26B | 0.5277 | 1.0515 | 0.6135 | 0.091* | |
H26A | 0.5689 | 0.9696 | 0.6349 | 0.091* | |
N31 | 0.73444 (8) | 0.1116 (4) | 0.61226 (9) | 0.0760 (8) | |
H31A | 0.7380 | 0.1133 | 0.6381 | 0.091* | |
C31 | 0.74033 (11) | 0.0049 (4) | 0.59560 (13) | 0.0812 (10) | |
H31 | 0.7470 | −0.0709 | 0.6114 | 0.097* | |
C32 | 0.73708 (10) | 0.0020 (4) | 0.55662 (12) | 0.0735 (9) | |
H32 | 0.7416 | −0.0746 | 0.5450 | 0.088* | |
C33 | 0.72697 (9) | 0.1138 (3) | 0.53394 (9) | 0.0618 (8) | |
C34 | 0.72211 (9) | 0.2252 (4) | 0.55238 (10) | 0.0655 (8) | |
H34 | 0.7164 | 0.3030 | 0.5376 | 0.079* | |
C35 | 0.72563 (9) | 0.2221 (4) | 0.59177 (10) | 0.0697 (9) | |
H35 | 0.7219 | 0.2973 | 0.6046 | 0.084* | |
O31 | 0.72109 (8) | 0.1230 (3) | 0.49454 (7) | 0.0789 (7) | |
C36 | 0.72391 (14) | 0.0086 (5) | 0.47393 (14) | 0.1034 (15) | |
H36A | 0.7520 | −0.0249 | 0.4866 | 0.155* | |
H36B | 0.7170 | 0.0273 | 0.4450 | 0.155* | |
H36C | 0.7046 | −0.0546 | 0.4760 | 0.155* | |
N41 | 0.60287 (10) | 0.4088 (3) | 0.79138 (10) | 0.0577 (8) | 0.78 |
H41A | 0.6064 | 0.4147 | 0.8171 | 0.069* | 0.78 |
C41 | 0.56493 (12) | 0.4082 (4) | 0.76217 (14) | 0.0584 (9) | 0.78 |
H41 | 0.5421 | 0.4127 | 0.7696 | 0.070* | 0.78 |
C42 | 0.55780 (17) | 0.4013 (4) | 0.7213 (2) | 0.0517 (12) | 0.78 |
H42 | 0.5306 | 0.4029 | 0.7006 | 0.062* | 0.78 |
C43 | 0.59162 (14) | 0.3921 (4) | 0.71152 (19) | 0.0500 (9) | 0.78 |
C44 | 0.63139 (17) | 0.3912 (4) | 0.74297 (19) | 0.0556 (11) | 0.78 |
H44 | 0.6548 | 0.3842 | 0.7366 | 0.067* | 0.78 |
C45 | 0.63606 (14) | 0.4005 (4) | 0.7822 (2) | 0.0588 (10) | 0.78 |
H45 | 0.6629 | 0.4012 | 0.8035 | 0.071* | 0.78 |
O41 | 0.58854 (16) | 0.3815 (4) | 0.67352 (15) | 0.0650 (9) | 0.78 |
C46 | 0.54772 (19) | 0.3796 (5) | 0.64126 (18) | 0.0760 (15) | 0.78 |
H46A | 0.5316 | 0.3117 | 0.6465 | 0.114* | 0.78 |
H46B | 0.5496 | 0.3644 | 0.6150 | 0.114* | 0.78 |
H46C | 0.5343 | 0.4616 | 0.6404 | 0.114* | 0.78 |
N41' | 0.5283 (4) | 0.3881 (14) | 0.6671 (4) | 0.078 (4)* | 0.22 |
H41B | 0.5037 | 0.3847 | 0.6470 | 0.094* | 0.22 |
C41' | 0.5639 (9) | 0.387 (2) | 0.6578 (8) | 0.068 (6)* | 0.22 |
H41C | 0.5614 | 0.3769 | 0.6304 | 0.081* | 0.22 |
C42' | 0.6009 (7) | 0.399 (2) | 0.6891 (7) | 0.056 (6)* | 0.22 |
H42' | 0.6252 | 0.4012 | 0.6840 | 0.067* | 0.22 |
C43' | 0.6036 (6) | 0.4100 (15) | 0.7292 (5) | 0.040 (4)* | 0.22 |
C44' | 0.5661 (5) | 0.4075 (17) | 0.7368 (6) | 0.038 (4)* | 0.22 |
H44' | 0.5672 | 0.4152 | 0.7637 | 0.046* | 0.22 |
C45' | 0.5316 (6) | 0.3944 (15) | 0.7055 (5) | 0.068 (4)* | 0.22 |
H45' | 0.5071 | 0.3890 | 0.7101 | 0.081* | 0.22 |
O41' | 0.6404 (4) | 0.4209 (13) | 0.7590 (5) | 0.060 (4)* | 0.22 |
C46' | 0.6450 (6) | 0.430 (2) | 0.8004 (6) | 0.071 (6)* | 0.22 |
H46D | 0.6338 | 0.5110 | 0.8046 | 0.107* | 0.22 |
H46E | 0.6743 | 0.4248 | 0.8186 | 0.107* | 0.22 |
H46F | 0.6302 | 0.3597 | 0.8064 | 0.107* | 0.22 |
N51 | 0.59908 (9) | 1.0443 (3) | 0.92277 (9) | 0.0739 (8) | |
H51A | 0.5915 | 1.1152 | 0.9086 | 0.089* | |
C51 | 0.59439 (14) | 0.9349 (4) | 0.90294 (11) | 0.0872 (12) | |
H51 | 0.5846 | 0.9352 | 0.8740 | 0.105* | |
C52 | 0.60336 (12) | 0.8228 (3) | 0.92326 (10) | 0.0726 (9) | |
H52 | 0.5996 | 0.7448 | 0.9088 | 0.087* | |
C53 | 0.61806 (8) | 0.8244 (3) | 0.96546 (9) | 0.0534 (7) | |
C54 | 0.62320 (9) | 0.9399 (3) | 0.98531 (9) | 0.0586 (7) | |
H54 | 0.6333 | 0.9430 | 1.0143 | 0.070* | |
C55 | 0.61375 (9) | 1.0490 (3) | 0.96308 (11) | 0.0658 (8) | |
H55 | 0.6177 | 1.1288 | 0.9766 | 0.079* | |
O51 | 0.62817 (7) | 0.7208 (2) | 0.98876 (7) | 0.0753 (6) | |
C56 | 0.62525 (15) | 0.5989 (4) | 0.96868 (15) | 0.1087 (16) | |
H56A | 0.5970 | 0.5862 | 0.9484 | 0.163* | |
H56B | 0.6325 | 0.5308 | 0.9891 | 0.163* | |
H56C | 0.6442 | 0.5975 | 0.9550 | 0.163* | |
N61 | 0.63662 (9) | 0.7464 (3) | 0.60504 (10) | 0.0733 (8) | |
H61A | 0.6463 | 0.8241 | 0.6110 | 0.088* | |
C61 | 0.65506 (10) | 0.6400 (4) | 0.62406 (10) | 0.0738 (10) | |
H61 | 0.6803 | 0.6450 | 0.6476 | 0.089* | |
C62 | 0.63809 (9) | 0.5255 (4) | 0.61004 (9) | 0.0637 (8) | |
H62 | 0.6512 | 0.4497 | 0.6236 | 0.076* | |
C63 | 0.60118 (9) | 0.5200 (3) | 0.57551 (8) | 0.0516 (6) | |
C64 | 0.58280 (9) | 0.6310 (3) | 0.55646 (10) | 0.0603 (7) | |
H64 | 0.5576 | 0.6291 | 0.5328 | 0.072* | |
C65 | 0.60119 (10) | 0.7427 (3) | 0.57192 (12) | 0.0746 (9) | |
H65 | 0.5887 | 0.8199 | 0.5590 | 0.089* | |
O61 | 0.58606 (7) | 0.4041 (2) | 0.56325 (7) | 0.0689 (6) | |
C66 | 0.54801 (13) | 0.3931 (4) | 0.52734 (11) | 0.0837 (11) | |
H66A | 0.5256 | 0.4317 | 0.5328 | 0.125* | |
H66B | 0.5419 | 0.3032 | 0.5205 | 0.125* | |
H66C | 0.5507 | 0.4370 | 0.5044 | 0.125* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0402 (3) | 0.0329 (2) | 0.0371 (3) | 0.000 | 0.0141 (2) | 0.000 |
Fe2 | 0.0431 (2) | 0.0689 (3) | 0.0364 (2) | −0.00179 (18) | 0.01665 (16) | −0.00331 (17) |
Fe3 | 0.0354 (2) | 0.0376 (3) | 0.0359 (2) | 0.00046 (19) | 0.0128 (2) | −0.00297 (19) |
N1 | 0.0445 (11) | 0.0497 (13) | 0.0382 (11) | −0.0020 (10) | 0.0156 (9) | −0.0005 (10) |
C1 | 0.0399 (12) | 0.0440 (14) | 0.0344 (11) | −0.0029 (10) | 0.0158 (10) | −0.0017 (11) |
S1 | 0.0670 (4) | 0.0429 (4) | 0.0535 (4) | −0.0062 (3) | 0.0252 (3) | −0.0091 (3) |
N2 | 0.0540 (13) | 0.0515 (13) | 0.0674 (15) | 0.0090 (11) | 0.0306 (12) | 0.0143 (12) |
C2 | 0.0533 (14) | 0.0360 (13) | 0.0497 (15) | 0.0000 (11) | 0.0243 (12) | 0.0047 (12) |
S2 | 0.1166 (7) | 0.0410 (4) | 0.0453 (4) | 0.0038 (4) | 0.0255 (4) | 0.0087 (3) |
N3 | 0.0582 (15) | 0.092 (2) | 0.0496 (14) | 0.0032 (14) | 0.0194 (12) | 0.0181 (14) |
C3 | 0.0410 (14) | 0.096 (2) | 0.0438 (15) | 0.0074 (15) | 0.0170 (12) | 0.0201 (15) |
S3 | 0.0578 (4) | 0.0962 (7) | 0.0681 (5) | −0.0018 (4) | 0.0242 (4) | 0.0257 (5) |
N4 | 0.0519 (13) | 0.0652 (16) | 0.0581 (15) | −0.0100 (12) | 0.0238 (12) | −0.0140 (12) |
C4 | 0.0421 (14) | 0.0595 (17) | 0.0497 (15) | −0.0029 (13) | 0.0167 (12) | −0.0123 (13) |
S4 | 0.1028 (7) | 0.0734 (6) | 0.0786 (6) | −0.0361 (5) | 0.0504 (5) | −0.0217 (5) |
N5 | 0.0493 (13) | 0.0680 (15) | 0.0513 (13) | 0.0066 (12) | 0.0193 (11) | 0.0020 (12) |
C5 | 0.0400 (13) | 0.0491 (15) | 0.0397 (13) | −0.0026 (12) | 0.0119 (10) | 0.0029 (11) |
S5 | 0.0506 (4) | 0.0549 (4) | 0.0701 (5) | 0.0091 (3) | 0.0168 (4) | −0.0054 (4) |
N6 | 0.0565 (14) | 0.103 (2) | 0.0492 (14) | −0.0064 (14) | 0.0242 (12) | −0.0212 (14) |
C6 | 0.0417 (13) | 0.0563 (16) | 0.0433 (14) | −0.0018 (12) | 0.0158 (11) | −0.0036 (12) |
S6 | 0.1018 (7) | 0.0733 (6) | 0.1058 (7) | −0.0133 (5) | 0.0722 (6) | −0.0343 (5) |
N7 | 0.0529 (14) | 0.135 (3) | 0.0435 (14) | −0.0044 (16) | 0.0175 (12) | −0.0062 (16) |
C7 | 0.0465 (15) | 0.076 (2) | 0.0409 (15) | 0.0066 (14) | 0.0165 (13) | 0.0043 (14) |
S7 | 0.0787 (6) | 0.0835 (6) | 0.0521 (4) | −0.0013 (5) | 0.0072 (4) | −0.0097 (4) |
N8 | 0.0423 (12) | 0.0512 (13) | 0.0470 (12) | −0.0013 (10) | 0.0150 (10) | −0.0038 (10) |
C8 | 0.0395 (14) | 0.0528 (15) | 0.0443 (14) | −0.0072 (11) | 0.0170 (12) | −0.0099 (12) |
S8 | 0.0401 (4) | 0.0985 (6) | 0.0536 (4) | −0.0165 (4) | 0.0094 (3) | −0.0112 (4) |
N9 | 0.0472 (12) | 0.0485 (13) | 0.0556 (13) | 0.0022 (10) | 0.0209 (11) | −0.0059 (11) |
C9 | 0.0434 (13) | 0.0418 (14) | 0.0479 (14) | −0.0017 (11) | 0.0195 (11) | −0.0038 (11) |
S9 | 0.0867 (6) | 0.0474 (4) | 0.0806 (5) | 0.0039 (4) | 0.0483 (5) | −0.0143 (4) |
N10 | 0.0538 (13) | 0.0515 (13) | 0.0470 (12) | −0.0035 (11) | 0.0181 (11) | −0.0014 (11) |
C10 | 0.0514 (15) | 0.0517 (15) | 0.0363 (13) | −0.0091 (12) | 0.0131 (11) | −0.0045 (12) |
S10 | 0.0975 (7) | 0.0740 (6) | 0.0533 (4) | −0.0277 (5) | 0.0180 (4) | 0.0145 (4) |
N11 | 0.0425 (11) | 0.0344 (10) | 0.0386 (10) | −0.0012 (8) | 0.0145 (9) | 0.0007 (8) |
C11 | 0.0442 (13) | 0.0386 (13) | 0.0404 (13) | −0.0004 (10) | 0.0142 (11) | 0.0019 (10) |
C12 | 0.0397 (12) | 0.0447 (14) | 0.0428 (13) | 0.0000 (11) | 0.0121 (11) | 0.0015 (11) |
C13 | 0.0412 (13) | 0.0424 (13) | 0.0489 (14) | 0.0035 (11) | 0.0205 (11) | 0.0039 (11) |
C14 | 0.0471 (13) | 0.0479 (14) | 0.0376 (13) | 0.0048 (11) | 0.0154 (11) | 0.0035 (11) |
C15 | 0.0412 (12) | 0.0412 (13) | 0.0399 (13) | 0.0017 (10) | 0.0130 (10) | 0.0000 (10) |
O11 | 0.0422 (10) | 0.0753 (13) | 0.0525 (11) | 0.0000 (9) | 0.0217 (9) | 0.0084 (10) |
C16 | 0.0409 (14) | 0.087 (2) | 0.0641 (19) | −0.0022 (15) | 0.0210 (14) | 0.0042 (17) |
N21 | 0.0408 (10) | 0.0408 (11) | 0.0374 (10) | −0.0014 (8) | 0.0178 (9) | −0.0010 (8) |
C21 | 0.0406 (12) | 0.0445 (13) | 0.0386 (12) | 0.0005 (10) | 0.0191 (10) | −0.0005 (10) |
C22 | 0.0461 (13) | 0.0445 (13) | 0.0378 (12) | 0.0031 (11) | 0.0210 (11) | 0.0006 (10) |
C23 | 0.0402 (12) | 0.0381 (13) | 0.0404 (13) | 0.0004 (10) | 0.0145 (10) | 0.0016 (10) |
C24 | 0.0392 (12) | 0.0376 (12) | 0.0442 (13) | 0.0000 (10) | 0.0199 (11) | 0.0014 (10) |
C25 | 0.0422 (12) | 0.0410 (13) | 0.0382 (12) | −0.0012 (10) | 0.0203 (10) | 0.0004 (10) |
O21 | 0.0444 (9) | 0.0641 (12) | 0.0374 (9) | 0.0043 (8) | 0.0123 (8) | 0.0020 (8) |
C26 | 0.0614 (17) | 0.076 (2) | 0.0365 (14) | 0.0080 (15) | 0.0126 (13) | −0.0004 (14) |
N31 | 0.0529 (15) | 0.121 (3) | 0.0520 (15) | −0.0178 (17) | 0.0194 (12) | 0.0008 (18) |
C31 | 0.064 (2) | 0.095 (3) | 0.081 (3) | −0.010 (2) | 0.0256 (19) | 0.014 (2) |
C32 | 0.0612 (19) | 0.085 (3) | 0.079 (2) | −0.0132 (17) | 0.0332 (17) | −0.0039 (19) |
C33 | 0.0499 (16) | 0.082 (2) | 0.0572 (17) | −0.0205 (15) | 0.0251 (14) | −0.0133 (16) |
C34 | 0.0546 (17) | 0.082 (2) | 0.0592 (18) | −0.0135 (16) | 0.0217 (15) | −0.0070 (16) |
C35 | 0.0484 (16) | 0.101 (3) | 0.0600 (19) | −0.0145 (17) | 0.0217 (15) | −0.0189 (19) |
O31 | 0.0853 (16) | 0.1038 (19) | 0.0560 (13) | −0.0289 (14) | 0.0372 (12) | −0.0195 (13) |
C36 | 0.101 (3) | 0.131 (4) | 0.097 (3) | −0.043 (3) | 0.060 (3) | −0.056 (3) |
N41 | 0.0628 (19) | 0.0545 (18) | 0.0594 (19) | 0.0086 (15) | 0.0285 (16) | −0.0037 (15) |
C41 | 0.055 (2) | 0.053 (2) | 0.073 (3) | 0.0061 (17) | 0.032 (2) | −0.0064 (19) |
C42 | 0.050 (3) | 0.048 (2) | 0.054 (3) | 0.0077 (18) | 0.018 (3) | −0.001 (2) |
C43 | 0.059 (2) | 0.0353 (19) | 0.062 (3) | 0.0048 (18) | 0.030 (3) | 0.006 (2) |
C44 | 0.052 (3) | 0.046 (2) | 0.077 (3) | 0.006 (2) | 0.034 (3) | 0.006 (2) |
C45 | 0.053 (2) | 0.043 (2) | 0.077 (3) | 0.0051 (18) | 0.023 (2) | 0.001 (2) |
O41 | 0.071 (3) | 0.065 (2) | 0.068 (3) | 0.006 (2) | 0.037 (2) | 0.013 (2) |
C46 | 0.087 (4) | 0.067 (3) | 0.068 (3) | 0.015 (3) | 0.025 (3) | 0.018 (3) |
N51 | 0.086 (2) | 0.0571 (16) | 0.0754 (19) | 0.0108 (15) | 0.0294 (16) | 0.0107 (14) |
C51 | 0.124 (3) | 0.077 (2) | 0.0504 (18) | 0.022 (2) | 0.024 (2) | 0.0067 (18) |
C52 | 0.096 (3) | 0.0576 (19) | 0.0496 (17) | 0.0106 (18) | 0.0145 (17) | −0.0042 (15) |
C53 | 0.0473 (14) | 0.0591 (17) | 0.0493 (15) | −0.0019 (13) | 0.0147 (12) | 0.0028 (13) |
C54 | 0.0509 (15) | 0.074 (2) | 0.0519 (16) | 0.0012 (14) | 0.0215 (13) | −0.0087 (15) |
C55 | 0.0527 (17) | 0.0586 (18) | 0.084 (2) | −0.0001 (14) | 0.0251 (16) | −0.0165 (17) |
O51 | 0.0763 (15) | 0.0694 (15) | 0.0645 (14) | −0.0028 (12) | 0.0123 (11) | 0.0188 (12) |
C56 | 0.112 (3) | 0.053 (2) | 0.113 (3) | −0.003 (2) | −0.004 (3) | 0.012 (2) |
N61 | 0.0665 (17) | 0.0770 (19) | 0.085 (2) | −0.0157 (15) | 0.0390 (16) | −0.0243 (17) |
C61 | 0.0502 (17) | 0.123 (3) | 0.0469 (17) | −0.006 (2) | 0.0188 (14) | −0.007 (2) |
C62 | 0.0531 (16) | 0.087 (2) | 0.0482 (16) | 0.0126 (16) | 0.0180 (14) | 0.0145 (16) |
C63 | 0.0528 (15) | 0.0569 (17) | 0.0464 (14) | 0.0053 (13) | 0.0215 (13) | 0.0054 (13) |
C64 | 0.0497 (15) | 0.0589 (18) | 0.0610 (18) | 0.0065 (14) | 0.0108 (14) | 0.0077 (14) |
C65 | 0.0600 (19) | 0.060 (2) | 0.095 (3) | 0.0046 (16) | 0.0228 (19) | 0.0008 (18) |
O61 | 0.0777 (14) | 0.0559 (13) | 0.0672 (13) | 0.0048 (11) | 0.0231 (12) | 0.0078 (10) |
C66 | 0.097 (3) | 0.072 (2) | 0.065 (2) | −0.022 (2) | 0.0148 (19) | −0.0037 (18) |
Fe1—N2 | 2.030 (2) | C43'—O41' | 1.31 (2) |
Fe1—N2i | 2.030 (2) | C43'—C44' | 1.46 (3) |
Fe1—N1i | 2.037 (2) | C44'—C45' | 1.29 (2) |
Fe1—N1 | 2.038 (2) | O41'—C46' | 1.42 (2) |
Fe1—N11i | 2.1550 (19) | N51—C55 | 1.320 (4) |
Fe1—N11 | 2.1551 (19) | N51—C51 | 1.326 (5) |
Fe2—N6 | 2.034 (3) | C51—C52 | 1.353 (5) |
Fe2—N3 | 2.036 (3) | C52—C53 | 1.382 (4) |
Fe2—N7 | 2.039 (3) | C53—O51 | 1.329 (4) |
Fe2—N5 | 2.045 (2) | C53—C54 | 1.381 (4) |
Fe2—N4 | 2.074 (3) | C54—C55 | 1.358 (5) |
Fe2—N21 | 2.158 (2) | O51—C56 | 1.453 (5) |
Fe3—N10 | 2.030 (2) | N61—C65 | 1.334 (5) |
Fe3—N10ii | 2.030 (2) | N61—C61 | 1.335 (5) |
Fe3—N9ii | 2.049 (2) | C61—C62 | 1.349 (5) |
Fe3—N9 | 2.049 (2) | C62—C63 | 1.391 (4) |
Fe3—N8ii | 2.075 (2) | C63—O61 | 1.332 (4) |
Fe3—N8 | 2.075 (2) | C63—C64 | 1.377 (4) |
N1—C1 | 1.171 (3) | C64—C65 | 1.349 (5) |
C1—S1 | 1.614 (3) | O61—C66 | 1.443 (4) |
N2—C2 | 1.166 (3) | C11—H11 | 0.9500 |
C2—S2 | 1.600 (3) | C12—H12 | 0.9500 |
N3—C3 | 1.176 (4) | C14—H14 | 0.9500 |
C3—S3 | 1.612 (4) | C15—H15 | 0.9500 |
N4—C4 | 1.162 (4) | C16—H16A | 0.9800 |
C4—S4 | 1.619 (3) | C16—H16B | 0.9800 |
N5—C5 | 1.163 (3) | C16—H16C | 0.9800 |
C5—S5 | 1.604 (3) | C21—H21 | 0.9500 |
N6—C6 | 1.162 (4) | C22—H22 | 0.9500 |
C6—S6 | 1.599 (3) | C24—H24 | 0.9500 |
N7—C7 | 1.165 (4) | C25—H25 | 0.9500 |
C7—S7 | 1.603 (3) | C26—H26C | 0.9800 |
N8—C8 | 1.156 (3) | C26—H26B | 0.9800 |
C8—S8 | 1.620 (3) | C26—H26A | 0.9800 |
N9—C9 | 1.161 (3) | N31—H31A | 0.8800 |
C9—S9 | 1.614 (3) | C31—H31 | 0.9500 |
N10—C10 | 1.166 (3) | C32—H32 | 0.9500 |
C10—S10 | 1.605 (3) | C34—H34 | 0.9500 |
N11—C11 | 1.346 (3) | C35—H35 | 0.9500 |
N11—C15 | 1.348 (3) | C36—H36A | 0.9800 |
C11—C12 | 1.373 (3) | C36—H36B | 0.9800 |
C12—C13 | 1.385 (4) | C36—H36C | 0.9800 |
C13—O11 | 1.346 (3) | N41—H41A | 0.8800 |
C13—C14 | 1.390 (4) | C41—H41 | 0.9500 |
C14—C15 | 1.368 (3) | C42—H42 | 0.9500 |
O11—C16 | 1.447 (3) | C44—H44 | 0.9500 |
N21—C21 | 1.342 (3) | C45—H45 | 0.9500 |
N21—C25 | 1.353 (3) | C46—H46A | 0.9800 |
C21—C22 | 1.377 (3) | C46—H46B | 0.9800 |
C22—C23 | 1.392 (3) | C46—H46C | 0.9800 |
C23—O21 | 1.345 (3) | N41'—H41B | 0.8800 |
C23—C24 | 1.394 (3) | C41'—H41C | 0.9500 |
C24—C25 | 1.361 (3) | C42'—H42' | 0.9500 |
O21—C26 | 1.440 (3) | C44'—H44' | 0.9500 |
N31—C31 | 1.326 (5) | C45'—H45' | 0.9500 |
N31—C35 | 1.342 (5) | C46'—H46D | 0.9800 |
C31—C32 | 1.351 (5) | C46'—H46E | 0.9800 |
C32—C33 | 1.391 (5) | C46'—H46F | 0.9800 |
C33—O31 | 1.341 (4) | N51—H51A | 0.8800 |
C33—C34 | 1.389 (5) | C51—H51 | 0.9500 |
C34—C35 | 1.363 (5) | C52—H52 | 0.9500 |
O31—C36 | 1.435 (5) | C54—H54 | 0.9500 |
N41—C41 | 1.329 (5) | C55—H55 | 0.9500 |
N41—C45 | 1.348 (6) | C56—H56A | 0.9800 |
C41—C42 | 1.381 (7) | C56—H56B | 0.9800 |
C42—C43 | 1.383 (6) | C56—H56C | 0.9800 |
C43—O41 | 1.323 (7) | N61—H61A | 0.8800 |
C43—C44 | 1.405 (7) | C61—H61 | 0.9500 |
C44—C45 | 1.346 (8) | C62—H62 | 0.9500 |
O41—C46 | 1.442 (7) | C64—H64 | 0.9500 |
N41'—C45' | 1.33 (2) | C65—H65 | 0.9500 |
N41'—C41' | 1.43 (3) | C66—H66A | 0.9800 |
C41'—C42' | 1.34 (3) | C66—H66B | 0.9800 |
C42'—C43' | 1.40 (3) | C66—H66C | 0.9800 |
N2—Fe1—N2i | 93.91 (15) | C51—C52—C53 | 118.5 (3) |
N2—Fe1—N1i | 176.31 (10) | O51—C53—C54 | 116.9 (3) |
N2i—Fe1—N1i | 89.62 (10) | O51—C53—C52 | 124.1 (3) |
N2—Fe1—N1 | 89.62 (10) | C54—C53—C52 | 119.0 (3) |
N2i—Fe1—N1 | 176.31 (10) | C55—C54—C53 | 119.5 (3) |
N1i—Fe1—N1 | 86.87 (12) | N51—C55—C54 | 120.1 (3) |
N2—Fe1—N11i | 87.37 (8) | C53—O51—C56 | 117.8 (3) |
N2i—Fe1—N11i | 87.05 (8) | C65—N61—C61 | 121.3 (3) |
N1i—Fe1—N11i | 91.76 (8) | N61—C61—C62 | 120.4 (3) |
N1—Fe1—N11i | 94.19 (8) | C61—C62—C63 | 119.0 (3) |
N2—Fe1—N11 | 87.05 (8) | O61—C63—C64 | 124.5 (3) |
N2i—Fe1—N11 | 87.37 (8) | O61—C63—C62 | 116.1 (3) |
N1i—Fe1—N11 | 94.19 (8) | C64—C63—C62 | 119.4 (3) |
N1—Fe1—N11 | 91.75 (8) | C65—C64—C63 | 118.9 (3) |
N11i—Fe1—N11 | 171.82 (11) | N61—C65—C64 | 121.0 (3) |
N6—Fe2—N3 | 91.15 (12) | C63—O61—C66 | 118.3 (3) |
N6—Fe2—N7 | 89.08 (11) | C11—C12—H12 | 120.6 |
N3—Fe2—N7 | 93.56 (12) | C13—C12—H12 | 120.6 |
N6—Fe2—N5 | 178.84 (12) | C15—C14—H14 | 120.3 |
N3—Fe2—N5 | 90.01 (11) | C13—C14—H14 | 120.3 |
N7—Fe2—N5 | 90.87 (11) | N11—C15—H15 | 118.5 |
N6—Fe2—N4 | 90.10 (11) | C14—C15—H15 | 118.5 |
N3—Fe2—N4 | 176.00 (10) | O11—C16—H16A | 109.5 |
N7—Fe2—N4 | 90.25 (12) | O11—C16—H16B | 109.5 |
N5—Fe2—N4 | 88.73 (10) | H16A—C16—H16B | 109.5 |
N6—Fe2—N21 | 89.70 (9) | O11—C16—H16C | 109.5 |
N3—Fe2—N21 | 88.88 (9) | H16A—C16—H16C | 109.5 |
N7—Fe2—N21 | 177.30 (12) | H16B—C16—H16C | 109.5 |
N5—Fe2—N21 | 90.29 (9) | N21—C21—H21 | 118.0 |
N4—Fe2—N21 | 87.34 (9) | C22—C21—H21 | 118.0 |
N10—Fe3—N10ii | 180.0 | C21—C22—H22 | 120.9 |
N10—Fe3—N9ii | 89.53 (9) | C23—C22—H22 | 120.9 |
N10ii—Fe3—N9ii | 90.46 (9) | C25—C24—H24 | 120.5 |
N10—Fe3—N9 | 90.46 (9) | C23—C24—H24 | 120.5 |
N10ii—Fe3—N9 | 89.54 (9) | N21—C25—H25 | 118.3 |
N9ii—Fe3—N9 | 180.00 (12) | C24—C25—H25 | 118.3 |
N10—Fe3—N8ii | 90.66 (9) | O21—C26—H26C | 109.5 |
N10ii—Fe3—N8ii | 89.34 (9) | O21—C26—H26B | 109.5 |
N9ii—Fe3—N8ii | 89.65 (9) | H26C—C26—H26B | 109.5 |
N9—Fe3—N8ii | 90.35 (9) | O21—C26—H26A | 109.5 |
N10—Fe3—N8 | 89.34 (9) | H26C—C26—H26A | 109.5 |
N10ii—Fe3—N8 | 90.66 (9) | H26B—C26—H26A | 109.5 |
N9ii—Fe3—N8 | 90.35 (9) | C31—N31—H31A | 120.5 |
N9—Fe3—N8 | 89.65 (9) | C35—N31—H31A | 117.2 |
N8ii—Fe3—N8 | 180.0 | N31—C31—H31 | 119.4 |
C1—N1—Fe1 | 160.8 (2) | C32—C31—H31 | 119.4 |
N1—C1—S1 | 178.8 (2) | C31—C32—H32 | 120.8 |
C2—N2—Fe1 | 175.4 (2) | C33—C32—H32 | 120.8 |
N2—C2—S2 | 177.7 (3) | C35—C34—H34 | 120.2 |
C3—N3—Fe2 | 170.6 (3) | C33—C34—H34 | 120.2 |
N3—C3—S3 | 179.9 (3) | N31—C35—H35 | 120.4 |
C4—N4—Fe2 | 168.0 (2) | C34—C35—H35 | 120.4 |
N4—C4—S4 | 178.9 (3) | O31—C36—H36A | 109.5 |
C5—N5—Fe2 | 161.5 (2) | O31—C36—H36B | 109.5 |
N5—C5—S5 | 178.6 (3) | H36A—C36—H36B | 109.5 |
C6—N6—Fe2 | 160.3 (3) | O31—C36—H36C | 109.5 |
N6—C6—S6 | 178.9 (3) | H36A—C36—H36C | 109.5 |
C7—N7—Fe2 | 158.5 (3) | H36B—C36—H36C | 109.5 |
N7—C7—S7 | 179.0 (4) | C41—N41—H41A | 119.5 |
C8—N8—Fe3 | 167.4 (2) | C45—N41—H41A | 119.5 |
N8—C8—S8 | 178.4 (3) | N41—C41—H41 | 119.2 |
C9—N9—Fe3 | 173.3 (2) | C42—C41—H41 | 119.2 |
N9—C9—S9 | 179.1 (3) | C41—C42—H42 | 121.2 |
C10—N10—Fe3 | 170.7 (2) | C43—C42—H42 | 121.2 |
N10—C10—S10 | 179.2 (3) | C45—C44—H44 | 120.2 |
C11—N11—C15 | 116.9 (2) | C43—C44—H44 | 120.2 |
C11—N11—Fe1 | 121.15 (16) | C44—C45—H45 | 119.8 |
C15—N11—Fe1 | 121.38 (16) | N41—C45—H45 | 119.8 |
N11—C11—C12 | 123.6 (2) | C45'—N41'—H41B | 119.2 |
C11—C12—C13 | 118.7 (2) | C41'—N41'—H41B | 119.2 |
O11—C13—C12 | 125.1 (2) | C42'—C41'—H41C | 121.2 |
O11—C13—C14 | 116.6 (2) | N41'—C41'—H41C | 121.2 |
C12—C13—C14 | 118.3 (2) | C41'—C42'—H42' | 120.1 |
C15—C14—C13 | 119.3 (2) | C43'—C42'—H42' | 120.1 |
N11—C15—C14 | 123.1 (2) | C45'—C44'—H44' | 121.4 |
C13—O11—C16 | 117.5 (2) | C43'—C44'—H44' | 121.4 |
C21—N21—C25 | 116.7 (2) | C44'—C45'—H45' | 118.2 |
C21—N21—Fe2 | 122.91 (16) | N41'—C45'—H45' | 118.2 |
C25—N21—Fe2 | 120.35 (15) | O41'—C46'—H46D | 109.5 |
N21—C21—C22 | 124.0 (2) | O41'—C46'—H46E | 109.5 |
C21—C22—C23 | 118.1 (2) | H46D—C46'—H46E | 109.5 |
O21—C23—C22 | 126.1 (2) | O41'—C46'—H46F | 109.5 |
O21—C23—C24 | 115.4 (2) | H46D—C46'—H46F | 109.5 |
C22—C23—C24 | 118.6 (2) | H46E—C46'—H46F | 109.5 |
C25—C24—C23 | 119.1 (2) | C55—N51—H51A | 119.3 |
N21—C25—C24 | 123.4 (2) | C51—N51—H51A | 119.1 |
C23—O21—C26 | 118.1 (2) | N51—C51—H51 | 119.4 |
C31—N31—C35 | 122.2 (3) | C52—C51—H51 | 119.4 |
N31—C31—C32 | 121.3 (4) | C51—C52—H52 | 120.7 |
C31—C32—C33 | 118.4 (4) | C53—C52—H52 | 120.7 |
O31—C33—C34 | 116.2 (3) | C55—C54—H54 | 120.2 |
O31—C33—C32 | 124.5 (3) | C53—C54—H54 | 120.2 |
C34—C33—C32 | 119.3 (3) | N51—C55—H55 | 119.9 |
C35—C34—C33 | 119.6 (4) | C54—C55—H55 | 119.9 |
N31—C35—C34 | 119.2 (3) | O51—C56—H56A | 109.5 |
C33—O31—C36 | 117.7 (3) | O51—C56—H56B | 109.5 |
C41—N41—C45 | 121.1 (4) | H56A—C56—H56B | 109.5 |
N41—C41—C42 | 121.7 (4) | O51—C56—H56C | 109.5 |
C41—C42—C43 | 117.7 (5) | H56A—C56—H56C | 109.5 |
O41—C43—C42 | 123.1 (5) | H56B—C56—H56C | 109.5 |
O41—C43—C44 | 117.4 (4) | C65—N61—H61A | 112.2 |
C42—C43—C44 | 119.5 (6) | C61—N61—H61A | 126.3 |
C45—C44—C43 | 119.6 (5) | N61—C61—H61 | 119.8 |
C44—C45—N41 | 120.5 (4) | C62—C61—H61 | 119.8 |
C43—O41—C46 | 117.5 (4) | C61—C62—H62 | 120.5 |
C45'—N41'—C41' | 121.6 (18) | C63—C62—H62 | 120.5 |
C42'—C41'—N41' | 118 (2) | C65—C64—H64 | 120.6 |
C41'—C42'—C43' | 120 (2) | C63—C64—H64 | 120.6 |
O41'—C43'—C42' | 117.9 (18) | N61—C65—H65 | 119.5 |
O41'—C43'—C44' | 122.3 (15) | C64—C65—H65 | 119.5 |
C42'—C43'—C44' | 119.8 (18) | O61—C66—H66A | 109.5 |
C45'—C44'—C43' | 117.3 (18) | O61—C66—H66B | 109.5 |
C44'—C45'—N41' | 123.7 (18) | H66A—C66—H66B | 109.5 |
C43'—O41'—C46' | 120.3 (16) | O61—C66—H66C | 109.5 |
C55—N51—C51 | 121.6 (3) | H66A—C66—H66C | 109.5 |
N51—C51—C52 | 121.2 (3) | H66B—C66—H66C | 109.5 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···N5 | 0.95 | 2.66 | 3.141 (3) | 112 |
C25—H25···N6 | 0.95 | 2.58 | 3.079 (4) | 113 |
N31—H31A···S4iii | 0.88 | 2.67 | 3.359 (3) | 136 |
N41—H41A···S2 | 0.88 | 2.62 | 3.320 (3) | 137 |
C46—H46C···S10iv | 0.98 | 2.85 | 3.691 (5) | 144 |
N41′—H41B···S2i | 0.88 | 2.60 | 3.225 (14) | 129 |
N41′—H41B···S9 | 0.88 | 2.88 | 3.676 (15) | 151 |
C42′—H42′···S5v | 0.95 | 2.98 | 3.83 (3) | 151 |
C45′—H45′···S1vi | 0.95 | 2.86 | 3.370 (18) | 115 |
C45′—H45′···S2i | 0.95 | 2.92 | 3.394 (19) | 112 |
C46′—H46D···S3 | 0.98 | 2.81 | 3.52 (2) | 130 |
N51—H51A···S1 | 0.88 | 2.78 | 3.464 (3) | 135 |
C54—H54···S8vii | 0.95 | 2.97 | 3.885 (3) | 163 |
C56—H56B···S7viii | 0.98 | 2.90 | 3.793 (4) | 152 |
N61—H61A···S8iv | 0.88 | 2.62 | 3.419 (3) | 151 |
C62—H62···S5v | 0.95 | 2.93 | 3.831 (3) | 160 |
C65—H65···N8iv | 0.95 | 2.68 | 3.608 (4) | 167 |
Symmetry codes: (i) −x+1, y, −z+3/2; (iii) −x+3/2, y−3/2, −z+3/2; (iv) x, y+1, z; (v) −x+3/2, y−1/2, −z+3/2; (vi) −x+1, y−1, −z+3/2; (vii) x, −y+1, z+1/2; (viii) −x+3/2, −y+3/2, −z+2. |
Acknowledgements
We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.
Funding information
This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.
References
Addison, A. W., Butcher, R. J., Homonnay, Z., Pavlishchuk, V. V., Prushan, M. J. & Thompson, L. K. (2005). Eur. J. Inorg. Chem. pp. 2404–2408. Web of Science CSD CrossRef Google Scholar
Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Briceño, A. & Hill, Y. (2012). CrystEngComm, 14, 6121–6125. Google Scholar
Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464–5475. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ghazzali, M., Langer, V. & Öhrström, L. (2008). J. Solid State Chem. 181, 2191–2198. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099–8109. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041–2044. CrossRef CAS Google Scholar
Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388. CAS Google Scholar
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528. Web of Science CSD CrossRef CAS Google Scholar
Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544. Web of Science CrossRef CAS PubMed Google Scholar
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243. Web of Science CSD CrossRef CAS PubMed Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shylin, S. I., Gural'skiy, I. A., Haukka, M., Kapshuk, A. A. & Prisyazhnaya, E. V. (2013). Acta Cryst. E69, m298–m299. CSD CrossRef IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718. Google Scholar
Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068. Web of Science PubMed Google Scholar
Wood, P. A., Gass, I. & Brechin, E. (2015). Private communication (CCDC1411039). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.