research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of octa­kis­(4-meth­­oxy­pyridinium) bis­­(4-meth­­oxy­pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III) bis­­[(4-meth­oxypyri­dine-κN)penta­kis­­(thio­cyanato-κN)ferrate(III)] hexa­kis­(thio­cyanato-κN)ferrate(III) with iron in three different octa­hedral coordination environments

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 January 2018; accepted 31 January 2018; online 2 February 2018)

The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octa­hedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thio­cyanate anions and 4-meth­oxy­pyridine ligands. Charge balance is achieved by 4-meth­oxy­pyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and 4-meth­oxy­pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter­actions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding inter­actions involving the pyridinium N—H groups of the cations and the thio­cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.

1. Chemical context

Recently, the synthesis of new coordination compounds based on paramagnetic metal cations has become increasingly inter­esting. In particular, compounds in which the paramagnetic metal cations are linked by small-sized anionic ligands that can mediate magnetic exchange are of special importance. For example, this can be achieved by thio- or seleno­cyanate anions that are able to coordinate to a central metal cation in different ways (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Guillet et al., 2016[Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099-8109.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). Most of the reported compounds contain terminally N-bonded thio­cyanate ligands, whereas compounds with these ligands in a bridging mode are relatively rare. Nevertheless, the latter can be obtained by thermal decomposition of precursor complexes with terminal anionic ligands, as we have recently shown. With monodentate co-ligands, such as simple pyridine derivatives substituted in the 4-position, we were able to synthesize a number of compounds (predominantly including divalent cobalt or nickel), in which the metal cations are linked by pairs of anionic ligands into chains (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.],b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Wöhlert et al., 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.]; Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]). In this context, divalent iron compounds are also of inter­est, but are scarce in comparison to divalent cobalt or nickel compounds because they are more difficult to synthesize in solution due to the poor oxidation stability of FeII. Therefore, we attempted to prepare either a coordination polymer with planned composition [Fe(NCS)2(4-meth­oxy­pyridine)2]n or a discrete complex with composition [Fe(NCS)2(4-meth­oxy­pyridine)4], which on thermal annealing might be transformed into the desired coordination polymer. 4-Meth­oxy­pyridine was selected because this ligand exhibits a strong donor substituent in the 4-position in comparison to the pyridine or 1,2-bis­(4-pyrid­yl)ethyl­ene ligands we have already investigated (Boeckmann & Näther, 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]; Wöhlert et al., 2013[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.]). In the course of these investigations, we accidently obtained crystals of the title compound, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], indicating that FeII was oxidized to FeIII.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises three iron(III) cations, of which one is located on a centre of inversion (Fe3), one on a twofold rotation axis (Fe1) and one in a general position (Fe2), as well as ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and four 4-meth­oxy­pyridinium cations, one of which is disordered over two sets of sites.

The three FeIII cations form discrete anionic complexes that are charge-balanced by the 4-meth­oxy­pyridinium cations. For each of the cations, the N—H hydrogen atom was clearly located, indicating an oxidation state of +III for iron. Each of the three FeIII cations shows a different octa­hedral coordin­ation environment. Fe1 is coordinated by two pairs of symmetry-related terminal-N-bonding thio­cyanate anions defining the equatorial plane of the octa­hedron, whereas the two axial positions are occupied by the N atoms of two symmetry-related 4-meth­oxy­pyridine ligands (Fig. 1[link]). The Fe1—N distances to the anionic ligands are similar and significantly shorter than those to the neutral 4-meth­oxy­pyridine co-ligands (Table 1[link]). Fe2 is coordinated by five crystallographically independent N-bonding thio­cyanate anions and by one 4-meth­oxy­pyridine ligand that occupies one of the axial positions (Fig. 1[link]). The Fe2—N bond lengths are comparable to those of Fe1, except that of an equatorial thio­cyanate anion (N4) that is somewhat elongated. Inter­estingly, the distance to the N7 atom of the thio­cyanate anion that is trans to the 4-meth­oxy­pridine ligand is comparable to the other short Fe—N distances (Table 1[link]). Fe3 is octa­hedrally coordinated by three pairs of N-bonding thio­cyanate anions related by a centre of inversion (Fig. 1[link]). The Fe—N distances scatter over a wider range between 2.030 (2) and 2.075 (2) Å (Table 1[link]). To investigate the deviations of the N—Fe—N bond angles from the ideal values, the octa­hedral angle variance σθ〈oct〉2, which was introduced as a measure of distortion in octa­hedra (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]), was calculated for each of the discrete complexes. The greatest value of σθ〈oct〉2 is found for Fe1 (σθ〈oct〉2 = 8.89) followed by Fe2 (σθ〈oct〉2 = 2.34) and Fe3 (σθ〈oct〉2 = 0.28). Thus for Fe1, the bond angles deviate more from the ideal values compared to Fe2 and Fe3, with the latter showing the smallest distortion from an ideal octa­hedron.

Table 1
Selected geometric parameters (Å, °)

Fe1—N2 2.030 (2) Fe2—N5 2.045 (2)
Fe1—N1 2.038 (2) Fe2—N4 2.074 (3)
Fe1—N11 2.1551 (19) Fe2—N21 2.158 (2)
Fe2—N6 2.034 (3) Fe3—N10 2.030 (2)
Fe2—N3 2.036 (3) Fe3—N9 2.049 (2)
Fe2—N7 2.039 (3) Fe3—N8 2.075 (2)
       
N2—Fe1—N2i 93.91 (15) N6—Fe2—N4 90.10 (11)
N2—Fe1—N1i 176.31 (10) N3—Fe2—N4 176.00 (10)
N2—Fe1—N1 89.62 (10) N7—Fe2—N4 90.25 (12)
N1i—Fe1—N1 86.87 (12) N5—Fe2—N4 88.73 (10)
N2—Fe1—N11i 87.37 (8) N6—Fe2—N21 89.70 (9)
N2—Fe1—N11 87.05 (8) N3—Fe2—N21 88.88 (9)
N1i—Fe1—N11 94.19 (8) N7—Fe2—N21 177.30 (12)
N1—Fe1—N11 91.75 (8) N5—Fe2—N21 90.29 (9)
N11i—Fe1—N11 171.82 (11) N4—Fe2—N21 87.34 (9)
N6—Fe2—N3 91.15 (12) N10—Fe3—N9ii 89.53 (9)
N6—Fe2—N7 89.08 (11) N10—Fe3—N9 90.46 (9)
N3—Fe2—N7 93.56 (12) N10—Fe3—N8ii 90.66 (9)
N6—Fe2—N5 178.84 (12) N9—Fe3—N8ii 90.35 (9)
N3—Fe2—N5 90.01 (11) N10—Fe3—N8 89.34 (9)
N7—Fe2—N5 90.87 (11) N9—Fe3—N8 89.65 (9)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1.
[Figure 1]
Figure 1
View of the three different coordination spheres of the FeIII cations in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, y, [{3\over 2}] − z; (ii) 1 − x, −y, 1 − z.]

It is noted that a number of discrete anionic complexes based, for example, on MnII or FeII thio­cyanates, are reported in which the metal cations are four-, five-, or sixfold coordinated by anionic and additional neutral co-ligands. What makes the title compound so special is the fact that its crystal structure contains three different coordination spheres for iron in one crystal structure, suggesting a snapshot of the species that might be present in equillibrium in solution. Therefore it is not surprising that pure samples were not obtained under the given conditions. X-ray powder diffraction revealed that for all batches, large amounts of additional crystalline phases were present that could not be identified (see Fig. S1 in the Supporting information).

The negative charges of the anionic complexes in the title compound (–1 for Fe1, 2× −2 for Fe2 and −3 for Fe3) are compensated by eight 4-meth­oxy­pyridinium cations, of which each two are pairwise related by symmetry (Fig. 2[link]).

[Figure 2]
Figure 2
View of the four crystallographically independent 4-meth­oxy­pyridinium cations. Displacement ellipsoids are drawn at the 50% probability level. The disorder of one of the cations is shown with solid (major component) and open (minor component) bonds.

3. Supra­molecular features

The discrete anionic complexes are linked with the cations through weak inter­molecular N—H⋯S hydrogen bonds between the pyridinium hydrogen atoms and the thio­cyanate sulfur atoms (Fig. 3[link], Table 2[link]). The complex containing Fe3 is additionally involved in weak Caromatic—H⋯N hydrogen bonding. Other short contacts indicate further weak Caromatic—H⋯S and Cmeth­yl—H⋯S hydrogen bonds, respectively, connecting the cations and anionic complexes into a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N5 0.95 2.66 3.141 (3) 112
C25—H25⋯N6 0.95 2.58 3.079 (4) 113
N31—H31A⋯S4iii 0.88 2.67 3.359 (3) 136
N41—H41A⋯S2 0.88 2.62 3.320 (3) 137
C46—H46C⋯S10iv 0.98 2.85 3.691 (5) 144
N41′—H41B⋯S2i 0.88 2.60 3.225 (14) 129
N41′—H41B⋯S9 0.88 2.88 3.676 (15) 151
C42′—H42′⋯S5v 0.95 2.98 3.83 (3) 151
C45′—H45′⋯S1vi 0.95 2.86 3.370 (18) 115
C45′—H45′⋯S2i 0.95 2.92 3.394 (19) 112
C46′—H46D⋯S3 0.98 2.81 3.52 (2) 130
N51—H51A⋯S1 0.88 2.78 3.464 (3) 135
C54—H54⋯S8vii 0.95 2.97 3.885 (3) 163
C56—H56B⋯S7viii 0.98 2.90 3.793 (4) 152
N61—H61A⋯S8iv 0.88 2.62 3.419 (3) 151
C62—H62⋯S5v 0.95 2.93 3.831 (3) 160
C65—H65⋯N8iv 0.95 2.68 3.608 (4) 167
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y-1, -z+{\script{3\over 2}}]; (vii) [x, -y+1, z+{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2].
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along [010]. Inter­molecular N—H⋯S hydrogen bonding is shown as dashed lines. The minor component of the disordered 4-meth­oxy­pyridine cation is not shown for clarity.

4. Database survey

In the Cambridge Structure Database (Version 5.38, last update 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) only one structure containing both 4-meth­oxy­pyridine and thio­cyanate ligands is reported. It consists of discrete complexes with ruthenium(II) as the central cation coordinated by two thio­cyanate anions and four 4-meth­oxy­pyridine mol­ecules (Cadranel et al., 2016[Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475.]). The structures of several ferrate complexes are deposited where FeII or FeIII cations are present. With FeII, this includes ((C2H5)4N)4[Fe(NCS)6] (Krautscheid & Gerber, 1999[Krautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041-2044.]) or (2,2′-Hbpe)4[Fe(NCS)6]·4H2O where 2,2′-Hbpe is 1-(2-pyridin­ium)-2-(2-pyrid­yl)ethyl­ene (Briceño & Hill, 2012[Briceño, A. & Hill, Y. (2012). CrystEngComm, 14, 6121-6125.]). Several complexes in which the FeIII cation is octa­hedrally coordin­ated by six thio­cyanate anions are also known, like in (C4H12N)3[Fe(SCN)6]·4H2O (Addison et al., 2005[Addison, A. W., Butcher, R. J., Homonnay, Z., Pavlishchuk, V. V., Prushan, M. J. & Thompson, L. K. (2005). Eur. J. Inorg. Chem. pp. 2404-2408.]), or in [Ru(phen)3](NCS)[Fe(NCS)4]·H2O (phen: 1,10-phenanthroline), in which it is tetra­hedrally coordinated (Ghazzali et al., 2008[Ghazzali, M., Langer, V. & Öhrström, L. (2008). J. Solid State Chem. 181, 2191-2198.]). Moreover, with pyridine as ligand and pyridinium as cation, two structures are reported with a coordination identical to those in the title compound. In the structure of (C5H6N)2[Fe(SCN)5(C5H5N)]·C5H5N, the FeIII cations are octa­hedrally coordinated by five thio­cyanate anions and one pyridine ligand (Wood et al., 2015[Wood, P. A., Gass, I. & Brechin, E. (2015). Private communication (CCDC1411039). CCDC, Cambridge, England.]). In the structure of (C5H6N)[Fe(SCN)4(C5H5N)2] the FeIII cations are coordin­ated by two neutral pyridine ligands and four thio­cyanate anions (Shylin et al., 2013[Shylin, S. I., Gural'skiy, I. A., Haukka, M., Kapshuk, A. A. & Prisyazhnaya, E. V. (2013). Acta Cryst. E69, m298-m299.]). However, structures in which three different coordination spheres are simultaneously present like in the title compound have not been reported to date.

5. Synthesis and crystallization

Iron(II) chloride tetra­hydrate was obtained from Sigma Aldrich, potassium thio­cyanate from Fluka and 4-meth­oxy­pyridine from TCI. No further purification was carried out.

49.7 mg iron(II) chloride tetra­hydrate (0.25 mmol) and 48.6 mg potassium thio­cyanate (0.50 mmol) were reacted with 50.8 µl 4-meth­oxy­pyridine (0.50 mmol) in 2.0 ml water at room temperature. After stirring the mixture for three hours, the resulting powder was filtered off and the filtrate was let to evaporate slowly at room temperature. After several weeks single crystals suitable for single crystal X-ray analysis were obtained. The synthesis of larger and pure amounts of the title compound was not successful because in all batches additional crystalline phases were present (Supplementary Fig. S1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H and N—H hydrogen atoms were located in a difference-Fourier map but were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip), and refined with Uiso(H) = 1.2Ueq(C or N) (1.5 for methyl H atoms) using a riding model with Caromatic—H = 0.95 Å, Cmeth­yl—H = 0.98 Å and N—H = 0.88 Å. One of the four crystallographically independent 4-meth­oxy­pyridinium cations is disordered over two sets of sites and was refined with a split model using restraints. The sites with minor occupation (occupancy 0.22) were refined with isotropic displacement parameters, the sites of the major component with anisotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6]
Mr 2702.57
Crystal system, space group Monoclinic, C2/c
Temperature (K) 170
a, b, c (Å) 35.5034 (8), 10.5199 (1), 35.7432 (8)
β (°) 113.864 (2)
V3) 12208.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.42 × 0.23 × 0.13
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.607, 0.806
No. of measured, independent and observed [I > 2σ(I)] reflections 41955, 10715, 9204
Rint 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.04
No. of reflections 10715
No. of parameters 763
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.67
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-methoxypyridine-κN)tetrakis(thiocyanato-κN)ferrate(III) bis[(4-methoxypyridine-κN)pentakis(thiocyanato-κN)ferrate(III)] hexakis(thiocyanato-κN)ferrate(III) top
Crystal data top
(C6H8NO)8[Fe(NCS)4(C6H7NO)2] [Fe(NCS)5(C6H7NO)]2[Fe(NCS)6]F(000) = 5552
Mr = 2702.57Dx = 1.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.5034 (8) ÅCell parameters from 41955 reflections
b = 10.5199 (1) Åθ = 1.3–25.0°
c = 35.7432 (8) ŵ = 0.88 mm1
β = 113.864 (2)°T = 170 K
V = 12208.5 (4) Å3Block, brown
Z = 40.42 × 0.23 × 0.13 mm
Data collection top
Stoe IPDS-2
diffractometer
9204 reflections with I > 2σ(I)
ω scansRint = 0.050
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 25.0°, θmin = 1.3°
Tmin = 0.607, Tmax = 0.806h = 4242
41955 measured reflectionsk = 1112
10715 independent reflectionsl = 4240
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0524P)2 + 13.0479P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.003
S = 1.04Δρmax = 0.86 e Å3
10715 reflectionsΔρmin = 0.67 e Å3
763 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00035 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.79411 (4)0.75000.03724 (12)
Fe20.71066 (2)1.07287 (4)0.84000 (2)0.04926 (12)
Fe30.50000.00000.50000.03680 (12)
N10.52452 (6)0.9347 (2)0.79210 (6)0.0445 (5)
C10.53236 (7)1.0362 (2)0.80667 (7)0.0392 (5)
S10.54416 (2)1.17539 (7)0.82712 (2)0.05421 (18)
N20.52698 (7)0.6624 (2)0.79435 (8)0.0556 (6)
C20.54258 (8)0.5929 (2)0.82173 (8)0.0452 (6)
S20.56402 (3)0.49338 (7)0.85800 (2)0.0700 (2)
N30.68743 (8)0.9154 (3)0.85615 (8)0.0674 (7)
C30.67683 (8)0.8151 (4)0.86277 (9)0.0601 (8)
S30.66233 (3)0.67745 (10)0.87176 (3)0.0744 (3)
N40.73167 (7)1.2305 (3)0.81932 (8)0.0579 (6)
C40.74817 (8)1.3210 (3)0.81490 (9)0.0510 (6)
S40.77159 (3)1.44758 (9)0.80971 (3)0.0805 (3)
N50.74237 (7)0.9600 (3)0.81615 (7)0.0565 (6)
C50.76540 (8)0.8855 (3)0.81352 (8)0.0443 (6)
S50.79698 (2)0.78076 (7)0.81075 (3)0.0610 (2)
N60.67957 (8)1.1883 (3)0.86335 (8)0.0686 (7)
C60.67073 (8)1.2423 (3)0.88703 (8)0.0475 (6)
S60.65888 (3)1.31425 (9)0.92017 (4)0.0839 (3)
N70.76055 (8)1.0821 (3)0.89460 (8)0.0776 (9)
C70.78393 (8)1.1252 (3)0.92523 (8)0.0550 (7)
S70.81637 (3)1.18196 (10)0.96765 (3)0.0776 (3)
N80.55865 (7)0.0555 (2)0.53986 (7)0.0478 (5)
C80.59190 (8)0.0635 (3)0.56455 (8)0.0455 (6)
S80.63856 (2)0.07056 (9)0.59923 (2)0.0672 (2)
N90.47535 (7)0.1365 (2)0.52431 (7)0.0504 (5)
C90.46529 (8)0.2161 (2)0.54081 (8)0.0440 (6)
S90.45060 (3)0.32654 (7)0.56329 (3)0.0669 (2)
N100.49907 (7)0.1274 (2)0.54230 (7)0.0515 (5)
C100.49663 (8)0.2122 (3)0.56219 (8)0.0480 (6)
S100.49314 (3)0.33036 (9)0.58901 (3)0.0790 (3)
N110.44671 (6)0.77950 (18)0.76427 (6)0.0391 (4)
C110.40853 (7)0.7706 (2)0.73448 (8)0.0420 (5)
H110.40520.78380.70700.050*
C120.37417 (8)0.7434 (2)0.74160 (8)0.0439 (5)
H120.34780.73920.71960.053*
C130.37876 (8)0.7224 (2)0.78148 (8)0.0435 (6)
C140.41790 (8)0.7334 (2)0.81264 (8)0.0448 (6)
H140.42200.72090.84030.054*
C150.45048 (8)0.7622 (2)0.80300 (7)0.0419 (5)
H150.47700.77050.82460.050*
O110.34810 (6)0.6914 (2)0.79279 (6)0.0558 (5)
C160.30703 (8)0.6808 (3)0.76090 (10)0.0643 (8)
H16A0.29820.76380.74790.096*
H16B0.28800.65240.77280.096*
H16C0.30710.61900.74040.096*
N210.65815 (6)1.07258 (19)0.78190 (6)0.0390 (4)
C210.66158 (7)1.0628 (2)0.74598 (7)0.0402 (5)
H210.68841.05700.74640.048*
C220.62854 (7)1.0607 (2)0.70855 (7)0.0415 (5)
H220.63251.05330.68390.050*
C230.58915 (7)1.0696 (2)0.70784 (7)0.0401 (5)
C240.58506 (7)1.0811 (2)0.74488 (7)0.0394 (5)
H240.55861.08840.74530.047*
C250.61953 (7)1.0817 (2)0.78039 (7)0.0391 (5)
H250.61631.08890.80540.047*
O210.55360 (5)1.06869 (18)0.67422 (5)0.0500 (4)
C260.55563 (10)1.0511 (3)0.63513 (8)0.0603 (7)
H26C0.57171.12030.63040.091*
H26B0.52771.05150.61350.091*
H26A0.56890.96960.63490.091*
N310.73444 (8)0.1116 (4)0.61226 (9)0.0760 (8)
H31A0.73800.11330.63810.091*
C310.74033 (11)0.0049 (4)0.59560 (13)0.0812 (10)
H310.74700.07090.61140.097*
C320.73708 (10)0.0020 (4)0.55662 (12)0.0735 (9)
H320.74160.07460.54500.088*
C330.72697 (9)0.1138 (3)0.53394 (9)0.0618 (8)
C340.72211 (9)0.2252 (4)0.55238 (10)0.0655 (8)
H340.71640.30300.53760.079*
C350.72563 (9)0.2221 (4)0.59177 (10)0.0697 (9)
H350.72190.29730.60460.084*
O310.72109 (8)0.1230 (3)0.49454 (7)0.0789 (7)
C360.72391 (14)0.0086 (5)0.47393 (14)0.1034 (15)
H36A0.75200.02490.48660.155*
H36B0.71700.02730.44500.155*
H36C0.70460.05460.47600.155*
N410.60287 (10)0.4088 (3)0.79138 (10)0.0577 (8)0.78
H41A0.60640.41470.81710.069*0.78
C410.56493 (12)0.4082 (4)0.76217 (14)0.0584 (9)0.78
H410.54210.41270.76960.070*0.78
C420.55780 (17)0.4013 (4)0.7213 (2)0.0517 (12)0.78
H420.53060.40290.70060.062*0.78
C430.59162 (14)0.3921 (4)0.71152 (19)0.0500 (9)0.78
C440.63139 (17)0.3912 (4)0.74297 (19)0.0556 (11)0.78
H440.65480.38420.73660.067*0.78
C450.63606 (14)0.4005 (4)0.7822 (2)0.0588 (10)0.78
H450.66290.40120.80350.071*0.78
O410.58854 (16)0.3815 (4)0.67352 (15)0.0650 (9)0.78
C460.54772 (19)0.3796 (5)0.64126 (18)0.0760 (15)0.78
H46A0.53160.31170.64650.114*0.78
H46B0.54960.36440.61500.114*0.78
H46C0.53430.46160.64040.114*0.78
N41'0.5283 (4)0.3881 (14)0.6671 (4)0.078 (4)*0.22
H41B0.50370.38470.64700.094*0.22
C41'0.5639 (9)0.387 (2)0.6578 (8)0.068 (6)*0.22
H41C0.56140.37690.63040.081*0.22
C42'0.6009 (7)0.399 (2)0.6891 (7)0.056 (6)*0.22
H42'0.62520.40120.68400.067*0.22
C43'0.6036 (6)0.4100 (15)0.7292 (5)0.040 (4)*0.22
C44'0.5661 (5)0.4075 (17)0.7368 (6)0.038 (4)*0.22
H44'0.56720.41520.76370.046*0.22
C45'0.5316 (6)0.3944 (15)0.7055 (5)0.068 (4)*0.22
H45'0.50710.38900.71010.081*0.22
O41'0.6404 (4)0.4209 (13)0.7590 (5)0.060 (4)*0.22
C46'0.6450 (6)0.430 (2)0.8004 (6)0.071 (6)*0.22
H46D0.63380.51100.80460.107*0.22
H46E0.67430.42480.81860.107*0.22
H46F0.63020.35970.80640.107*0.22
N510.59908 (9)1.0443 (3)0.92277 (9)0.0739 (8)
H51A0.59151.11520.90860.089*
C510.59439 (14)0.9349 (4)0.90294 (11)0.0872 (12)
H510.58460.93520.87400.105*
C520.60336 (12)0.8228 (3)0.92326 (10)0.0726 (9)
H520.59960.74480.90880.087*
C530.61806 (8)0.8244 (3)0.96546 (9)0.0534 (7)
C540.62320 (9)0.9399 (3)0.98531 (9)0.0586 (7)
H540.63330.94301.01430.070*
C550.61375 (9)1.0490 (3)0.96308 (11)0.0658 (8)
H550.61771.12880.97660.079*
O510.62817 (7)0.7208 (2)0.98876 (7)0.0753 (6)
C560.62525 (15)0.5989 (4)0.96868 (15)0.1087 (16)
H56A0.59700.58620.94840.163*
H56B0.63250.53080.98910.163*
H56C0.64420.59750.95500.163*
N610.63662 (9)0.7464 (3)0.60504 (10)0.0733 (8)
H61A0.64630.82410.61100.088*
C610.65506 (10)0.6400 (4)0.62406 (10)0.0738 (10)
H610.68030.64500.64760.089*
C620.63809 (9)0.5255 (4)0.61004 (9)0.0637 (8)
H620.65120.44970.62360.076*
C630.60118 (9)0.5200 (3)0.57551 (8)0.0516 (6)
C640.58280 (9)0.6310 (3)0.55646 (10)0.0603 (7)
H640.55760.62910.53280.072*
C650.60119 (10)0.7427 (3)0.57192 (12)0.0746 (9)
H650.58870.81990.55900.089*
O610.58606 (7)0.4041 (2)0.56325 (7)0.0689 (6)
C660.54801 (13)0.3931 (4)0.52734 (11)0.0837 (11)
H66A0.52560.43170.53280.125*
H66B0.54190.30320.52050.125*
H66C0.55070.43700.50440.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0402 (3)0.0329 (2)0.0371 (3)0.0000.0141 (2)0.000
Fe20.0431 (2)0.0689 (3)0.0364 (2)0.00179 (18)0.01665 (16)0.00331 (17)
Fe30.0354 (2)0.0376 (3)0.0359 (2)0.00046 (19)0.0128 (2)0.00297 (19)
N10.0445 (11)0.0497 (13)0.0382 (11)0.0020 (10)0.0156 (9)0.0005 (10)
C10.0399 (12)0.0440 (14)0.0344 (11)0.0029 (10)0.0158 (10)0.0017 (11)
S10.0670 (4)0.0429 (4)0.0535 (4)0.0062 (3)0.0252 (3)0.0091 (3)
N20.0540 (13)0.0515 (13)0.0674 (15)0.0090 (11)0.0306 (12)0.0143 (12)
C20.0533 (14)0.0360 (13)0.0497 (15)0.0000 (11)0.0243 (12)0.0047 (12)
S20.1166 (7)0.0410 (4)0.0453 (4)0.0038 (4)0.0255 (4)0.0087 (3)
N30.0582 (15)0.092 (2)0.0496 (14)0.0032 (14)0.0194 (12)0.0181 (14)
C30.0410 (14)0.096 (2)0.0438 (15)0.0074 (15)0.0170 (12)0.0201 (15)
S30.0578 (4)0.0962 (7)0.0681 (5)0.0018 (4)0.0242 (4)0.0257 (5)
N40.0519 (13)0.0652 (16)0.0581 (15)0.0100 (12)0.0238 (12)0.0140 (12)
C40.0421 (14)0.0595 (17)0.0497 (15)0.0029 (13)0.0167 (12)0.0123 (13)
S40.1028 (7)0.0734 (6)0.0786 (6)0.0361 (5)0.0504 (5)0.0217 (5)
N50.0493 (13)0.0680 (15)0.0513 (13)0.0066 (12)0.0193 (11)0.0020 (12)
C50.0400 (13)0.0491 (15)0.0397 (13)0.0026 (12)0.0119 (10)0.0029 (11)
S50.0506 (4)0.0549 (4)0.0701 (5)0.0091 (3)0.0168 (4)0.0054 (4)
N60.0565 (14)0.103 (2)0.0492 (14)0.0064 (14)0.0242 (12)0.0212 (14)
C60.0417 (13)0.0563 (16)0.0433 (14)0.0018 (12)0.0158 (11)0.0036 (12)
S60.1018 (7)0.0733 (6)0.1058 (7)0.0133 (5)0.0722 (6)0.0343 (5)
N70.0529 (14)0.135 (3)0.0435 (14)0.0044 (16)0.0175 (12)0.0062 (16)
C70.0465 (15)0.076 (2)0.0409 (15)0.0066 (14)0.0165 (13)0.0043 (14)
S70.0787 (6)0.0835 (6)0.0521 (4)0.0013 (5)0.0072 (4)0.0097 (4)
N80.0423 (12)0.0512 (13)0.0470 (12)0.0013 (10)0.0150 (10)0.0038 (10)
C80.0395 (14)0.0528 (15)0.0443 (14)0.0072 (11)0.0170 (12)0.0099 (12)
S80.0401 (4)0.0985 (6)0.0536 (4)0.0165 (4)0.0094 (3)0.0112 (4)
N90.0472 (12)0.0485 (13)0.0556 (13)0.0022 (10)0.0209 (11)0.0059 (11)
C90.0434 (13)0.0418 (14)0.0479 (14)0.0017 (11)0.0195 (11)0.0038 (11)
S90.0867 (6)0.0474 (4)0.0806 (5)0.0039 (4)0.0483 (5)0.0143 (4)
N100.0538 (13)0.0515 (13)0.0470 (12)0.0035 (11)0.0181 (11)0.0014 (11)
C100.0514 (15)0.0517 (15)0.0363 (13)0.0091 (12)0.0131 (11)0.0045 (12)
S100.0975 (7)0.0740 (6)0.0533 (4)0.0277 (5)0.0180 (4)0.0145 (4)
N110.0425 (11)0.0344 (10)0.0386 (10)0.0012 (8)0.0145 (9)0.0007 (8)
C110.0442 (13)0.0386 (13)0.0404 (13)0.0004 (10)0.0142 (11)0.0019 (10)
C120.0397 (12)0.0447 (14)0.0428 (13)0.0000 (11)0.0121 (11)0.0015 (11)
C130.0412 (13)0.0424 (13)0.0489 (14)0.0035 (11)0.0205 (11)0.0039 (11)
C140.0471 (13)0.0479 (14)0.0376 (13)0.0048 (11)0.0154 (11)0.0035 (11)
C150.0412 (12)0.0412 (13)0.0399 (13)0.0017 (10)0.0130 (10)0.0000 (10)
O110.0422 (10)0.0753 (13)0.0525 (11)0.0000 (9)0.0217 (9)0.0084 (10)
C160.0409 (14)0.087 (2)0.0641 (19)0.0022 (15)0.0210 (14)0.0042 (17)
N210.0408 (10)0.0408 (11)0.0374 (10)0.0014 (8)0.0178 (9)0.0010 (8)
C210.0406 (12)0.0445 (13)0.0386 (12)0.0005 (10)0.0191 (10)0.0005 (10)
C220.0461 (13)0.0445 (13)0.0378 (12)0.0031 (11)0.0210 (11)0.0006 (10)
C230.0402 (12)0.0381 (13)0.0404 (13)0.0004 (10)0.0145 (10)0.0016 (10)
C240.0392 (12)0.0376 (12)0.0442 (13)0.0000 (10)0.0199 (11)0.0014 (10)
C250.0422 (12)0.0410 (13)0.0382 (12)0.0012 (10)0.0203 (10)0.0004 (10)
O210.0444 (9)0.0641 (12)0.0374 (9)0.0043 (8)0.0123 (8)0.0020 (8)
C260.0614 (17)0.076 (2)0.0365 (14)0.0080 (15)0.0126 (13)0.0004 (14)
N310.0529 (15)0.121 (3)0.0520 (15)0.0178 (17)0.0194 (12)0.0008 (18)
C310.064 (2)0.095 (3)0.081 (3)0.010 (2)0.0256 (19)0.014 (2)
C320.0612 (19)0.085 (3)0.079 (2)0.0132 (17)0.0332 (17)0.0039 (19)
C330.0499 (16)0.082 (2)0.0572 (17)0.0205 (15)0.0251 (14)0.0133 (16)
C340.0546 (17)0.082 (2)0.0592 (18)0.0135 (16)0.0217 (15)0.0070 (16)
C350.0484 (16)0.101 (3)0.0600 (19)0.0145 (17)0.0217 (15)0.0189 (19)
O310.0853 (16)0.1038 (19)0.0560 (13)0.0289 (14)0.0372 (12)0.0195 (13)
C360.101 (3)0.131 (4)0.097 (3)0.043 (3)0.060 (3)0.056 (3)
N410.0628 (19)0.0545 (18)0.0594 (19)0.0086 (15)0.0285 (16)0.0037 (15)
C410.055 (2)0.053 (2)0.073 (3)0.0061 (17)0.032 (2)0.0064 (19)
C420.050 (3)0.048 (2)0.054 (3)0.0077 (18)0.018 (3)0.001 (2)
C430.059 (2)0.0353 (19)0.062 (3)0.0048 (18)0.030 (3)0.006 (2)
C440.052 (3)0.046 (2)0.077 (3)0.006 (2)0.034 (3)0.006 (2)
C450.053 (2)0.043 (2)0.077 (3)0.0051 (18)0.023 (2)0.001 (2)
O410.071 (3)0.065 (2)0.068 (3)0.006 (2)0.037 (2)0.013 (2)
C460.087 (4)0.067 (3)0.068 (3)0.015 (3)0.025 (3)0.018 (3)
N510.086 (2)0.0571 (16)0.0754 (19)0.0108 (15)0.0294 (16)0.0107 (14)
C510.124 (3)0.077 (2)0.0504 (18)0.022 (2)0.024 (2)0.0067 (18)
C520.096 (3)0.0576 (19)0.0496 (17)0.0106 (18)0.0145 (17)0.0042 (15)
C530.0473 (14)0.0591 (17)0.0493 (15)0.0019 (13)0.0147 (12)0.0028 (13)
C540.0509 (15)0.074 (2)0.0519 (16)0.0012 (14)0.0215 (13)0.0087 (15)
C550.0527 (17)0.0586 (18)0.084 (2)0.0001 (14)0.0251 (16)0.0165 (17)
O510.0763 (15)0.0694 (15)0.0645 (14)0.0028 (12)0.0123 (11)0.0188 (12)
C560.112 (3)0.053 (2)0.113 (3)0.003 (2)0.004 (3)0.012 (2)
N610.0665 (17)0.0770 (19)0.085 (2)0.0157 (15)0.0390 (16)0.0243 (17)
C610.0502 (17)0.123 (3)0.0469 (17)0.006 (2)0.0188 (14)0.007 (2)
C620.0531 (16)0.087 (2)0.0482 (16)0.0126 (16)0.0180 (14)0.0145 (16)
C630.0528 (15)0.0569 (17)0.0464 (14)0.0053 (13)0.0215 (13)0.0054 (13)
C640.0497 (15)0.0589 (18)0.0610 (18)0.0065 (14)0.0108 (14)0.0077 (14)
C650.0600 (19)0.060 (2)0.095 (3)0.0046 (16)0.0228 (19)0.0008 (18)
O610.0777 (14)0.0559 (13)0.0672 (13)0.0048 (11)0.0231 (12)0.0078 (10)
C660.097 (3)0.072 (2)0.065 (2)0.022 (2)0.0148 (19)0.0037 (18)
Geometric parameters (Å, º) top
Fe1—N22.030 (2)C43'—O41'1.31 (2)
Fe1—N2i2.030 (2)C43'—C44'1.46 (3)
Fe1—N1i2.037 (2)C44'—C45'1.29 (2)
Fe1—N12.038 (2)O41'—C46'1.42 (2)
Fe1—N11i2.1550 (19)N51—C551.320 (4)
Fe1—N112.1551 (19)N51—C511.326 (5)
Fe2—N62.034 (3)C51—C521.353 (5)
Fe2—N32.036 (3)C52—C531.382 (4)
Fe2—N72.039 (3)C53—O511.329 (4)
Fe2—N52.045 (2)C53—C541.381 (4)
Fe2—N42.074 (3)C54—C551.358 (5)
Fe2—N212.158 (2)O51—C561.453 (5)
Fe3—N102.030 (2)N61—C651.334 (5)
Fe3—N10ii2.030 (2)N61—C611.335 (5)
Fe3—N9ii2.049 (2)C61—C621.349 (5)
Fe3—N92.049 (2)C62—C631.391 (4)
Fe3—N8ii2.075 (2)C63—O611.332 (4)
Fe3—N82.075 (2)C63—C641.377 (4)
N1—C11.171 (3)C64—C651.349 (5)
C1—S11.614 (3)O61—C661.443 (4)
N2—C21.166 (3)C11—H110.9500
C2—S21.600 (3)C12—H120.9500
N3—C31.176 (4)C14—H140.9500
C3—S31.612 (4)C15—H150.9500
N4—C41.162 (4)C16—H16A0.9800
C4—S41.619 (3)C16—H16B0.9800
N5—C51.163 (3)C16—H16C0.9800
C5—S51.604 (3)C21—H210.9500
N6—C61.162 (4)C22—H220.9500
C6—S61.599 (3)C24—H240.9500
N7—C71.165 (4)C25—H250.9500
C7—S71.603 (3)C26—H26C0.9800
N8—C81.156 (3)C26—H26B0.9800
C8—S81.620 (3)C26—H26A0.9800
N9—C91.161 (3)N31—H31A0.8800
C9—S91.614 (3)C31—H310.9500
N10—C101.166 (3)C32—H320.9500
C10—S101.605 (3)C34—H340.9500
N11—C111.346 (3)C35—H350.9500
N11—C151.348 (3)C36—H36A0.9800
C11—C121.373 (3)C36—H36B0.9800
C12—C131.385 (4)C36—H36C0.9800
C13—O111.346 (3)N41—H41A0.8800
C13—C141.390 (4)C41—H410.9500
C14—C151.368 (3)C42—H420.9500
O11—C161.447 (3)C44—H440.9500
N21—C211.342 (3)C45—H450.9500
N21—C251.353 (3)C46—H46A0.9800
C21—C221.377 (3)C46—H46B0.9800
C22—C231.392 (3)C46—H46C0.9800
C23—O211.345 (3)N41'—H41B0.8800
C23—C241.394 (3)C41'—H41C0.9500
C24—C251.361 (3)C42'—H42'0.9500
O21—C261.440 (3)C44'—H44'0.9500
N31—C311.326 (5)C45'—H45'0.9500
N31—C351.342 (5)C46'—H46D0.9800
C31—C321.351 (5)C46'—H46E0.9800
C32—C331.391 (5)C46'—H46F0.9800
C33—O311.341 (4)N51—H51A0.8800
C33—C341.389 (5)C51—H510.9500
C34—C351.363 (5)C52—H520.9500
O31—C361.435 (5)C54—H540.9500
N41—C411.329 (5)C55—H550.9500
N41—C451.348 (6)C56—H56A0.9800
C41—C421.381 (7)C56—H56B0.9800
C42—C431.383 (6)C56—H56C0.9800
C43—O411.323 (7)N61—H61A0.8800
C43—C441.405 (7)C61—H610.9500
C44—C451.346 (8)C62—H620.9500
O41—C461.442 (7)C64—H640.9500
N41'—C45'1.33 (2)C65—H650.9500
N41'—C41'1.43 (3)C66—H66A0.9800
C41'—C42'1.34 (3)C66—H66B0.9800
C42'—C43'1.40 (3)C66—H66C0.9800
N2—Fe1—N2i93.91 (15)C51—C52—C53118.5 (3)
N2—Fe1—N1i176.31 (10)O51—C53—C54116.9 (3)
N2i—Fe1—N1i89.62 (10)O51—C53—C52124.1 (3)
N2—Fe1—N189.62 (10)C54—C53—C52119.0 (3)
N2i—Fe1—N1176.31 (10)C55—C54—C53119.5 (3)
N1i—Fe1—N186.87 (12)N51—C55—C54120.1 (3)
N2—Fe1—N11i87.37 (8)C53—O51—C56117.8 (3)
N2i—Fe1—N11i87.05 (8)C65—N61—C61121.3 (3)
N1i—Fe1—N11i91.76 (8)N61—C61—C62120.4 (3)
N1—Fe1—N11i94.19 (8)C61—C62—C63119.0 (3)
N2—Fe1—N1187.05 (8)O61—C63—C64124.5 (3)
N2i—Fe1—N1187.37 (8)O61—C63—C62116.1 (3)
N1i—Fe1—N1194.19 (8)C64—C63—C62119.4 (3)
N1—Fe1—N1191.75 (8)C65—C64—C63118.9 (3)
N11i—Fe1—N11171.82 (11)N61—C65—C64121.0 (3)
N6—Fe2—N391.15 (12)C63—O61—C66118.3 (3)
N6—Fe2—N789.08 (11)C11—C12—H12120.6
N3—Fe2—N793.56 (12)C13—C12—H12120.6
N6—Fe2—N5178.84 (12)C15—C14—H14120.3
N3—Fe2—N590.01 (11)C13—C14—H14120.3
N7—Fe2—N590.87 (11)N11—C15—H15118.5
N6—Fe2—N490.10 (11)C14—C15—H15118.5
N3—Fe2—N4176.00 (10)O11—C16—H16A109.5
N7—Fe2—N490.25 (12)O11—C16—H16B109.5
N5—Fe2—N488.73 (10)H16A—C16—H16B109.5
N6—Fe2—N2189.70 (9)O11—C16—H16C109.5
N3—Fe2—N2188.88 (9)H16A—C16—H16C109.5
N7—Fe2—N21177.30 (12)H16B—C16—H16C109.5
N5—Fe2—N2190.29 (9)N21—C21—H21118.0
N4—Fe2—N2187.34 (9)C22—C21—H21118.0
N10—Fe3—N10ii180.0C21—C22—H22120.9
N10—Fe3—N9ii89.53 (9)C23—C22—H22120.9
N10ii—Fe3—N9ii90.46 (9)C25—C24—H24120.5
N10—Fe3—N990.46 (9)C23—C24—H24120.5
N10ii—Fe3—N989.54 (9)N21—C25—H25118.3
N9ii—Fe3—N9180.00 (12)C24—C25—H25118.3
N10—Fe3—N8ii90.66 (9)O21—C26—H26C109.5
N10ii—Fe3—N8ii89.34 (9)O21—C26—H26B109.5
N9ii—Fe3—N8ii89.65 (9)H26C—C26—H26B109.5
N9—Fe3—N8ii90.35 (9)O21—C26—H26A109.5
N10—Fe3—N889.34 (9)H26C—C26—H26A109.5
N10ii—Fe3—N890.66 (9)H26B—C26—H26A109.5
N9ii—Fe3—N890.35 (9)C31—N31—H31A120.5
N9—Fe3—N889.65 (9)C35—N31—H31A117.2
N8ii—Fe3—N8180.0N31—C31—H31119.4
C1—N1—Fe1160.8 (2)C32—C31—H31119.4
N1—C1—S1178.8 (2)C31—C32—H32120.8
C2—N2—Fe1175.4 (2)C33—C32—H32120.8
N2—C2—S2177.7 (3)C35—C34—H34120.2
C3—N3—Fe2170.6 (3)C33—C34—H34120.2
N3—C3—S3179.9 (3)N31—C35—H35120.4
C4—N4—Fe2168.0 (2)C34—C35—H35120.4
N4—C4—S4178.9 (3)O31—C36—H36A109.5
C5—N5—Fe2161.5 (2)O31—C36—H36B109.5
N5—C5—S5178.6 (3)H36A—C36—H36B109.5
C6—N6—Fe2160.3 (3)O31—C36—H36C109.5
N6—C6—S6178.9 (3)H36A—C36—H36C109.5
C7—N7—Fe2158.5 (3)H36B—C36—H36C109.5
N7—C7—S7179.0 (4)C41—N41—H41A119.5
C8—N8—Fe3167.4 (2)C45—N41—H41A119.5
N8—C8—S8178.4 (3)N41—C41—H41119.2
C9—N9—Fe3173.3 (2)C42—C41—H41119.2
N9—C9—S9179.1 (3)C41—C42—H42121.2
C10—N10—Fe3170.7 (2)C43—C42—H42121.2
N10—C10—S10179.2 (3)C45—C44—H44120.2
C11—N11—C15116.9 (2)C43—C44—H44120.2
C11—N11—Fe1121.15 (16)C44—C45—H45119.8
C15—N11—Fe1121.38 (16)N41—C45—H45119.8
N11—C11—C12123.6 (2)C45'—N41'—H41B119.2
C11—C12—C13118.7 (2)C41'—N41'—H41B119.2
O11—C13—C12125.1 (2)C42'—C41'—H41C121.2
O11—C13—C14116.6 (2)N41'—C41'—H41C121.2
C12—C13—C14118.3 (2)C41'—C42'—H42'120.1
C15—C14—C13119.3 (2)C43'—C42'—H42'120.1
N11—C15—C14123.1 (2)C45'—C44'—H44'121.4
C13—O11—C16117.5 (2)C43'—C44'—H44'121.4
C21—N21—C25116.7 (2)C44'—C45'—H45'118.2
C21—N21—Fe2122.91 (16)N41'—C45'—H45'118.2
C25—N21—Fe2120.35 (15)O41'—C46'—H46D109.5
N21—C21—C22124.0 (2)O41'—C46'—H46E109.5
C21—C22—C23118.1 (2)H46D—C46'—H46E109.5
O21—C23—C22126.1 (2)O41'—C46'—H46F109.5
O21—C23—C24115.4 (2)H46D—C46'—H46F109.5
C22—C23—C24118.6 (2)H46E—C46'—H46F109.5
C25—C24—C23119.1 (2)C55—N51—H51A119.3
N21—C25—C24123.4 (2)C51—N51—H51A119.1
C23—O21—C26118.1 (2)N51—C51—H51119.4
C31—N31—C35122.2 (3)C52—C51—H51119.4
N31—C31—C32121.3 (4)C51—C52—H52120.7
C31—C32—C33118.4 (4)C53—C52—H52120.7
O31—C33—C34116.2 (3)C55—C54—H54120.2
O31—C33—C32124.5 (3)C53—C54—H54120.2
C34—C33—C32119.3 (3)N51—C55—H55119.9
C35—C34—C33119.6 (4)C54—C55—H55119.9
N31—C35—C34119.2 (3)O51—C56—H56A109.5
C33—O31—C36117.7 (3)O51—C56—H56B109.5
C41—N41—C45121.1 (4)H56A—C56—H56B109.5
N41—C41—C42121.7 (4)O51—C56—H56C109.5
C41—C42—C43117.7 (5)H56A—C56—H56C109.5
O41—C43—C42123.1 (5)H56B—C56—H56C109.5
O41—C43—C44117.4 (4)C65—N61—H61A112.2
C42—C43—C44119.5 (6)C61—N61—H61A126.3
C45—C44—C43119.6 (5)N61—C61—H61119.8
C44—C45—N41120.5 (4)C62—C61—H61119.8
C43—O41—C46117.5 (4)C61—C62—H62120.5
C45'—N41'—C41'121.6 (18)C63—C62—H62120.5
C42'—C41'—N41'118 (2)C65—C64—H64120.6
C41'—C42'—C43'120 (2)C63—C64—H64120.6
O41'—C43'—C42'117.9 (18)N61—C65—H65119.5
O41'—C43'—C44'122.3 (15)C64—C65—H65119.5
C42'—C43'—C44'119.8 (18)O61—C66—H66A109.5
C45'—C44'—C43'117.3 (18)O61—C66—H66B109.5
C44'—C45'—N41'123.7 (18)H66A—C66—H66B109.5
C43'—O41'—C46'120.3 (16)O61—C66—H66C109.5
C55—N51—C51121.6 (3)H66A—C66—H66C109.5
N51—C51—C52121.2 (3)H66B—C66—H66C109.5
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···N50.952.663.141 (3)112
C25—H25···N60.952.583.079 (4)113
N31—H31A···S4iii0.882.673.359 (3)136
N41—H41A···S20.882.623.320 (3)137
C46—H46C···S10iv0.982.853.691 (5)144
N41—H41B···S2i0.882.603.225 (14)129
N41—H41B···S90.882.883.676 (15)151
C42—H42···S5v0.952.983.83 (3)151
C45—H45···S1vi0.952.863.370 (18)115
C45—H45···S2i0.952.923.394 (19)112
C46—H46D···S30.982.813.52 (2)130
N51—H51A···S10.882.783.464 (3)135
C54—H54···S8vii0.952.973.885 (3)163
C56—H56B···S7viii0.982.903.793 (4)152
N61—H61A···S8iv0.882.623.419 (3)151
C62—H62···S5v0.952.933.831 (3)160
C65—H65···N8iv0.952.683.608 (4)167
Symmetry codes: (i) x+1, y, z+3/2; (iii) x+3/2, y3/2, z+3/2; (iv) x, y+1, z; (v) x+3/2, y1/2, z+3/2; (vi) x+1, y1, z+3/2; (vii) x, y+1, z+1/2; (viii) x+3/2, y+3/2, z+2.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationAddison, A. W., Butcher, R. J., Homonnay, Z., Pavlishchuk, V. V., Prushan, M. J. & Thompson, L. K. (2005). Eur. J. Inorg. Chem. pp. 2404–2408.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriceño, A. & Hill, Y. (2012). CrystEngComm, 14, 6121–6125.  Google Scholar
First citationCadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464–5475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhazzali, M., Langer, V. & Öhrström, L. (2008). J. Solid State Chem. 181, 2191–2198.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099–8109.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041–2044.  CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Gural'skiy, I. A., Haukka, M., Kapshuk, A. A. & Prisyazhnaya, E. V. (2013). Acta Cryst. E69, m298–m299.  CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.  Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068.  Web of Science PubMed Google Scholar
First citationWood, P. A., Gass, I. & Brechin, E. (2015). Private communication (CCDC1411039). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds