research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and computational studies of a new Schiff base compound: (E)-4-bromo-2-eth­­oxy-6-{[(2-meth­­oxy­phen­yl)imino]meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Sinop University, Turkey
*Correspondence e-mail: arzu.ozek.yildirim@giresun.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 January 2018; accepted 3 February 2018; online 7 February 2018)

The title compound, C16H16BrNO3, which shows enol–imine tautomerism, crystallizes in the monoclinic P21/c space group. All non-H atoms of the mol­ecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, mol­ecules are held together by weak C—H⋯O, ππ and C—H⋯π inter­actions. The E/Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.

1. Chemical context

The synthesis and chemistry of Schiff bases have received considerable attention over the last several decades, primarily owing to their remarkable potential pharmacological (Hu et al., 2012[Hu, G., Wang, G., Duan, N., Wen, X., Cao, T., Xie, S. & Huang, W. (2012). Acta Pharmaceutica Sinica B, 2(3), 312-317.]), anti-tumor (Kamel et al., 2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem. 45, 572-580.]) and biological properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). Furthermore, Schiff bases can display photo-chromic and thermo-chromic effect (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]). These effects depend on the prototropic tautomerism and mol­ecular planarity in Schiff bases (Moustakali-Mavridis et al., 1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]; Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). Prototropic tautomerism emerges from the intra­molecular H-atom transfer between an enol–imine (Özdemir Tarı et al., 2016[Özdemir Tarı, G., Ceylan, Ü., Ümit, , Ağar, E. & Eserci, H. (2016). J. Mol. Struct. 1126, 83-93.]) and a keto–amine tautomer (Özek et al., 2006[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, o173-o177.]). The present work is part of our ongoing studies on Schiff bases (Özek Yıldırım et al., 2016[Özek Yıldırım, A., Albayrak Kaştaş, Ç. & Gülsu, M. (2016). J. Mol. Struct. 1103, 311-318.], 2017[Özek Yıldırım, A., Yıldırım, M. H. & Albayrak Kaştaş, Ç. (2017). J. Mol. Struct. 1127, 275-282.]; Albayrak et al., 2012[Albayrak, Ç., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85-91.]). We report herein the synthesis, crystal structure and computational studies of the title compound, (E)-4-bromo-2-eth­oxy-6-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol, obtained from the condensation of 5-bromo-3-eth­oxy-2-hy­droxy­benzaldehyde with 2-meth­oxy­aniline.

[Scheme 1]

2. Structural commentary

Fig. 1[link] represents the mol­ecular structure of the title compound. All non-H atoms lie in the plane formed by the aromatic rings with a maximum deviation of 0.274 (3) Å. The dihedral angle between the aromatic rings C1–C6 and C10–C15 is 2.25 (13)°. In the chelate moiety, which comprises atoms C1, C2, O1, H1, N1 and C9, C9=N1 [1.281 (3)] is a typical double bond while C2—O1 [1.333 (3)] is a typical single bond; these are similar to those in related structures (Petek et al., 2010[Petek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, İ. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681-690.]; Gül et al., 2007[Gül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564.]). The harmonic oscillator model of aromaticity (HOMA; Kruszewski & Krygowski, 1972[Kruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839-3842.]) values were calculated [0.88 for C1–C6 and 0.98 for the C10–C15 ring] to observe the effect of substituent groups on the rings. There are no significant deformations of the rings when compared to those in (E)-2-eth­oxy-6-[(2-meth­oxy­phenyl­imino)­meth­yl]phenol (Petek et al., 2010[Petek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, İ. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681-690.]). The chelate moiety forms an S(6) graph-set motif through a strong intra­molecular O1—H1⋯N1 hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 (5) 1.80 (5) 2.566 (3) 157 (5)
C16—H16A⋯O1i 0.96 2.55 3.293 (3) 135
C7—H7ACg1ii 0.97 2.80 3.662 (3) 149
C13—H13⋯Cg2iii 0.93 2.79 3.629 (3) 150
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The dashed line indicates the intra­molecular hydrogen bond.

3. Supra­molecular features

In the crystal, inversion dimers with an R22 motif are generated by the weak C16—H16A⋯O1(−x + 1, −y, −z + 1) hydrogen bonds (Table 1[link]). As shown in Fig. 2[link], these dimers are connected to each other by ππ inter­actions [Cg1⋯Cg2(x, y + 1, z) = 3.6237 (16) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively]. C—H⋯π inter­actions (Table 1[link]) generate zigzag chains along the [100] direction as shown in Fig. 3[link].

[Figure 2]
Figure 2
View of the inversion dimers, which are connected by ππ inter­actions, propagating along the c-axis direction. [Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x, y + 1, z; (iii) x, y − 1, z; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 2, −z + 1.]
[Figure 3]
Figure 3
The packing, viewed down the c axis, showing mol­ecules connected by C—H⋯π inter­actions [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iv) x, y + 1, z; (v) x − 1, y, z; (vi) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (vii) x + 1, y, z.]

4. Computational Studies

Relaxed potential energy surface scan calculations were performed using the DFT/B3LYP/6-311G++(d,p) method with Gaussian 09W software (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., USA.]) to investigate the connection between the mol­ecular conformation and physical properties of a Schiff base. The results of a torsional angle scan and a proton-transfer scan on the O—H⋯N pathway are given in Fig. 4[link]. The torsional barrier between the E/Z isomers was found to be 1.94 kcal mol−1 and the enol–keto tautomerism barrier was 1.92 kcal mol−1. The effects of the conformational changes on the aromatic ring can be visualized by calculating HOMA values during the scan calculations. Fig. 5[link]a shows that changes in the HOMA indices are very limited with an average fluctuation of 2%. As can be seen in Fig. 5[link]b, the aromaticity of the C1–C6 ring depends strongly on the prototropic tautomerism.

[Figure 4]
Figure 4
The potential energy curves for the torsional scan (a) and the O—H bond scan (b). Relative energies are calculated with respect to the global minimum of each curve.
[Figure 5]
Figure 5
Graphics showing the variation of HOMA values with scan coordinate.

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.37, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-4-bromo-2-eth­oxy-6-[(methyl­imino)­meth­yl]phenol unit of the title compound reveals five compounds, viz. OCOVEK (Kaştaş et al., 2017a[Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017a). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq15.]), OCOVIO (Kaştaş et al., 2017b[Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017b). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq37.]), OCOVOU (Kaştaş et al., 2017c[Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017c). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq59.]), OCOVUA (Kaştaş et al., 2017d[Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017d). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq6b.]) and LUWZIO (Özek Yıldırım et al., 2016[Özek Yıldırım, A., Albayrak Kaştaş, Ç. & Gülsu, M. (2016). J. Mol. Struct. 1103, 311-318.]). The mol­ecular structures of the latter two compounds are planar, in which they are similar to the title compound, while the others are not planar.

6. Synthesis and crystallization

The title compound was prepared by refluxing a mixture of a solution containing 5-bromo-3-eth­oxy-2-hy­droxy­benzaldehyde (0.5 g, 2 mmol) in 20 ml ethanol and a solution containing 2-meth­oxy­aniline (0.25 g, 2 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 70%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl atom H1 was refined freely. All the other H atoms were located geometrically and refined using a riding model with C—H = 0.93–0.97 Å Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H16BrNO3
Mr 350.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.3405 (8), 6.5204 (2), 15.3612 (10)
β (°) 98.716 (5)
V3) 1518.78 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.72
Crystal size (mm) 0.56 × 0.28 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Germany.])
Tmin, Tmax 0.437, 0.893
No. of measured, independent and observed [I > 2σ(I)] reflections 18156, 3491, 2754
Rint 0.042
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.091, 1.06
No. of reflections 3491
No. of parameters 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.38
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Germany.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

(E)-4-Bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol top
Crystal data top
C16H16BrNO3F(000) = 712
Mr = 350.21Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.3405 (8) ÅCell parameters from 3491 reflections
b = 6.5204 (2) Åθ = 2.0–28.1°
c = 15.3612 (10) ŵ = 2.72 mm1
β = 98.716 (5)°T = 296 K
V = 1518.78 (14) Å3Prism, orange
Z = 40.56 × 0.28 × 0.05 mm
Data collection top
Stoe IPDS 2
diffractometer
3491 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2754 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.042
rotation method scansθmax = 27.5°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1919
Tmin = 0.437, Tmax = 0.893k = 88
18156 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.5265P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3491 reflectionsΔρmax = 0.28 e Å3
194 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44857 (16)0.3446 (4)0.18253 (15)0.0403 (5)
C20.42497 (17)0.3902 (4)0.26511 (16)0.0417 (5)
C30.37588 (17)0.5714 (4)0.27491 (17)0.0440 (6)
C40.35124 (17)0.6978 (4)0.20324 (18)0.0469 (6)
H40.3184140.8156700.2089190.056*
C50.37596 (17)0.6473 (4)0.12266 (17)0.0456 (6)
C60.42285 (18)0.4758 (4)0.11072 (16)0.0457 (6)
H60.4377770.4456190.0556740.055*
C70.3190 (2)0.7984 (4)0.3743 (2)0.0574 (7)
H7A0.2600450.8094070.3412910.069*
H7B0.3544880.9096690.3567340.069*
C80.3155 (2)0.8097 (5)0.4713 (2)0.0640 (8)
H8A0.2900870.9382480.4847270.077*
H8B0.2801270.6991940.4878960.077*
H8C0.3741710.7990320.5032740.077*
C90.50092 (17)0.1655 (4)0.17069 (16)0.0442 (5)
H90.5164280.1382170.1156200.053*
C100.57777 (16)0.1337 (4)0.22892 (16)0.0406 (5)
C110.59676 (16)0.2499 (4)0.30608 (16)0.0420 (5)
C120.64681 (19)0.4279 (4)0.30608 (19)0.0513 (6)
H120.6595090.5056560.3571940.062*
C130.67759 (18)0.4892 (5)0.2304 (2)0.0550 (7)
H130.7110820.6082170.2308570.066*
C140.6594 (2)0.3766 (5)0.1542 (2)0.0552 (7)
H140.6803580.4190050.1034320.066*
C150.60944 (19)0.1994 (4)0.15371 (18)0.0508 (6)
H150.5969780.1232320.1021300.061*
C160.5727 (2)0.2971 (5)0.45460 (19)0.0622 (8)
H16A0.5463300.2273720.4990900.075*
H16B0.5440000.4268400.4418080.075*
H16C0.6342150.3191900.4753760.075*
N10.52630 (14)0.0438 (3)0.23498 (13)0.0423 (5)
O10.44838 (15)0.2719 (3)0.33548 (12)0.0536 (5)
O20.35740 (14)0.6041 (3)0.35724 (12)0.0546 (5)
O30.56318 (14)0.1756 (3)0.37679 (12)0.0558 (5)
Br10.34398 (2)0.82939 (5)0.02613 (2)0.06603 (13)
H10.479 (3)0.186 (8)0.316 (3)0.119 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0405 (12)0.0374 (12)0.0424 (12)0.0003 (11)0.0041 (10)0.0031 (10)
C20.0433 (13)0.0374 (13)0.0443 (12)0.0007 (10)0.0064 (10)0.0027 (10)
C30.0429 (14)0.0415 (13)0.0483 (13)0.0002 (11)0.0092 (11)0.0009 (11)
C40.0441 (14)0.0383 (14)0.0583 (15)0.0045 (11)0.0081 (11)0.0060 (11)
C50.0446 (14)0.0415 (14)0.0493 (13)0.0018 (11)0.0021 (11)0.0109 (11)
C60.0492 (14)0.0476 (15)0.0403 (12)0.0025 (12)0.0070 (11)0.0067 (11)
C70.0640 (18)0.0433 (16)0.0674 (18)0.0125 (13)0.0184 (14)0.0005 (13)
C80.074 (2)0.0519 (17)0.0698 (19)0.0103 (15)0.0230 (16)0.0074 (15)
C90.0514 (14)0.0430 (13)0.0387 (12)0.0004 (12)0.0087 (10)0.0010 (11)
C100.0404 (13)0.0363 (13)0.0458 (12)0.0001 (10)0.0089 (10)0.0016 (10)
C110.0392 (13)0.0422 (13)0.0450 (12)0.0001 (11)0.0080 (10)0.0031 (10)
C120.0491 (15)0.0465 (15)0.0576 (15)0.0062 (12)0.0061 (12)0.0089 (13)
C130.0458 (15)0.0433 (15)0.0764 (19)0.0074 (12)0.0106 (14)0.0017 (14)
C140.0555 (17)0.0534 (17)0.0607 (16)0.0041 (13)0.0217 (13)0.0073 (13)
C150.0580 (16)0.0498 (16)0.0475 (14)0.0037 (13)0.0170 (12)0.0037 (12)
C160.070 (2)0.070 (2)0.0473 (15)0.0027 (16)0.0107 (13)0.0152 (14)
N10.0467 (12)0.0375 (11)0.0436 (10)0.0035 (9)0.0092 (9)0.0030 (9)
O10.0730 (14)0.0473 (11)0.0425 (10)0.0160 (10)0.0152 (9)0.0081 (8)
O20.0703 (13)0.0445 (10)0.0519 (10)0.0137 (9)0.0184 (9)0.0025 (8)
O30.0709 (13)0.0559 (11)0.0434 (9)0.0145 (10)0.0176 (9)0.0106 (9)
Br10.0763 (2)0.05858 (19)0.06202 (19)0.01265 (16)0.00668 (14)0.02361 (15)
Geometric parameters (Å, º) top
C1—C21.403 (3)C9—N11.281 (3)
C1—C61.405 (3)C9—H90.9300
C1—C91.444 (4)C10—C151.387 (4)
C2—O11.333 (3)C10—C111.400 (3)
C2—C31.421 (4)C10—N11.412 (3)
C3—O21.354 (3)C11—O31.360 (3)
C3—C41.381 (4)C11—C121.392 (4)
C4—C51.388 (4)C12—C131.379 (4)
C4—H40.9300C12—H120.9300
C5—C61.356 (4)C13—C141.373 (4)
C5—Br11.905 (2)C13—H130.9300
C6—H60.9300C14—C151.386 (4)
C7—O21.438 (3)C14—H140.9300
C7—C81.500 (4)C15—H150.9300
C7—H7A0.9700C16—O31.423 (3)
C7—H7B0.9700C16—H16A0.9600
C8—H8A0.9600C16—H16B0.9600
C8—H8B0.9600C16—H16C0.9600
C8—H8C0.9600O1—H10.81 (5)
C2—C1—C6120.0 (2)N1—C9—H9119.5
C2—C1—C9120.7 (2)C1—C9—H9119.5
C6—C1—C9119.3 (2)C15—C10—C11118.9 (2)
O1—C2—C1122.4 (2)C15—C10—N1125.3 (2)
O1—C2—C3118.5 (2)C11—C10—N1115.8 (2)
C1—C2—C3119.1 (2)O3—C11—C12125.0 (2)
O2—C3—C4125.4 (2)O3—C11—C10115.3 (2)
O2—C3—C2114.8 (2)C12—C11—C10119.7 (2)
C4—C3—C2119.8 (2)C13—C12—C11120.1 (3)
C3—C4—C5119.4 (2)C13—C12—H12120.0
C3—C4—H4120.3C11—C12—H12120.0
C5—C4—H4120.3C14—C13—C12120.8 (3)
C6—C5—C4122.6 (2)C14—C13—H13119.6
C6—C5—Br1119.2 (2)C12—C13—H13119.6
C4—C5—Br1118.23 (19)C13—C14—C15119.5 (3)
C5—C6—C1119.2 (2)C13—C14—H14120.3
C5—C6—H6120.4C15—C14—H14120.3
C1—C6—H6120.4C14—C15—C10121.1 (3)
O2—C7—C8107.6 (2)C14—C15—H15119.5
O2—C7—H7A110.2C10—C15—H15119.5
C8—C7—H7A110.2O3—C16—H16A109.5
O2—C7—H7B110.2O3—C16—H16B109.5
C8—C7—H7B110.2H16A—C16—H16B109.5
H7A—C7—H7B108.5O3—C16—H16C109.5
C7—C8—H8A109.5H16A—C16—H16C109.5
C7—C8—H8B109.5H16B—C16—H16C109.5
H8A—C8—H8B109.5C9—N1—C10124.4 (2)
C7—C8—H8C109.5C2—O1—H1102 (3)
H8A—C8—H8C109.5C3—O2—C7117.3 (2)
H8B—C8—H8C109.5C11—O3—C16118.0 (2)
N1—C9—C1120.9 (2)
C6—C1—C2—O1179.4 (2)N1—C10—C11—O30.2 (3)
C9—C1—C2—O10.7 (4)C15—C10—C11—C120.1 (4)
C6—C1—C2—C30.7 (4)N1—C10—C11—C12179.7 (2)
C9—C1—C2—C3177.9 (2)O3—C11—C12—C13180.0 (3)
O1—C2—C3—O20.3 (4)C10—C11—C12—C130.1 (4)
C1—C2—C3—O2179.0 (2)C11—C12—C13—C140.1 (4)
O1—C2—C3—C4179.5 (2)C12—C13—C14—C150.0 (5)
C1—C2—C3—C40.8 (4)C13—C14—C15—C100.1 (5)
O2—C3—C4—C5179.0 (2)C11—C10—C15—C140.2 (4)
C2—C3—C4—C50.9 (4)N1—C10—C15—C14179.8 (3)
C3—C4—C5—C60.9 (4)C1—C9—N1—C10179.8 (2)
C3—C4—C5—Br1178.1 (2)C15—C10—N1—C91.3 (4)
C4—C5—C6—C10.7 (4)C11—C10—N1—C9178.3 (2)
Br1—C5—C6—C1178.21 (19)C4—C3—O2—C78.4 (4)
C2—C1—C6—C50.7 (4)C2—C3—O2—C7171.4 (2)
C9—C1—C6—C5178.0 (2)C8—C7—O2—C3172.8 (2)
C2—C1—C9—N10.6 (4)C12—C11—O3—C166.0 (4)
C6—C1—C9—N1179.3 (2)C10—C11—O3—C16173.9 (2)
C15—C10—C11—O3179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.81 (5)1.80 (5)2.566 (3)157 (5)
C16—H16A···O1i0.962.553.293 (3)135
C7—H7A···Cg1ii0.972.803.662 (3)149
C13—H13···Cg2iii0.932.793.629 (3)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Orhan Büyükgüngör for his guidance in this study.

Funding information

Funding for this research was provided by: Giresun University (FEN-BAP-A-250414-75).

References

First citationAlbayrak, Ç., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85–91.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHu, G., Wang, G., Duan, N., Wen, X., Cao, T., Xie, S. & Huang, W. (2012). Acta Pharmaceutica Sinica B, 2(3), 312–317.  CrossRef Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017a). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq15.  Google Scholar
First citationKaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017b). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq37.  Google Scholar
First citationKaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017c). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq59.  Google Scholar
First citationKaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017d). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq6b.  Google Scholar
First citationKruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839–3842.  CrossRef Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationÖzdemir Tarı, G., Ceylan, Ü., Ümit, , Ağar, E. & Eserci, H. (2016). J. Mol. Struct. 1126, 83–93.  Google Scholar
First citationÖzek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, o173–o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek Yıldırım, A., Albayrak Kaştaş, Ç. & Gülsu, M. (2016). J. Mol. Struct. 1103, 311–318.  Google Scholar
First citationÖzek Yıldırım, A., Yıldırım, M. H. & Albayrak Kaştaş, Ç. (2017). J. Mol. Struct. 1127, 275–282.  Google Scholar
First citationPetek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, İ. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681–690.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds