research communications
Synthesis, E)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol
and computational studies of a new Schiff base compound: (aDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Sinop University, Turkey
*Correspondence e-mail: arzu.ozek.yildirim@giresun.edu.tr
The title compound, C16H16BrNO3, which shows enol–imine crystallizes in the monoclinic P21/c All non-H atoms of the molecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, molecules are held together by weak C—H⋯O, π–π and C—H⋯π interactions. The E/Z and enol/keto energy barriers of the compound have been calculated by relaxed surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.
Keywords: Schiff bas; crystal structure; DFT; 5-bromo-3-ethoxy-2-hydroxybenzaldehyde; 2-methoxyaniline.
CCDC reference: 1457124
1. Chemical context
The synthesis and chemistry of et al., 2012), anti-tumor (Kamel et al., 2010) and biological properties (Lozier et al., 1975). Furthermore, can display photo-chromic and thermo-chromic effect (Hadjoudis & Mavridis, 2004). These effects depend on the prototropic and molecular planarity in (Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987). Prototropic emerges from the intramolecular H-atom transfer between an enol–imine (Özdemir Tarı et al., 2016) and a keto–amine tautomer (Özek et al., 2006). The present work is part of our ongoing studies on (Özek Yıldırım et al., 2016, 2017; Albayrak et al., 2012). We report herein the synthesis, and computational studies of the title compound, (E)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol, obtained from the condensation of 5-bromo-3-ethoxy-2-hydroxybenzaldehyde with 2-methoxyaniline.
have received considerable attention over the last several decades, primarily owing to their remarkable potential pharmacological (Hu2. Structural commentary
Fig. 1 represents the molecular structure of the title compound. All non-H atoms lie in the plane formed by the aromatic rings with a maximum deviation of 0.274 (3) Å. The dihedral angle between the aromatic rings C1–C6 and C10–C15 is 2.25 (13)°. In the chelate moiety, which comprises atoms C1, C2, O1, H1, N1 and C9, C9=N1 [1.281 (3)] is a typical double bond while C2—O1 [1.333 (3)] is a typical single bond; these are similar to those in related structures (Petek et al., 2010; Gül et al., 2007). The harmonic oscillator model of aromaticity (HOMA; Kruszewski & Krygowski, 1972) values were calculated [0.88 for C1–C6 and 0.98 for the C10–C15 ring] to observe the effect of substituent groups on the rings. There are no significant deformations of the rings when compared to those in (E)-2-ethoxy-6-[(2-methoxyphenylimino)methyl]phenol (Petek et al., 2010). The chelate moiety forms an S(6) graph-set motif through a strong intramolecular O1—H1⋯N1 hydrogen bond (Table 1).
3. Supramolecular features
In the crystal, inversion dimers with an R22 motif are generated by the weak C16—H16A⋯O1(−x + 1, −y, −z + 1) hydrogen bonds (Table 1). As shown in Fig. 2, these dimers are connected to each other by π–π interactions [Cg1⋯Cg2(x, y + 1, z) = 3.6237 (16) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively]. C—H⋯π interactions (Table 1) generate zigzag chains along the [100] direction as shown in Fig. 3.
4. Computational Studies
Relaxed Gaussian 09W software (Frisch et al., 2009) to investigate the connection between the molecular conformation and physical properties of a Schiff base. The results of a torsional angle scan and a proton-transfer scan on the O—H⋯N pathway are given in Fig. 4. The torsional barrier between the E/Z isomers was found to be 1.94 kcal mol−1 and the enol–keto barrier was 1.92 kcal mol−1. The effects of the conformational changes on the aromatic ring can be visualized by calculating HOMA values during the scan calculations. Fig. 5a shows that changes in the HOMA indices are very limited with an average fluctuation of 2%. As can be seen in Fig. 5b, the aromaticity of the C1–C6 ring depends strongly on the prototropic tautomerism.
surface scan calculations were performed using the DFT/B3LYP/6-311G++(d,p) method with5. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.37, update May 2017; Groom et al., 2016) for the (E)-4-bromo-2-ethoxy-6-[(methylimino)methyl]phenol unit of the title compound reveals five compounds, viz. OCOVEK (Kaştaş et al., 2017a), OCOVIO (Kaştaş et al., 2017b), OCOVOU (Kaştaş et al., 2017c), OCOVUA (Kaştaş et al., 2017d) and LUWZIO (Özek Yıldırım et al., 2016). The molecular structures of the latter two compounds are planar, in which they are similar to the title compound, while the others are not planar.
6. Synthesis and crystallization
The title compound was prepared by refluxing a mixture of a solution containing 5-bromo-3-ethoxy-2-hydroxybenzaldehyde (0.5 g, 2 mmol) in 20 ml ethanol and a solution containing 2-methoxyaniline (0.25 g, 2 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 70%).
7. Refinement
Crystal data, data collection and structure . The hydroxyl atom H1 was refined freely. All the other H atoms were located geometrically and refined using a riding model with C—H = 0.93–0.97 Å Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1457124
https://doi.org/10.1107/S2056989018002062/xu5918sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002062/xu5918Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002062/xu5918Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).C16H16BrNO3 | F(000) = 712 |
Mr = 350.21 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.3405 (8) Å | Cell parameters from 3491 reflections |
b = 6.5204 (2) Å | θ = 2.0–28.1° |
c = 15.3612 (10) Å | µ = 2.72 mm−1 |
β = 98.716 (5)° | T = 296 K |
V = 1518.78 (14) Å3 | Prism, orange |
Z = 4 | 0.56 × 0.28 × 0.05 mm |
Stoe IPDS 2 diffractometer | 3491 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2754 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.042 |
rotation method scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −19→19 |
Tmin = 0.437, Tmax = 0.893 | k = −8→8 |
18156 measured reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0398P)2 + 0.5265P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3491 reflections | Δρmax = 0.28 e Å−3 |
194 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44857 (16) | 0.3446 (4) | 0.18253 (15) | 0.0403 (5) | |
C2 | 0.42497 (17) | 0.3902 (4) | 0.26511 (16) | 0.0417 (5) | |
C3 | 0.37588 (17) | 0.5714 (4) | 0.27491 (17) | 0.0440 (6) | |
C4 | 0.35124 (17) | 0.6978 (4) | 0.20324 (18) | 0.0469 (6) | |
H4 | 0.318414 | 0.815670 | 0.208919 | 0.056* | |
C5 | 0.37596 (17) | 0.6473 (4) | 0.12266 (17) | 0.0456 (6) | |
C6 | 0.42285 (18) | 0.4758 (4) | 0.11072 (16) | 0.0457 (6) | |
H6 | 0.437777 | 0.445619 | 0.055674 | 0.055* | |
C7 | 0.3190 (2) | 0.7984 (4) | 0.3743 (2) | 0.0574 (7) | |
H7A | 0.260045 | 0.809407 | 0.341291 | 0.069* | |
H7B | 0.354488 | 0.909669 | 0.356734 | 0.069* | |
C8 | 0.3155 (2) | 0.8097 (5) | 0.4713 (2) | 0.0640 (8) | |
H8A | 0.290087 | 0.938248 | 0.484727 | 0.077* | |
H8B | 0.280127 | 0.699194 | 0.487896 | 0.077* | |
H8C | 0.374171 | 0.799032 | 0.503274 | 0.077* | |
C9 | 0.50092 (17) | 0.1655 (4) | 0.17069 (16) | 0.0442 (5) | |
H9 | 0.516428 | 0.138217 | 0.115620 | 0.053* | |
C10 | 0.57777 (16) | −0.1337 (4) | 0.22892 (16) | 0.0406 (5) | |
C11 | 0.59676 (16) | −0.2499 (4) | 0.30608 (16) | 0.0420 (5) | |
C12 | 0.64681 (19) | −0.4279 (4) | 0.30608 (19) | 0.0513 (6) | |
H12 | 0.659509 | −0.505656 | 0.357194 | 0.062* | |
C13 | 0.67759 (18) | −0.4892 (5) | 0.2304 (2) | 0.0550 (7) | |
H13 | 0.711082 | −0.608217 | 0.230857 | 0.066* | |
C14 | 0.6594 (2) | −0.3766 (5) | 0.1542 (2) | 0.0552 (7) | |
H14 | 0.680358 | −0.419005 | 0.103432 | 0.066* | |
C15 | 0.60944 (19) | −0.1994 (4) | 0.15371 (18) | 0.0508 (6) | |
H15 | 0.596978 | −0.123232 | 0.102130 | 0.061* | |
C16 | 0.5727 (2) | −0.2971 (5) | 0.45460 (19) | 0.0622 (8) | |
H16A | 0.546330 | −0.227372 | 0.499090 | 0.075* | |
H16B | 0.544000 | −0.426840 | 0.441808 | 0.075* | |
H16C | 0.634215 | −0.319190 | 0.475376 | 0.075* | |
N1 | 0.52630 (14) | 0.0438 (3) | 0.23498 (13) | 0.0423 (5) | |
O1 | 0.44838 (15) | 0.2719 (3) | 0.33548 (12) | 0.0536 (5) | |
O2 | 0.35740 (14) | 0.6041 (3) | 0.35724 (12) | 0.0546 (5) | |
O3 | 0.56318 (14) | −0.1756 (3) | 0.37679 (12) | 0.0558 (5) | |
Br1 | 0.34398 (2) | 0.82939 (5) | 0.02613 (2) | 0.06603 (13) | |
H1 | 0.479 (3) | 0.186 (8) | 0.316 (3) | 0.119 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0405 (12) | 0.0374 (12) | 0.0424 (12) | −0.0003 (11) | 0.0041 (10) | 0.0031 (10) |
C2 | 0.0433 (13) | 0.0374 (13) | 0.0443 (12) | 0.0007 (10) | 0.0064 (10) | 0.0027 (10) |
C3 | 0.0429 (14) | 0.0415 (13) | 0.0483 (13) | 0.0002 (11) | 0.0092 (11) | 0.0009 (11) |
C4 | 0.0441 (14) | 0.0383 (14) | 0.0583 (15) | 0.0045 (11) | 0.0081 (11) | 0.0060 (11) |
C5 | 0.0446 (14) | 0.0415 (14) | 0.0493 (13) | −0.0018 (11) | 0.0021 (11) | 0.0109 (11) |
C6 | 0.0492 (14) | 0.0476 (15) | 0.0403 (12) | 0.0025 (12) | 0.0070 (11) | 0.0067 (11) |
C7 | 0.0640 (18) | 0.0433 (16) | 0.0674 (18) | 0.0125 (13) | 0.0184 (14) | 0.0005 (13) |
C8 | 0.074 (2) | 0.0519 (17) | 0.0698 (19) | 0.0103 (15) | 0.0230 (16) | −0.0074 (15) |
C9 | 0.0514 (14) | 0.0430 (13) | 0.0387 (12) | −0.0004 (12) | 0.0087 (10) | 0.0010 (11) |
C10 | 0.0404 (13) | 0.0363 (13) | 0.0458 (12) | −0.0001 (10) | 0.0089 (10) | 0.0016 (10) |
C11 | 0.0392 (13) | 0.0422 (13) | 0.0450 (12) | −0.0001 (11) | 0.0080 (10) | 0.0031 (10) |
C12 | 0.0491 (15) | 0.0465 (15) | 0.0576 (15) | 0.0062 (12) | 0.0061 (12) | 0.0089 (13) |
C13 | 0.0458 (15) | 0.0433 (15) | 0.0764 (19) | 0.0074 (12) | 0.0106 (14) | −0.0017 (14) |
C14 | 0.0555 (17) | 0.0534 (17) | 0.0607 (16) | 0.0041 (13) | 0.0217 (13) | −0.0073 (13) |
C15 | 0.0580 (16) | 0.0498 (16) | 0.0475 (14) | 0.0037 (13) | 0.0170 (12) | 0.0037 (12) |
C16 | 0.070 (2) | 0.070 (2) | 0.0473 (15) | 0.0027 (16) | 0.0107 (13) | 0.0152 (14) |
N1 | 0.0467 (12) | 0.0375 (11) | 0.0436 (10) | 0.0035 (9) | 0.0092 (9) | 0.0030 (9) |
O1 | 0.0730 (14) | 0.0473 (11) | 0.0425 (10) | 0.0160 (10) | 0.0152 (9) | 0.0081 (8) |
O2 | 0.0703 (13) | 0.0445 (10) | 0.0519 (10) | 0.0137 (9) | 0.0184 (9) | 0.0025 (8) |
O3 | 0.0709 (13) | 0.0559 (11) | 0.0434 (9) | 0.0145 (10) | 0.0176 (9) | 0.0106 (9) |
Br1 | 0.0763 (2) | 0.05858 (19) | 0.06202 (19) | 0.01265 (16) | 0.00668 (14) | 0.02361 (15) |
C1—C2 | 1.403 (3) | C9—N1 | 1.281 (3) |
C1—C6 | 1.405 (3) | C9—H9 | 0.9300 |
C1—C9 | 1.444 (4) | C10—C15 | 1.387 (4) |
C2—O1 | 1.333 (3) | C10—C11 | 1.400 (3) |
C2—C3 | 1.421 (4) | C10—N1 | 1.412 (3) |
C3—O2 | 1.354 (3) | C11—O3 | 1.360 (3) |
C3—C4 | 1.381 (4) | C11—C12 | 1.392 (4) |
C4—C5 | 1.388 (4) | C12—C13 | 1.379 (4) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.356 (4) | C13—C14 | 1.373 (4) |
C5—Br1 | 1.905 (2) | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—C15 | 1.386 (4) |
C7—O2 | 1.438 (3) | C14—H14 | 0.9300 |
C7—C8 | 1.500 (4) | C15—H15 | 0.9300 |
C7—H7A | 0.9700 | C16—O3 | 1.423 (3) |
C7—H7B | 0.9700 | C16—H16A | 0.9600 |
C8—H8A | 0.9600 | C16—H16B | 0.9600 |
C8—H8B | 0.9600 | C16—H16C | 0.9600 |
C8—H8C | 0.9600 | O1—H1 | 0.81 (5) |
C2—C1—C6 | 120.0 (2) | N1—C9—H9 | 119.5 |
C2—C1—C9 | 120.7 (2) | C1—C9—H9 | 119.5 |
C6—C1—C9 | 119.3 (2) | C15—C10—C11 | 118.9 (2) |
O1—C2—C1 | 122.4 (2) | C15—C10—N1 | 125.3 (2) |
O1—C2—C3 | 118.5 (2) | C11—C10—N1 | 115.8 (2) |
C1—C2—C3 | 119.1 (2) | O3—C11—C12 | 125.0 (2) |
O2—C3—C4 | 125.4 (2) | O3—C11—C10 | 115.3 (2) |
O2—C3—C2 | 114.8 (2) | C12—C11—C10 | 119.7 (2) |
C4—C3—C2 | 119.8 (2) | C13—C12—C11 | 120.1 (3) |
C3—C4—C5 | 119.4 (2) | C13—C12—H12 | 120.0 |
C3—C4—H4 | 120.3 | C11—C12—H12 | 120.0 |
C5—C4—H4 | 120.3 | C14—C13—C12 | 120.8 (3) |
C6—C5—C4 | 122.6 (2) | C14—C13—H13 | 119.6 |
C6—C5—Br1 | 119.2 (2) | C12—C13—H13 | 119.6 |
C4—C5—Br1 | 118.23 (19) | C13—C14—C15 | 119.5 (3) |
C5—C6—C1 | 119.2 (2) | C13—C14—H14 | 120.3 |
C5—C6—H6 | 120.4 | C15—C14—H14 | 120.3 |
C1—C6—H6 | 120.4 | C14—C15—C10 | 121.1 (3) |
O2—C7—C8 | 107.6 (2) | C14—C15—H15 | 119.5 |
O2—C7—H7A | 110.2 | C10—C15—H15 | 119.5 |
C8—C7—H7A | 110.2 | O3—C16—H16A | 109.5 |
O2—C7—H7B | 110.2 | O3—C16—H16B | 109.5 |
C8—C7—H7B | 110.2 | H16A—C16—H16B | 109.5 |
H7A—C7—H7B | 108.5 | O3—C16—H16C | 109.5 |
C7—C8—H8A | 109.5 | H16A—C16—H16C | 109.5 |
C7—C8—H8B | 109.5 | H16B—C16—H16C | 109.5 |
H8A—C8—H8B | 109.5 | C9—N1—C10 | 124.4 (2) |
C7—C8—H8C | 109.5 | C2—O1—H1 | 102 (3) |
H8A—C8—H8C | 109.5 | C3—O2—C7 | 117.3 (2) |
H8B—C8—H8C | 109.5 | C11—O3—C16 | 118.0 (2) |
N1—C9—C1 | 120.9 (2) | ||
C6—C1—C2—O1 | −179.4 (2) | N1—C10—C11—O3 | −0.2 (3) |
C9—C1—C2—O1 | −0.7 (4) | C15—C10—C11—C12 | 0.1 (4) |
C6—C1—C2—C3 | −0.7 (4) | N1—C10—C11—C12 | 179.7 (2) |
C9—C1—C2—C3 | 177.9 (2) | O3—C11—C12—C13 | 180.0 (3) |
O1—C2—C3—O2 | −0.3 (4) | C10—C11—C12—C13 | 0.1 (4) |
C1—C2—C3—O2 | −179.0 (2) | C11—C12—C13—C14 | −0.1 (4) |
O1—C2—C3—C4 | 179.5 (2) | C12—C13—C14—C15 | 0.0 (5) |
C1—C2—C3—C4 | 0.8 (4) | C13—C14—C15—C10 | 0.1 (5) |
O2—C3—C4—C5 | 179.0 (2) | C11—C10—C15—C14 | −0.2 (4) |
C2—C3—C4—C5 | −0.9 (4) | N1—C10—C15—C14 | −179.8 (3) |
C3—C4—C5—C6 | 0.9 (4) | C1—C9—N1—C10 | −179.8 (2) |
C3—C4—C5—Br1 | −178.1 (2) | C15—C10—N1—C9 | 1.3 (4) |
C4—C5—C6—C1 | −0.7 (4) | C11—C10—N1—C9 | −178.3 (2) |
Br1—C5—C6—C1 | 178.21 (19) | C4—C3—O2—C7 | −8.4 (4) |
C2—C1—C6—C5 | 0.7 (4) | C2—C3—O2—C7 | 171.4 (2) |
C9—C1—C6—C5 | −178.0 (2) | C8—C7—O2—C3 | −172.8 (2) |
C2—C1—C9—N1 | 0.6 (4) | C12—C11—O3—C16 | −6.0 (4) |
C6—C1—C9—N1 | 179.3 (2) | C10—C11—O3—C16 | 173.9 (2) |
C15—C10—C11—O3 | −179.8 (2) |
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.81 (5) | 1.80 (5) | 2.566 (3) | 157 (5) |
C16—H16A···O1i | 0.96 | 2.55 | 3.293 (3) | 135 |
C7—H7A···Cg1ii | 0.97 | 2.80 | 3.662 (3) | 149 |
C13—H13···Cg2iii | 0.93 | 2.79 | 3.629 (3) | 150 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Professor Orhan Büyükgüngör for his guidance in this study.
Funding information
Funding for this research was provided by: Giresun University (FEN-BAP-A-250414-75).
References
Albayrak, Ç., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A, 85, 85–91. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588. Web of Science PubMed CAS Google Scholar
Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Hu, G., Wang, G., Duan, N., Wen, X., Cao, T., Xie, S. & Huang, W. (2012). Acta Pharmaceutica Sinica B, 2(3), 312–317. CrossRef Google Scholar
Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem. 45, 572–580. Web of Science CrossRef PubMed CAS Google Scholar
Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017a). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq15. Google Scholar
Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017b). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq37. Google Scholar
Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017c). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq59. Google Scholar
Kaştaş, G., Albayrak Kaştaş, Ç. & Frank, R. (2017d). CSD Communication, https://doi. org/10.5517/ccdc.csd.cc12bq6b. Google Scholar
Kruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839–3842. CrossRef Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Özdemir Tarı, G., Ceylan, Ü., Ümit, , Ağar, E. & Eserci, H. (2016). J. Mol. Struct. 1126, 83–93. Google Scholar
Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, o173–o177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özek Yıldırım, A., Albayrak Kaştaş, Ç. & Gülsu, M. (2016). J. Mol. Struct. 1103, 311–318. Google Scholar
Özek Yıldırım, A., Yıldırım, M. H. & Albayrak Kaştaş, Ç. (2017). J. Mol. Struct. 1127, 275–282. Google Scholar
Petek, H., Albayrak, Ç., Odabaşoğlu, M., Şenel, İ. & Büyükgüngör, O. (2010). Struct. Chem. 21, 681–690. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.