research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-iso­propyl-4-meth­­oxy-5-methyl­phenyl 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, bLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Organique et Analytique, Faculté des Sciences et, Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Béni-Mellal, Morocco
*Correspondence e-mail: a.auhmani@uca.ma

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 31 January 2018; accepted 22 February 2018; online 28 February 2018)

The title compound, C18H22O4S, an hemisynthetic product, was obtained by the tosyl­ation reaction of the naturally occurring meroterpene p-meth­oxy­thymol. The mol­ecule comprises a tetra­substitued phenyl ring linked to a toluene­sulfonate through one of its O atoms. In the crystal, C—H⋯O and C—H⋯π inter­actions link the mol­ecules, forming a three-dimensional network.

1. Chemical context

Tosyl­ation of alcohols is an important transformation in organic synthesis. This transformation is usually achieved with p-toluene sulfonyl chloride, which is very reactive (Greene & Wuts, 1999[Greene, T. W. & Wuts, P. G. M. (1999). Protecting Groups in Organic Synthesis, 3rd ed. New York: Wiley.]; Yoshida et al., 1999[Yoshida, Y., Shimomishi, K., Sakakura, Y., Okada, S., Aso, N. & Tanabe, Y. (1999). Synthesis, 1633-1636.]). Tosyl­ate is an important functional group in organic synthesis as it makes a good leaving group (Wagner & Zokk, 1955[Wagner, R. B. & Zokk, H. D. (1955). Synthetic Organic Chemistry, Vol. 3, edited by E. C. Horning. New York: John Wiley and Sons.]; Sandler & Karo, 1983[Sandler, S. R. & Karo, W. (1983). Organic Functional Group Preparations, Vol. 1. New York: Academic Press.]). Indeed, tosyl­ates are used as inter­mediates in the synthesis of several drugs (Kim et al., 1995[Kim, H. S., Oh, S. H., Kim, D., Kim, I. C., Cho, K. H. & Park, Y. B. (1995). Bioorg. Med. Chem. 3, 367-374.]; Morgan et al., 1997[Morgan, B., Dodds, D. R., Zaks, A., Andrews, D. R. & Klesse, R. (1997). J. Org. Chem. 62, 7736-7743.]). Furthermore, they have also been found to possess important biological activities (Kacem et al., 2002[Kacem, Y., Kraiem, J., Kerkeni, E., Bouraoui, A. & Ben Hassine, B. (2002). Eur. J. Pharm. Sci. 16, 221-228.]; Kaleemullah et al., 2012[Kaleemullah, T., Ahmed, M. & Sharma, H. K. (2012). J. Chem. Pharm. Res. 4, 483-490.]).

[Scheme 1]

The hemisynthesis of 2-isopropyl-4-meth­oxy-5-methyl­phenyl 4-methyl­benzene­sulfonate 2 from naturally occurring p-meth­oxy­thymol 1 was undertaken with the aim of preparing meroterpenic tosyl­ate. X-ray single-crystal structure analysis allowed its full structure to be confirmed unambiguously.

2. Structural commentary

Compound 2 is built up from a tetra­substituted phenyl ring linked to a toluene­sulfonate unit through one of its oxygen atoms (Fig. 1[link]). The two phenyl rings form a dihedral angle of 60.03 (9)°. Atoms S1 and C5′ are coplanar with the C1′–C6′ phenyl ring, their distances from the plane being 0.057 (3) and 0.031 (3) Å, respectively. Considering the connected atoms of the four substituents on the C1–C6 phenyl ring, three of them O2, C8 and C11 are roughly in the plane of the phenyl ring, deviating by only 0.011 (3), 0.014 (3) and 0.012 (3) Å, respectively, from the mean plane, whereas atom O1 is displaced slightly out of the plane by 0.101 (3) Å. This slight distortion might be related to the occurrence of a weak C—H⋯π inter­action between the C9 atom and the centroid Cg2 of the C1′–C6′ phenyl ring (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the phenyl rings C1–C6 and C1′–C6′, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3′—H3′⋯O1i 0.95 2.67 3.610 (2) 169
C5′—H5′3⋯O3ii 0.98 2.66 3.589 (3) 159
C7—H7A⋯O4iii 0.98 2.72 3.693 (3) 175
C10—H10B⋯O3iv 0.98 2.61 3.317 (3) 130
C10—H10A⋯O4iii 0.98 2.70 3.521 (3) 142
C5′—H5′2⋯Cg2v 0.98 2.84 3.706 148
C11—H11BCg1iv 0.98 2.75 3.635 150
C9—H9ACg2 0.98 2.70 3.5373 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z; (v) -x+1, -y, -z+1.
[Figure 1]
Figure 1
Mol­ecular view of compound 2 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, pairs of mol­ecules are linked though C—H⋯O inter­actions (Table 1[link]), forming pseudo-dimer arranged around inversion centers (Fig. 2[link]). Further C—H⋯O hydrogen bonds and C—H⋯π inter­actions (Table 1[link], Fig. 2[link]) lead to the formation of a three-dimensional network.

[Figure 2]
Figure 2
Partial packing view showing the C—H⋯O and C—H⋯π inter­actions (dotted lines). Only H atoms involved in hydrogen bonding are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a tosyl­ate fragment bearing an organic substituent on one of its oxygen atoms revealed only three hits. Two of these compounds are closely related to compound 2. The first, 5-bromo-2,3-di­methyl­phenol-1-(4-methyl­phenyl­sulfon­yloxy)benzene (KAWDAN; Niestroj et al., 1998[Niestroj, A. J., Bruhn, C. & Maier, M. E. (1998). J. Prakt. Chem. 340, 175-177.]), is built up from a tosyl­ate attached to a phenyl ring substituted by two methyl groups and one bromine atom whereas the second, tetra­methyl-p-phenyl­ene p-di­toluene­sulfonate (TMPDTS; Wieczorek et al., 1975[Wieczorek, M. W., Bokiy, N. G. & Struchkov, Yu. T. (1975). Acta Cryst. B31, 2603-2606.]), is built up from a tetra­methyl-substituted phenyl ring attached to two tosyl­ate units. A comparison of selected distances in compound 2 with those of two structures reveals that the geometries are very similar for all three compounds (Table 2[link]). The most marked difference is the dihedral angle between the phenyl rings, 60.03 (9)° in 2 and 15.32 and 43.02° in KAWDAN and TMPDTS, respectively. The large dihedral angle in TMPDTS might be related to the occurrence of two bulky substituents on the central phenyl ring.

Table 2
Selected structural parameters of compound 2 compared with closely related structures

  2 KAWDANa TMPDTSb
C1′—S1 1.749 (2) 1.748 1.732
S1—O1 1.597 (1) 1.598 1.599
O1—C1 1.428 (2) 1.425 1.428
C1′—S1—O1 104.76 (8) 98.83 102.37
S1—O1—C1 120.71 (11) 116.07 119.84
Dihedral angle 60.03 (9) 15.32 43.02
References: a Niestroj et al. (1998[Niestroj, A. J., Bruhn, C. & Maier, M. E. (1998). J. Prakt. Chem. 340, 175-177.]); b Wieczorek et al. (1975[Wieczorek, M. W., Bokiy, N. G. & Struchkov, Yu. T. (1975). Acta Cryst. B31, 2603-2606.]).

5. Synthesis and crystallization

In a 100mL flask, 430 mg (2.33mmol) of p-meth­oxy­thymol 1 were dissolved in 15 mL of pyridine and then 908 mg (4.66 mmol) of para-toluene­sulfonyl chloride were added. The reaction mixture was heated to reflux for two h. The end of the reaction was controlled by TLC. The reaction mixture was washed with a hydro­chloric acid solution (0.1 M) to neutral pH, extracted three times with ethyl ether (3 × 20 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using hexa­ne/ethyl acetate (94:6) as eluent to give 360 mg (1.07 mmol, 46% yield) of 2-isopropyl-4-meth­oxy-5-methyl­phenyl 4-methyl­benzene­sulfonate 2. X-ray quality colourless crystals were obtained by slow evaporation of a petroleum ether solution of the title compound.

NMR data for compound 2: 1H NMR (300 MHz, CDCl3): 6.66 (s, H-6), 6.84 (s, H-3), 3.45 (sept, H-8), 1.09 (d, H-9,H-10), 2.13 (s, H-7), 3.72 (s, H-10), 7.33 (d, H-3′), 7.75 (d, H-2′), 2.43 (s, H-5′) ppm. 13C NMR (75 MHz, CDCl3): 156.4 (C-1), 124.0 (C-2), 107.5 (C-3), 145.2 (C-4), 139.8 (C-5), 124.1 (C-6),15.7 (C-7), 26.8 (C-8), 23.1 (C-9, C-10), 55.4 (OCH3), 145.2 (C-1′), 129.7 (C-2′), 128.4 (C-3′), 139.7 (C-4′), 21.5 (C-5′) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were fixed geometrically and treated as riding with C—H = 1.0 (methine), 0.98 (meth­yl) or 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).

Table 3
Experimental details

Crystal data
Chemical formula C18H22O4S
Mr 334.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.2226 (6), 14.5382 (9), 14.7230 (8)
β (°) 100.020 (6)
V3) 1733.17 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.35 × 0.25 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Eos Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.791, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18172, 3532, 2777
Rint 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.06
No. of reflections 3532
No. of parameters 213
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

2-Isopropyl-4-methoxy-5-methylphenyl 4-methylbenzenesulfonate top
Crystal data top
C18H22O4SF(000) = 712
Mr = 334.41Dx = 1.282 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2226 (6) ÅCell parameters from 4433 reflections
b = 14.5382 (9) Åθ = 3.8–28.5°
c = 14.7230 (8) ŵ = 0.20 mm1
β = 100.020 (6)°T = 173 K
V = 1733.17 (19) Å3Box, colourless
Z = 40.35 × 0.25 × 0.10 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
3532 independent reflections
Radiation source: Enhance (Mo) X-ray Source2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1816
Tmin = 0.791, Tmax = 1.000l = 1818
18172 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.814P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3532 reflectionsΔρmax = 0.34 e Å3
213 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 1.0Å (methine) with Uiso(H) = 1.2Ueq(CH and C=CH) or Uiso(H) = 1.5Ueq(CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0729 (2)0.19454 (12)0.12387 (12)0.0244 (4)
C1'0.2295 (2)0.11565 (13)0.32646 (12)0.0273 (4)
C2'0.2423 (2)0.02563 (13)0.29895 (13)0.0319 (4)
H2'0.1508170.0043940.2626200.038*
C20.2184 (2)0.20290 (12)0.08959 (12)0.0253 (4)
C3'0.3907 (3)0.02031 (14)0.32514 (13)0.0351 (5)
H3'0.4002210.0822690.3062380.042*
C30.2171 (2)0.16786 (13)0.00089 (12)0.0281 (4)
H30.3140490.1726710.0257400.034*
C40.0786 (2)0.12650 (13)0.04881 (12)0.0283 (4)
C4'0.5259 (2)0.02225 (14)0.37844 (12)0.0323 (4)
C50.0681 (2)0.11891 (13)0.01288 (13)0.0293 (4)
C5'0.6862 (3)0.02793 (16)0.40828 (15)0.0414 (5)
H5'10.6743850.0918120.3869050.062*
H5'20.7149620.0268640.4757240.062*
H5'30.7736180.0021850.3816670.062*
C60.0682 (2)0.15452 (13)0.07405 (13)0.0284 (4)
H60.1660240.1515930.1000700.034*
C6'0.5098 (2)0.11365 (15)0.40381 (13)0.0356 (5)
H6'0.6017350.1443170.4390070.043*
C70.4269 (3)0.32911 (16)0.09104 (15)0.0451 (6)
H7A0.4594460.3084520.0334160.068*
H7B0.5208070.3595050.1295710.068*
H7C0.3347860.3725160.0770950.068*
C7'0.3633 (2)0.16037 (14)0.37888 (13)0.0325 (4)
H7'0.3536640.2224830.3972710.039*
C80.3736 (2)0.24634 (14)0.14252 (13)0.0310 (4)
H80.3490500.2684050.2030200.037*
C90.5123 (3)0.17540 (18)0.16200 (16)0.0483 (6)
H9A0.4748040.1224970.1940850.072*
H9B0.6087700.2031730.2007590.072*
H9C0.5423090.1550010.1036580.072*
C100.2226 (3)0.08648 (18)0.17038 (15)0.0526 (7)
H10A0.2617780.1490890.1785480.079*
H10B0.2039270.0545790.2299200.079*
H10C0.3056330.0531070.1268490.079*
C110.2193 (3)0.07531 (15)0.06830 (14)0.0388 (5)
H11A0.3073730.0730200.0312370.058*
H11B0.1928800.0127260.0857260.058*
H11C0.2562900.1117630.1240590.058*
O10.06333 (15)0.23611 (8)0.21065 (8)0.0269 (3)
O20.07192 (18)0.09037 (10)0.13523 (9)0.0391 (4)
O30.08697 (16)0.10974 (10)0.27106 (10)0.0378 (3)
O40.02806 (17)0.24132 (10)0.36634 (9)0.0386 (4)
S10.04212 (6)0.17449 (3)0.29760 (3)0.02896 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (9)0.0203 (9)0.0269 (9)0.0030 (7)0.0041 (7)0.0025 (7)
C1'0.0316 (9)0.0231 (10)0.0270 (9)0.0023 (8)0.0049 (7)0.0001 (7)
C2'0.0354 (10)0.0247 (10)0.0349 (10)0.0030 (8)0.0038 (8)0.0036 (8)
C20.0248 (9)0.0208 (9)0.0298 (9)0.0004 (7)0.0029 (7)0.0022 (7)
C3'0.0445 (12)0.0226 (10)0.0392 (11)0.0032 (9)0.0098 (9)0.0032 (8)
C30.0297 (9)0.0242 (10)0.0313 (9)0.0007 (8)0.0084 (7)0.0022 (8)
C40.0363 (10)0.0210 (10)0.0262 (9)0.0000 (8)0.0016 (7)0.0025 (7)
C4'0.0379 (11)0.0306 (11)0.0287 (9)0.0052 (9)0.0067 (8)0.0033 (8)
C50.0301 (9)0.0206 (10)0.0349 (10)0.0003 (8)0.0013 (8)0.0063 (8)
C5'0.0415 (12)0.0441 (13)0.0398 (11)0.0126 (10)0.0103 (9)0.0081 (10)
C60.0230 (9)0.0255 (10)0.0366 (10)0.0030 (8)0.0045 (7)0.0067 (8)
C6'0.0355 (11)0.0355 (12)0.0331 (10)0.0002 (9)0.0019 (8)0.0039 (9)
C70.0464 (13)0.0481 (14)0.0418 (12)0.0235 (11)0.0107 (10)0.0079 (10)
C7'0.0395 (11)0.0236 (10)0.0327 (10)0.0021 (8)0.0017 (8)0.0047 (8)
C80.0251 (9)0.0385 (12)0.0297 (9)0.0050 (8)0.0057 (7)0.0050 (8)
C90.0276 (10)0.0672 (17)0.0477 (13)0.0069 (11)0.0003 (9)0.0045 (12)
C100.0641 (16)0.0617 (16)0.0368 (12)0.0238 (13)0.0219 (11)0.0168 (11)
C110.0359 (11)0.0347 (12)0.0416 (11)0.0050 (9)0.0046 (9)0.0020 (9)
O10.0272 (6)0.0225 (7)0.0322 (7)0.0011 (5)0.0083 (5)0.0012 (5)
O20.0473 (9)0.0394 (9)0.0305 (7)0.0112 (7)0.0062 (6)0.0057 (6)
O30.0309 (7)0.0380 (8)0.0450 (8)0.0052 (6)0.0079 (6)0.0068 (6)
O40.0411 (8)0.0403 (8)0.0376 (8)0.0094 (7)0.0153 (6)0.0038 (6)
S10.0277 (2)0.0285 (3)0.0323 (3)0.0020 (2)0.00963 (18)0.00179 (19)
Geometric parameters (Å, º) top
C1—C21.382 (2)C6—H60.9500
C1—C61.388 (2)C6'—C7'1.376 (3)
C1—O11.428 (2)C6'—H6'0.9500
C1'—C2'1.379 (3)C7—C81.526 (3)
C1'—C7'1.390 (3)C7—H7A0.9800
C1'—S11.7486 (19)C7—H7B0.9800
C2'—C3'1.386 (3)C7—H7C0.9800
C2'—H2'0.9500C7'—H7'0.9500
C2—C31.400 (2)C8—C91.527 (3)
C2—C81.513 (2)C8—H81.0000
C3'—C4'1.389 (3)C9—H9A0.9800
C3'—H3'0.9500C9—H9B0.9800
C3—C41.380 (3)C9—H9C0.9800
C3—H30.9500C10—O21.424 (3)
C4—O21.369 (2)C10—H10A0.9800
C4—C51.403 (3)C10—H10B0.9800
C4'—C6'1.393 (3)C10—H10C0.9800
C4'—C5'1.504 (3)C11—H11A0.9800
C5—C61.381 (3)C11—H11B0.9800
C5—C111.503 (3)C11—H11C0.9800
C5'—H5'10.9800O1—S11.5967 (12)
C5'—H5'20.9800O3—S11.4216 (14)
C5'—H5'30.9800O4—S11.4221 (14)
C2—C1—C6122.74 (16)C8—C7—H7B109.5
C2—C1—O1118.38 (15)H7A—C7—H7B109.5
C6—C1—O1118.64 (15)C8—C7—H7C109.5
C2'—C1'—C7'120.86 (18)H7A—C7—H7C109.5
C2'—C1'—S1120.13 (15)H7B—C7—H7C109.5
C7'—C1'—S1119.00 (14)C6'—C7'—C1'119.26 (18)
C1'—C2'—C3'118.97 (18)C6'—C7'—H7'120.4
C1'—C2'—H2'120.5C1'—C7'—H7'120.4
C3'—C2'—H2'120.5C2—C8—C7111.27 (16)
C1—C2—C3116.24 (16)C2—C8—C9110.51 (17)
C1—C2—C8123.71 (16)C7—C8—C9110.87 (17)
C3—C2—C8120.05 (16)C2—C8—H8108.0
C2'—C3'—C4'121.44 (18)C7—C8—H8108.0
C2'—C3'—H3'119.3C9—C8—H8108.0
C4'—C3'—H3'119.3C8—C9—H9A109.5
C4—C3—C2121.63 (17)C8—C9—H9B109.5
C4—C3—H3119.2H9A—C9—H9B109.5
C2—C3—H3119.2C8—C9—H9C109.5
O2—C4—C3123.76 (17)H9A—C9—H9C109.5
O2—C4—C5114.99 (16)H9B—C9—H9C109.5
C3—C4—C5121.26 (17)O2—C10—H10A109.5
C3'—C4'—C6'118.20 (18)O2—C10—H10B109.5
C3'—C4'—C5'121.55 (18)H10A—C10—H10B109.5
C6'—C4'—C5'120.25 (18)O2—C10—H10C109.5
C6—C5—C4117.33 (16)H10A—C10—H10C109.5
C6—C5—C11121.84 (18)H10B—C10—H10C109.5
C4—C5—C11120.83 (18)C5—C11—H11A109.5
C4'—C5'—H5'1109.5C5—C11—H11B109.5
C4'—C5'—H5'2109.5H11A—C11—H11B109.5
H5'1—C5'—H5'2109.5C5—C11—H11C109.5
C4'—C5'—H5'3109.5H11A—C11—H11C109.5
H5'1—C5'—H5'3109.5H11B—C11—H11C109.5
H5'2—C5'—H5'3109.5C1—O1—S1120.71 (11)
C5—C6—C1120.79 (17)C4—O2—C10117.16 (15)
C5—C6—H6119.6O3—S1—O4119.91 (9)
C1—C6—H6119.6O3—S1—O1109.37 (8)
C7'—C6'—C4'121.25 (18)O4—S1—O1102.77 (8)
C7'—C6'—H6'119.4O3—S1—C1'109.08 (9)
C4'—C6'—H6'119.4O4—S1—C1'109.79 (9)
C8—C7—H7A109.5O1—S1—C1'104.76 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the phenyl rings C1–C6 and C1'–C6', respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.673.610 (2)169
C5—H53···O3ii0.982.663.589 (3)159
C7—H7A···O4iii0.982.723.693 (3)175
C10—H10B···O3iv0.982.613.317 (3)130
C10—H10A···O4iii0.982.703.521 (3)142
C5—H52···Cg2v0.982.843.706148
C11—H11B···Cg1iv0.982.753.635150
C9—H9A···Cg20.982.703.5373144
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z; (v) x+1, y, z+1.
Selected structural parameters of compound 2 compared with closely related structures top
2KAWDANaTMPDTSb
C1'—S11.749 (2)1.7481.732
S1—O11.597 (1)1.5981.599
O1—C11.428 (2)1.4251.428
C1'—S1—O1104.76 (8)98.83102.37
S1—O1—C1120.71 (11)116.07119.84
Dihedral angle29.97 (7)15.3243.02
References: a Niestroj et al. (1998); b Wieczorek et al. (1975).
 

Acknowledgements

The authors thank Cadi Ayyad University for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreene, T. W. & Wuts, P. G. M. (1999). Protecting Groups in Organic Synthesis, 3rd ed. New York: Wiley.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKacem, Y., Kraiem, J., Kerkeni, E., Bouraoui, A. & Ben Hassine, B. (2002). Eur. J. Pharm. Sci. 16, 221–228.  CrossRef CAS Google Scholar
First citationKaleemullah, T., Ahmed, M. & Sharma, H. K. (2012). J. Chem. Pharm. Res. 4, 483–490.  CAS Google Scholar
First citationKim, H. S., Oh, S. H., Kim, D., Kim, I. C., Cho, K. H. & Park, Y. B. (1995). Bioorg. Med. Chem. 3, 367–374.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorgan, B., Dodds, D. R., Zaks, A., Andrews, D. R. & Klesse, R. (1997). J. Org. Chem. 62, 7736–7743.  CrossRef CAS Google Scholar
First citationNiestroj, A. J., Bruhn, C. & Maier, M. E. (1998). J. Prakt. Chem. 340, 175–177.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSandler, S. R. & Karo, W. (1983). Organic Functional Group Preparations, Vol. 1. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWagner, R. B. & Zokk, H. D. (1955). Synthetic Organic Chemistry, Vol. 3, edited by E. C. Horning. New York: John Wiley and Sons.  Google Scholar
First citationWieczorek, M. W., Bokiy, N. G. & Struchkov, Yu. T. (1975). Acta Cryst. B31, 2603–2606.  CrossRef CAS IUCr Journals Google Scholar
First citationYoshida, Y., Shimomishi, K., Sakakura, Y., Okada, S., Aso, N. & Tanabe, Y. (1999). Synthesis, 1633–1636.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds