research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bipyridin-1′-ium 1-oxide bromide monohydrate

CROSSMARK_Color_square_no_text.svg

aUniversity Koblenz - Landau, Institute of Integrated Natural Sciences, Universitätsstrasse 1, D-56070 Koblenz, Germany, and bFriedrich-Schiller-University, Insitute of Inorganic and Analytical Chemistry, Humboldtstrasse 8, D-07743 Jena, Germany
*Correspondence e-mail: imhof@uni-koblenz.de

Edited by M. Zeller, Purdue University, USA (Received 20 December 2017; accepted 8 February 2018; online 13 February 2018)

The title compound 2,2′-bipyridin-1′-ium 1-oxide bromide crystallizes as a monohydrate, C10H9N2+·Br·H2O. Structural disorder is observed due to the fact that protonation, as well as oxidation, of the N atoms of 2,2′-bi­pyridine occurs at either of the N atoms. The disorder extends to the remainder of the cation, with a refined occupancy rate of 0.717 (4) for the major moiety. An intra­molecular N—H⋯O hydrogen bond forces the bi­pyridine unit into an s-cis conformation. Each pair of neighbouring 2,2′-bipyridin-1′-ium ions forms a dimeric aggregate by hydrogen bonds between their respective N—O and the N—H functions. These dimers and hydrogen-bonding inter­actions with bromide ions and the water mol­ecule give rise to a complex supra­molecular arrangement.

1. Chemical context

Bi­pyridine ligands are an important class of ligands with respect to the synthesis of transition metal complexes. They are especially well-known for their use in the development of complexes with specific photophysical (Thompson et al., 2013[Thompson, D. W., Ito, A. & Meyer, T. J. (2013). Pure Appl. Chem. 85, 1257-1305.]; Sun et al., 2015[Sun, Q., Mosquera-Vazquez, S., Suffren, Y., Hankache, J., Amstutz, N., Lawson Daku, L. M., Vauthey, E. & Hauser, A. (2015). Coord. Chem. Rev. 282-283, 87-99.], Dongare et al., 2017[Dongare, P., Myron, B. D. B., Wang, L., Thompson, D. W. & Meyer, T. J. (2017). Coord. Chem. Rev. 345, 86-107.]) and/or photocatalytic (Wenger, 2013[Wenger, O. S. (2013). Acc. Chem. Res. 46, 1517-1526.]; Fukuzumi et al., 2016[Fukuzumi, S., Jung, J., Yamada, Y., Kojima, T. & Nam, W. (2016). Chem. Asian J. 11, 1138-1150.]; Knoll et al., 2015[Knoll, J. D., Albani, B. A. & Turro, C. (2015). Acc. Chem. Res. 48, 2280-2287.]; Duan et al., 2015[Duan, L., Wang, L., Li, F., Li, F. & Sun, L. (2015). Acc. Chem. Res. 48, 2084-2096.]; Pal & Hanan, 2014[Pal, A. K. & Hanan, G. S. (2014). Chem. Soc. Rev. 43, 6184-6197.]) properties or for the construction of dye-sensitized solar cells (Happ et al., 2012[Happ, B., Winter, A., Hager, M. D. & Schubert, U. S. (2012). Chem. Soc. Rev. 41, 2222-2255.]; Bomben et al., 2012[Bomben, P. G., Robson, K. C. D., Koivisto, B. D. & Berlinguette, C. P. (2012). Coord. Chem. Rev. 256, 1438-1450.]; Robson et al., 2012[Robson, K. C. D., Bomben, P. G. & Berlinguette, C. P. (2012). Dalton Trans. 41, 7814-7829.]; Adeloye & Ajibade, 2014[Adeloye, A. O. & Ajibade, P. A. (2014). Molecules, 19, 12421-12460.]; Lu et al., 2016[Lu, C.-W., Wang, Y. & Chi, Y. (2016). Chem. Eur. J. 22, 17892-17908.]; Omae, 2016[Omae, I. (2016). Curr. Org. Chem. 20, 2848-2864.]). During our attempts to introduce substituents to 2,2′-bipyrdines that would allow us to use them as monomers in copolymerization reactions (Heintz et al., 2017[Heintz, K., Imhof, W. & Görls, H. (2017). Monatsh. Chem. 148, 991-998.]), we treated 2,2′-bi­pyridine with a mixture of hydro­bromic acid and hydrogen peroxide with the aim of getting direct access to 4-bromo-2,2′-bi­pyridine-1-oxide. After recrystallization, the title compound turned out to be the only isolable product.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the cation of the title compound is depicted in Fig. 1[link], showing the disorder of the cations in which the oxygen atom and the proton are bonded to either N1 or N2. The two cation moieties are disordered over the same position in an approximate 3:1 ratio, with a refined occupancy for the major moiety of 0.717 (4). The disorder has been refined in terms of a whole mol­ecule disorder, thus leading virtually identical bond lengths which, in addition, are of expected values. See the Refinement section for details of the refinement of the disorder. The two pyridine subunits of the 2,2′-bi­pyridine exhibit an s-cis conformation, which is stabilized by an intra­molecular N—H⋯O hydrogen bond (Table 1[link]). The s-cis conformation also allows the cations to arrange themselves into dimeric aggregates via additional N—H⋯O hydrogen bonds (cf. Supra­molecular features).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.88 1.76 2.485 (4) 138
N2—H1N2⋯O1i 0.88 2.41 3.089 (5) 134
C1—H1⋯O1Wi 0.95 2.22 3.138 (6) 163
C4—H4⋯Br1ii 0.95 2.75 3.687 (10) 167
C7—H7⋯Br1ii 0.95 2.86 3.769 (10) 160
C10—H10⋯O1W 0.95 2.34 3.074 (5) 134
N2B—H2N2⋯O1B 0.88 1.81 2.500 (15) 134
N2B—H2N2⋯O1Bi 0.88 2.35 3.117 (18) 146
C1B—H1B⋯O1W 0.95 2.09 2.979 (14) 156
C2B—H2B⋯Br1iii 0.95 2.80 3.497 (15) 131
C4B—H4B⋯Br1ii 0.95 2.77 3.70 (3) 168
C7B—H7B⋯Br1ii 0.95 2.92 3.80 (3) 155
C10B—H10B⋯O1Wi 0.95 2.40 3.246 (17) 147
O1W—H1W1⋯Br1 0.90 (3) 2.47 (3) 3.3475 (18) 165 (3)
O1W—H2W1⋯Br1iv 0.84 (3) 2.57 (3) 3.3754 (17) 160 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the cation of the title compound. Non-hydrogen atoms showing displacement ellipsoids with octand shading represent the major component of the two disordered cations.

3. Supra­molecular features

Fig. 2[link] shows a dimeric aggregate built up by two cations of the title compound via N—H⋯O hydrogen bonds (Table 1[link]). In addition, the figure shows that hydrogen atoms in the 3, 3′, 4 and 4′ positions of each bi­pyridine unit are engaged in C—H⋯Br hydrogen bonds (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford Science Publications.]) with the inter­actions of the 3 and 3′ hydrogen atoms being part of a bifurcated hydrogen bond towards the bromide anion. Hydrogen atoms in the 6 and 6′ positions are part of bifurcated hydrogen bonds towards the water mol­ecule. Moreover, the hydrogen atoms of the water mol­ecules are involved in hydrogen bonds of the O—H⋯Br type. Bromide anions and water mol­ecules form zigzag chains along the b-axis direction (Fig. 3[link]). In summary, a complex network structure is realized by hydrogen bonds linking the constituents of this zigzag chain into dimers of cations.

[Figure 2]
Figure 2
Dimer of cations formed by N—H⋯O hydrogen bonds (Table 1[link]). Hydrogen-bonded bromide anions and water mol­ecules are also shown. Disorder of the cation is omitted for clarity.
[Figure 3]
Figure 3
Zigzag chain of water mol­ecules and bromide anions parallel to the b axis.

4. Database survey

According to a CSD survey (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and in contrast to 2,2′-bi­pyridine or 2,2′-bi­pyridine-1-oxide, there are no metal complexes reported in which a protonated 2,2′-bi­pyridine-1-oxide acts as a ligand. Nevertheless, there are several closely related compounds that show different counter-ions. There are entries involving the hydrogensulfate (ESUMEL; Najafpour et al., 2010[Najafpour, M. M., Boghaei, D. M. & Sjöberg, P. J. R. (2010). Spectrochim. Acta Part A, 75, 1168-1170.]), the perrhenate (PEPDAP; Englert et al., 1993[Englert, U., Koelle, U. & Nageswara, R. N. (1993). Z. Kristallogr. 206, 106-108.]) and the triiodide (SINBIB; Lin et al., 2007[Lin, X. L., Wang, Y. J., Chen, Z. R. & Liu, J. B. (2007). Acta Cryst. E63, o4322.]). All of these compounds, as well as the title compound itself, show an s-cis conformation of the bi­pyridine. Moreover, in all compounds, both rings of the bi­pyridine show an almost perfect coplanar arrangement with dihedral angles well below 10° [title compound: mol­ecule 1: 1.2 (6)°, mol­ecule 2: 2(2)°; ESUMEL 5.9°; PEPDAP 3.9°; SINBIB 2.7°]. This arrangement is most probably caused by the short intra­molecular N—H⋯O hydrogen bond between the protonated nitro­gen atom and the oxygen atom (title compound: mol­ecule 1 1.76, mol­ecule 2; 1.81 Å; ESUMEL 1.73 Å; PEPDAP 1.71 Å; SINBIB 1.73 Å). The supra­molecular arrangement in ESUMEL and PEPDAP is identical, with the cations also forming hydrogen-bonded dimers. Nevertheless, in contrast to the title compound, these dimers are formed by weak C—H⋯O hydrogen bonds of aromatic C—H functions towards the oxygen atom. All other hydrogen bonds are realized by oxygen atoms of the counter-ions acting as the hydrogen-bond acceptor sites. In SINBIB, the cations form an infinite plane realized by bifurcated hydrogen bonds of the oxygen atoms with aromatic C—H functions. In addition, each cation shows a weak C—H⋯I inter­action. In ESUMEL and SINBIB, the protonated N—H groups are not involved in the hydrogen-bond network, whereas in PEPDAP there is an N—H⋯O hydrogen bond to one of the perrhenate counter-ions. In summary, the hydrogen-bond network observed for the title compound is unique compared to the situation for other closely related crystal structures.

5. Synthesis and crystallization

2,2′-Bi­pyridine (1 g, 6.5 mmol) was dissolved in 15 mL methanol. Then hydro­bromic acid (0.58 g, 7.2 mmol) and a 30% solution of hydrogen peroxide (0.74 mL, 6.5 mmol) were added at 283 K. The solution was stirred at room temperature for 20 h. The clear solution turned yellow and a fine precipitate was formed, which dissolved again during the reaction time. After the solvent had evaporated, the colourless residue was dissolved in ethanol. Then water was added until a fine precipitate was formed. Storing the solution in the refrigerator (277 K) overnight led to the formation of crystals suitable for x-ray diffraction (yield: 126 mg, 0.3 mmol, 46%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Data were corrected for Lorentz and polarization effects. Water H atoms were freely refined All other hydrogen atoms were placed in idealized positions (N—H = 0.88, C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C or N). The disorder was refined in terms of a whole mol­ecule disorder. The geometry of major and minor moieties were restrained to be similar (SAME restraint in SHELXL) and anisotropic displacement parameters of equivalent atoms in the two moieties were constrained to be identical. Site-occupation factors of the atoms of the two disordered cations were refined using the FVAR instruction and were calculated to be 0.717 (4) (O1 to H10) and 0.283 (4) (O1B to H10B).

Table 2
Experimental details

Crystal data
Chemical formula C10H9N2O+·Br·H2O
Mr 271.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 133
a, b, c (Å) 5.7882 (1), 9.2095 (2), 20.2485 (4)
β (°) 91.701 (1)
V3) 1078.90 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.79
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.557, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12419, 2465, 2226
Rint 0.030
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.07
No. of reflections 2465
No. of parameters 190
No. of restraints 32
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.51
Computer programs: COLLECT (Nonius, 1998[Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

2,2'-Bipyridin-1'-ium 1-oxide bromide monohydrate top
Crystal data top
C10H9N2O+·Br·H2OF(000) = 544
Mr = 271.12Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7882 (1) ÅCell parameters from 12419 reflections
b = 9.2095 (2) Åθ = 2.0–27.5°
c = 20.2485 (4) ŵ = 3.79 mm1
β = 91.701 (1)°T = 133 K
V = 1078.90 (4) Å3Prism, colourless
Z = 40.05 × 0.04 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
2465 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi– + ω–scanθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 77
Tmin = 0.557, Tmax = 0.746k = 911
12419 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0113P)2 + 0.9881P]
where P = (Fo2 + 2Fc2)/3
2465 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.46 e Å3
32 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.09302 (3)0.63110 (2)0.65415 (2)0.02577 (7)
O10.0960 (3)0.0036 (2)0.43461 (9)0.0270 (5)0.717 (4)
N10.2649 (12)0.0073 (8)0.3908 (2)0.0199 (9)0.717 (4)
N20.3050 (9)0.1763 (6)0.5057 (2)0.0206 (7)0.717 (4)
H1N20.1888370.1165430.4976510.025*0.717 (4)
C10.2378 (9)0.0729 (6)0.33445 (16)0.0236 (8)0.717 (4)
H10.1035880.1309990.3277010.028*0.717 (4)
C20.4039 (8)0.0697 (6)0.2875 (2)0.0252 (9)0.717 (4)
H20.3850650.1265080.2485100.030*0.717 (4)
C30.5987 (11)0.0160 (10)0.2967 (4)0.0254 (8)0.717 (4)
H30.7160540.0161140.2648700.031*0.717 (4)
C40.620 (2)0.1013 (15)0.3526 (4)0.0211 (11)0.717 (4)
H40.7484570.1651800.3581870.025*0.717 (4)
C50.4539 (15)0.0933 (9)0.4009 (4)0.0162 (9)0.717 (4)
C60.4718 (14)0.1856 (12)0.4606 (3)0.0174 (9)0.717 (4)
C70.6635 (19)0.2733 (8)0.4752 (5)0.0217 (11)0.717 (4)
H70.7917000.2749570.4470240.026*0.717 (4)
C80.6624 (8)0.3582 (9)0.5321 (3)0.0254 (9)0.717 (4)
H80.7834280.4261280.5402320.031*0.717 (4)
C90.4864 (8)0.3452 (6)0.5776 (3)0.0276 (11)0.717 (4)
H90.4912530.3982710.6177990.033*0.717 (4)
C100.3066 (7)0.2532 (5)0.5621 (2)0.0254 (9)0.717 (4)
H100.1823640.2437740.5914170.030*0.717 (4)
O1B0.1468 (8)0.1100 (5)0.5162 (2)0.0283 (14)0.283 (4)
N1B0.330 (3)0.1968 (18)0.5193 (7)0.0206 (7)0.283 (4)
N2B0.263 (3)0.018 (2)0.4059 (7)0.0199 (9)0.283 (4)
H2N20.1652930.0143770.4384080.024*0.283 (4)
C1B0.361 (2)0.2832 (16)0.5724 (6)0.0254 (9)0.283 (4)
H1B0.2513280.2814760.6062500.030*0.283 (4)
C2B0.546 (3)0.3722 (19)0.5783 (8)0.0276 (11)0.283 (4)
H2B0.5569630.4361820.6150770.033*0.283 (4)
C3B0.716 (3)0.373 (3)0.5334 (10)0.0254 (9)0.283 (4)
H3B0.8587100.4217520.5415260.031*0.283 (4)
C4B0.668 (5)0.299 (3)0.4753 (13)0.0217 (11)0.283 (4)
H4B0.7565410.3195870.4375560.026*0.283 (4)
C5B0.493 (4)0.196 (3)0.4710 (10)0.0174 (9)0.283 (4)
C6B0.450 (4)0.112 (3)0.4118 (11)0.0162 (9)0.283 (4)
C7B0.607 (6)0.094 (4)0.3618 (13)0.0211 (11)0.283 (4)
H7B0.7540150.1394920.3667630.025*0.283 (4)
C8B0.558 (3)0.015 (3)0.3049 (11)0.0254 (8)0.283 (4)
H8B0.6576160.0186280.2684470.031*0.283 (4)
C9B0.361 (3)0.0716 (19)0.3024 (7)0.0252 (9)0.283 (4)
H9B0.3249560.1322710.2655410.030*0.283 (4)
C10B0.224 (3)0.0649 (19)0.3544 (5)0.0236 (8)0.283 (4)
H10B0.0893990.1242920.3538360.028*0.283 (4)
O1W0.1320 (3)0.31147 (18)0.70149 (8)0.0383 (4)
H1W10.067 (6)0.400 (4)0.6970 (16)0.075 (10)*
H2W10.117 (5)0.288 (3)0.7415 (16)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02760 (10)0.02744 (12)0.02241 (10)0.00035 (7)0.00334 (7)0.00392 (7)
O10.0252 (10)0.0336 (11)0.0225 (10)0.0067 (8)0.0068 (7)0.0001 (8)
N10.0208 (8)0.0207 (15)0.019 (3)0.0010 (8)0.0034 (18)0.002 (2)
N20.0220 (15)0.024 (2)0.016 (2)0.0026 (11)0.0018 (14)0.0009 (14)
C10.0280 (13)0.0231 (12)0.019 (2)0.0009 (10)0.006 (2)0.004 (2)
C20.030 (2)0.0272 (11)0.018 (2)0.0045 (15)0.0008 (13)0.0047 (17)
C30.022 (3)0.0337 (11)0.021 (2)0.0066 (19)0.0064 (15)0.0024 (15)
C40.0189 (17)0.0273 (17)0.017 (3)0.0011 (11)0.0040 (17)0.003 (2)
C50.0186 (8)0.015 (3)0.015 (3)0.0039 (14)0.0018 (16)0.0031 (14)
C60.0199 (18)0.0198 (19)0.012 (3)0.0021 (12)0.0014 (18)0.0032 (18)
C70.0259 (10)0.017 (3)0.0225 (9)0.000 (2)0.0028 (7)0.0005 (19)
C80.025 (3)0.025 (2)0.0259 (10)0.004 (2)0.005 (2)0.0014 (11)
C90.037 (3)0.028 (3)0.0183 (10)0.000 (2)0.0029 (19)0.0003 (15)
C100.030 (2)0.029 (2)0.0179 (18)0.0004 (15)0.0043 (14)0.0005 (14)
O1B0.025 (2)0.034 (3)0.026 (3)0.011 (2)0.0061 (19)0.004 (2)
N1B0.0220 (15)0.024 (2)0.016 (2)0.0026 (11)0.0018 (14)0.0009 (14)
N2B0.0208 (8)0.0207 (15)0.019 (3)0.0010 (8)0.0034 (18)0.002 (2)
C1B0.030 (2)0.029 (2)0.0179 (18)0.0004 (15)0.0043 (14)0.0005 (14)
C2B0.037 (3)0.028 (3)0.0183 (10)0.000 (2)0.0029 (19)0.0003 (15)
C3B0.025 (3)0.025 (2)0.0259 (10)0.004 (2)0.005 (2)0.0014 (11)
C4B0.0259 (10)0.017 (3)0.0225 (9)0.000 (2)0.0028 (7)0.0005 (19)
C5B0.0199 (18)0.0198 (19)0.012 (3)0.0021 (12)0.0014 (18)0.0032 (18)
C6B0.0186 (8)0.015 (3)0.015 (3)0.0039 (14)0.0018 (16)0.0031 (14)
C7B0.0189 (17)0.0273 (17)0.017 (3)0.0011 (11)0.0040 (17)0.003 (2)
C8B0.022 (3)0.0337 (11)0.021 (2)0.0066 (19)0.0064 (15)0.0024 (15)
C9B0.030 (2)0.0272 (11)0.018 (2)0.0045 (15)0.0008 (13)0.0047 (17)
C10B0.0280 (13)0.0231 (12)0.019 (2)0.0009 (10)0.006 (2)0.004 (2)
O1W0.0614 (10)0.0280 (8)0.0259 (8)0.0023 (8)0.0041 (7)0.0044 (7)
Geometric parameters (Å, º) top
O1—N11.343 (6)N1B—C1B1.345 (12)
N1—C51.361 (7)N1B—C5B1.378 (19)
N1—C11.364 (4)N2B—C10B1.307 (12)
N2—C101.344 (4)N2B—C6B1.386 (19)
N2—C61.351 (7)N2B—H2N20.8800
N2—H1N20.8800C1B—C2B1.347 (11)
C1—C21.373 (4)C1B—H1B0.9500
C1—H10.9500C2B—C3B1.362 (17)
C2—C31.384 (7)C2B—H2B0.9500
C2—H20.9500C3B—C4B1.38 (2)
C3—C41.381 (8)C3B—H3B0.9500
C3—H30.9500C4B—C5B1.392 (19)
C4—C51.396 (7)C4B—H4B0.9500
C4—H40.9500C5B—C6B1.444 (12)
C5—C61.478 (4)C6B—C7B1.390 (19)
C6—C71.397 (8)C7B—C8B1.39 (2)
C7—C81.393 (8)C7B—H7B0.9500
C7—H70.9500C8B—C9B1.390 (17)
C8—C91.398 (6)C8B—H8B0.9500
C8—H80.9500C9B—C10B1.339 (11)
C9—C101.371 (4)C9B—H9B0.9500
C9—H90.9500C10B—H10B0.9500
C10—H100.9500O1W—H1W10.90 (3)
O1B—N1B1.330 (12)O1W—H2W10.84 (3)
O1—N1—C5122.8 (4)O1B—N1B—C5B121.8 (11)
O1—N1—C1116.4 (5)C1B—N1B—C5B119.5 (12)
C5—N1—C1120.8 (5)C10B—N2B—C6B123.3 (15)
C10—N2—C6123.6 (4)C10B—N2B—H2N2118.4
C10—N2—H1N2118.2C6B—N2B—H2N2118.4
C6—N2—H1N2118.2N1B—C1B—C2B121.2 (14)
N1—C1—C2120.2 (5)N1B—C1B—H1B119.4
N1—C1—H1119.9C2B—C1B—H1B119.4
C2—C1—H1119.9C1B—C2B—C3B122.1 (15)
C1—C2—C3120.2 (4)C1B—C2B—H2B119.0
C1—C2—H2119.9C3B—C2B—H2B119.0
C3—C2—H2119.9C2B—C3B—C4B115.9 (15)
C4—C3—C2119.3 (5)C2B—C3B—H3B122.1
C4—C3—H3120.4C4B—C3B—H3B122.1
C2—C3—H3120.4C3B—C4B—C5B121 (2)
C3—C4—C5119.8 (7)C3B—C4B—H4B119.4
C3—C4—H4120.1C5B—C4B—H4B119.4
C5—C4—H4120.1N1B—C5B—C4B117.6 (17)
N1—C5—C4119.6 (5)N1B—C5B—C6B119.0 (17)
N1—C5—C6119.6 (6)C4B—C5B—C6B121.9 (19)
C4—C5—C6120.6 (7)N2B—C6B—C7B113.1 (16)
N2—C6—C7118.2 (6)N2B—C6B—C5B121.5 (18)
N2—C6—C5118.8 (6)C7B—C6B—C5B124 (2)
C7—C6—C5122.8 (7)C8B—C7B—C6B123 (2)
C8—C7—C6118.5 (8)C8B—C7B—H7B118.5
C8—C7—H7120.7C6B—C7B—H7B118.5
C6—C7—H7120.7C7B—C8B—C9B118.6 (16)
C7—C8—C9121.2 (5)C7B—C8B—H8B120.7
C7—C8—H8119.4C9B—C8B—H8B120.7
C9—C8—H8119.4C10B—C9B—C8B116.8 (14)
C10—C9—C8117.8 (5)C10B—C9B—H9B121.6
C10—C9—H9121.1C8B—C9B—H9B121.6
C8—C9—H9121.1N2B—C10B—C9B124.2 (16)
N2—C10—C9120.4 (4)N2B—C10B—H10B117.9
N2—C10—H10119.8C9B—C10B—H10B117.9
C9—C10—H10119.8H1W1—O1W—H2W1106 (3)
O1B—N1B—C1B118.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.881.762.485 (4)138
N2—H1N2···O1i0.882.413.089 (5)134
C1—H1···O1Wi0.952.223.138 (6)163
C4—H4···Br1ii0.952.753.687 (10)167
C7—H7···Br1ii0.952.863.769 (10)160
C10—H10···O1W0.952.343.074 (5)134
N2B—H2N2···O1B0.881.812.500 (15)134
N2B—H2N2···O1Bi0.882.353.117 (18)146
C1B—H1B···O1W0.952.092.979 (14)156
C2B—H2B···Br1iii0.952.803.497 (15)131
C4B—H4B···Br1ii0.952.773.70 (3)168
C7B—H7B···Br1ii0.952.923.80 (3)155
C10B—H10B···O1Wi0.952.403.246 (17)147
O1W—H1W1···Br10.90 (3)2.47 (3)3.3475 (18)165 (3)
O1W—H2W1···Br1iv0.84 (3)2.57 (3)3.3754 (17)160 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y1/2, z+3/2.
 

Funding information

KH gratefully acknowledges a PhD grant from the `Stiftung der deutschen Wirtschaft'.

References

First citationAdeloye, A. O. & Ajibade, P. A. (2014). Molecules, 19, 12421–12460.  Web of Science CrossRef Google Scholar
First citationBomben, P. G., Robson, K. C. D., Koivisto, B. D. & Berlinguette, C. P. (2012). Coord. Chem. Rev. 256, 1438–1450.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford Science Publications.  Google Scholar
First citationDongare, P., Myron, B. D. B., Wang, L., Thompson, D. W. & Meyer, T. J. (2017). Coord. Chem. Rev. 345, 86–107.  Web of Science CrossRef CAS Google Scholar
First citationDuan, L., Wang, L., Li, F., Li, F. & Sun, L. (2015). Acc. Chem. Res. 48, 2084–2096.  Web of Science CrossRef CAS Google Scholar
First citationEnglert, U., Koelle, U. & Nageswara, R. N. (1993). Z. Kristallogr. 206, 106–108.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukuzumi, S., Jung, J., Yamada, Y., Kojima, T. & Nam, W. (2016). Chem. Asian J. 11, 1138–1150.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHapp, B., Winter, A., Hager, M. D. & Schubert, U. S. (2012). Chem. Soc. Rev. 41, 2222–2255.  Web of Science CrossRef CAS Google Scholar
First citationHeintz, K., Imhof, W. & Görls, H. (2017). Monatsh. Chem. 148, 991–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnoll, J. D., Albani, B. A. & Turro, C. (2015). Acc. Chem. Res. 48, 2280–2287.  Web of Science CrossRef CAS Google Scholar
First citationLin, X. L., Wang, Y. J., Chen, Z. R. & Liu, J. B. (2007). Acta Cryst. E63, o4322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, C.-W., Wang, Y. & Chi, Y. (2016). Chem. Eur. J. 22, 17892–17908.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNajafpour, M. M., Boghaei, D. M. & Sjöberg, P. J. R. (2010). Spectrochim. Acta Part A, 75, 1168–1170.  Web of Science CSD CrossRef Google Scholar
First citationNonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOmae, I. (2016). Curr. Org. Chem. 20, 2848–2864.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPal, A. K. & Hanan, G. S. (2014). Chem. Soc. Rev. 43, 6184–6197.  Web of Science CrossRef CAS Google Scholar
First citationRobson, K. C. D., Bomben, P. G. & Berlinguette, C. P. (2012). Dalton Trans. 41, 7814–7829.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Q., Mosquera-Vazquez, S., Suffren, Y., Hankache, J., Amstutz, N., Lawson Daku, L. M., Vauthey, E. & Hauser, A. (2015). Coord. Chem. Rev. 282–283, 87–99.  Web of Science CrossRef CAS Google Scholar
First citationThompson, D. W., Ito, A. & Meyer, T. J. (2013). Pure Appl. Chem. 85, 1257–1305.  Web of Science CrossRef CAS Google Scholar
First citationWenger, O. S. (2013). Acc. Chem. Res. 46, 1517–1526.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds