research communications
Synthesis and crystal structures of (2E)-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione and (2E)-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione
aUS Army Research Laboratory, RDRL-WMM-G, Aberdeen Proving Ground, MD 21005, USA, and bUS Army Research Laboratory, RDRL-WMM-B, Aberdeen Proving Ground, MD 21005, USA
*Correspondence e-mail: rosario.c.sausa.civ@mail.mil
The molecular structure of (2E)-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione [C16H10Cl2O2, (1)] is composed of two p-chlorophenyl rings, each bonded on opposite ends to a near planar 1,4-trans enedione moiety [–C(=O)—CH=CH—(C=O)–] [r.m.s. deviation = 0.003 (1) Å]. (2E)-1,4-Bis(4-bromophenyl)but-2-ene-1,4-dione [C16H10Br2O2, (2)] has a similar structure to (1), but with two p-bromophenyl rings and a less planar enedione group [r.m.s. deviation = 0.011 (1) Å]. Both molecules sit on a center of inversion, thus Z′ = 0.5. The dihedral angles between the ring and the enedione group are 16.61 (8) and 15.58 (11)° for (1) and (2), respectively. In the crystal, molecules of (1) exhibit C—Cl⋯Cl type I interactions, whereas molecules of (2) present C—Br⋯Br type II interactions. van der Waals-type interactions contribute to the packing of both molecules, and the packing reveals face-to-face ring stacking with similar interplanar distances of approximately 3.53 Å.
Keywords: crystal structure; synthesis; 1,4-enedione moiety; bis-halo-enedione; NMR.
1. Chemical context
The 1,4-enedione moiety [–C(=O)—CH=CH—(C=O)–] occurs in many natural and bioactive compounds, including ; Ismail et al., 1996; Connolly & Hill, 2010; Fouad et al., 2006; Yang et al., 2013). Its multifunctionality and versatility make it an excellent building block for novel material syntheses. In certain molecules, the facile and reversible E/Z isomerization of the enedione groups enables them to perform as optical pH and fluorescent sensors (Li et al., 2017). The title compounds (2E)-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione (1) and (2E)-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione (2) exhibit two p-halogen phenyl rings, each bonded on opposite ends of the enedione group. We have synthesized these compounds in our laboratory as precursors to 4,4′-(furan-2,5-diyl)dibenzaldehyde cross-linkers. The reduction of the title compounds yields the saturated 1,4-diketones that, under Paal–Knorr reaction conditions, can undergo to produce the corresponding furans (Sauer et al., 2017). The aryl halides can be subsequently replaced with formyl groups using the Bouveault aldehyde synthesis to generate the targeted 4,4′-(furan-2,5-diyl)dibenzaldehyde cross-linkers, which can be potentially used for non-toxic, isocyanate-free synthesis of polyurethanes.
antibiotics, and antitumor agents (Koft & Smith, 19822. Structural commentary
The title compounds exhibit molecular structures typical of biphenyl enedione compounds (Rabinovich et al., 1970; Xu et al., 2013; Li et al., 2014). Bond lengths and angles are in the usual ranges. Fig. 1 shows that the molecules sit on centers of inversion and that the enedione groups adopt a trans, near planar configuration [r.m.s deviations = 0.003 (1) and 0.011 (1) Å for (1) and (2), respectively]. In molecule (1), the carbonyl group is twisted slightly out of the chlorophenyl plane, as evidenced by the torsion angles C6—C1—C7—O1 [−15.6 (3)°] and C2—C1—C7—O1 [163.9 (2)°]. Molecule (2) shows a similar conformation with torsion angles of 14.5 (4) and −164.7 (3)° for the corresponding atoms of the inverted (−x + 1, −y, −z + 1). The chlorophenyl ring planes form a dihedral angle of 16.61 (8)° with respect to the enedione plane (O1–C7–C8–C8′–C7′–O1′) in (1), whereas the bromophenyl ring planes form a dihedral angle of 15.58 (11)° relative to the enedione plane in (2). Both molecules exhibit a pair of short intramolecular H⋯H contacts [(1): H2⋯H8 = H2i⋯H8i = 2.127 (2) Å; symmetry code (i): −x, 1 − y, 1 − z; and (2): H2⋯H8 = H2ii⋯H8ii = 2.113 (3) Å; symmetry code: (ii) 1 − x, −y, 1 − z], possibly resulting from steric compression of the large phenyl halogen groups. A best fit of all symmetry independent atoms of both molecules (see Fig. 2) yields an r.m.s. deviation of 0.05 Å.
3. Supramolecular features
Contacts between the O atoms and H atoms of adjacent molecules [O1⋯H3i = 3.329 (2) Å; symmetry code: (i) −1 + x, 1 + y, z] and between the Cl atoms and Cl atoms of adjacent molecules [Cl1⋯Cl1ii = 3.3841 (1) Å; symmetry code: (ii) 2 − x, −y, −z] contribute to the intermolecular interactions of (1) (see Fig. 3). The short Cl⋯Cl distances are approximately 0.3 Å shorter than double the Cl van der Waals radius of 3.64 Å (Alvarez, 2013). The molecules feature type I, Cw—Clx⋯Cly—Cz interactions, where θ1 = angle Cw—Clx⋯Cly, θ2 = angle Clx⋯Cly—Cz, and |θ1 − θ2| = 0 (θ1 = θ2, approximately 157°) (see Fig. 4), suggesting that the Cl atoms minimize repulsion by interfacing the neutral regions of their electrostatic potential surfaces (Desiraju & Parthasarathy, 1989; Mukherjee & Desiraju, 2014). Unlike (1), (2) exhibits trifurcated contacts between the O atoms and H and C atoms of adjacent molecules [O1⋯H2iii = 2.616 (2) Å, O1⋯H3iii = 2.711 (2) Å, and O1⋯C2iii = 3.194 (3) Å; symmetry code: (iii) x, − y, + z]. Furthermore, the Br atoms form bifurcated contacts with the Br atoms of adjacent molecules [Br1⋯Br1v = Br1⋯Br1v = 3.662 (1) Å; symmetry codes: (iv) −x, − + y, − z; (v) −x, + y, − z] (see Fig. 5). Inspection of the C—Br⋯Br—C angles, reveals that the molecules exhibit type II interactions (|θ1 − θ2| ≥ 30°, where θ1 (164.58°) − θ2 (121.71°) = 42.87°, suggesting the electrophilic region of one Br atom approaches the nucleophilic region of the companion Br atom, unlike the Cl⋯Cl interactions (Mukherjee & Desiraju, 2014; Tothadi et al., 2013; Nuzzo et al., 2017). The chlorophenyl rings (1) are stacked in close proximity along the vicinity of the a axis with an interplanar separation of 3.528 Å [centroid-to-centroid distance = 3.946 (1) Å] (see Figs. 4 and 5). Similarly, the bromo phenyl rings of (2) stack along the vicinity of the a axis with an interplanar separation of 3.525 Å [centroid-to-centroid distance = 3.994 (1) Å], but in a crisscross-like pattern when viewed along the c axis (see Figs. 3 and 5). The intersecting ring planes subtend dihedral angles of 48.09 (6)°.
4. Database survey
A search of the Cambridge Structural Database (CSD web interface; Groom et al., 2016) and the Crystallography Open Database (Gražulis et al., 2009) yields the crystal structures of a number of compounds containing the 1,4-enedione moiety. For examples, see Rabinovich et al. (1970), Xu et al. (2013), Li et al. (2014), Deng et al. (2012); Gao et al. (2010), and Wu et al. (2011). The compounds trans-1,2-diphenylethylene (3) (Xu et al., 2013; CCDC 918566, BZOYEY01) and cis-1,2-dichlorobenzoylethylene (4) (Rabinovich et al., 1970; CCDC 112151, CBOZET) merit discussion because the former has a similar structure to the title compounds, whereas the latter is a stereoisomer of (1). The title compounds adopt an E configuration, similar to (3). They contain halogen atoms in the para position of the phenyl groups, unlike (3), but the rings are nearly planar as are those of (3), whose r.m.s value = 0.008 Å. The r.m.s. value, reflecting the planarity of the enedione moiety, in (1) is different to that of (3) (0.003 vs 0.0035 Å), and the value determined for (2) (0.011 Å). The dihedral angles between the ring planes of (1) and (2) are nearly identical to those of (3) [16° (average) vs 15.7 (1)°]. Unlike (1), its diastereomer (4) does not exhibit a planar enedione moiety and its near planar chlorophenyl rings (r.m.s deviation = 0.018 Å) form a dihedral angle of 77.4 (3)° with respect to each other. Superimposition of atom C1 of the E/Z through the C7, Cl1, and O1 atoms yields an r.m.s. deviation of 0.033 Å. The remaining parts of the molecules are twisted from each other, with the planes containing the chlorophenyl group and adjoining carbonyl group of each stereoisomer forming a dihedral angle of approximately 79°.
5. Synthesis and crystallization
The title compounds were synthesized following a modified literature procedure (Sauer et al., 2017). The reactions were run `neat' with chloro- or bromobenzene used in excess and serving also as the reaction solvent. Under a stream of nitrogen, aluminum chloride (3.6 g, 27 mmol, 2.9 equiv.) was dissolved in chloro- or bromobenzene (9.0 and 9.3 ml, respectively, 89 mmol, 9.6 equiv.) at room temperature. The reaction mixture was subsequently cooled to 273 K and fumaryl chloride (1.0 ml, 9.3 mmol, 1.0 equiv.) was added dropwise under constant stirring, at which point an instantaneous color change from clear to deep red was observed. The reaction mixture was then heated to 333 K for 2–4 days until fumaryl chloride was no longer detected on a TLC plate (SiO2, DCM). At the conclusion of the reaction, the mixture was cooled to room temperature, poured into ice-cold aqueous 1 M HCl, and extracted several times with DCM. The combined organic layers were washed with 0.5 M NaOH and dried over Na2SO4, and the volatiles were removed under reduced pressure. The resulting red–brown solid was recrystallized in DCM, further purified with a series of cold DCM washes, and dried under reduced pressure, affording either compound (1) (burnt orange solid, 1.5 g, 4.9 mmol, 53% yield) or (2) (yellow solid, 1.9 g, 4.8 mmol, 50% yield). Slow evaporation of DCM solutions saturated with either (1) or (2) yielded single crystals suitable for X-ray diffraction.
NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts (δ) are given in ppm and are referenced to tetramethylsilane (TMS) using the residual solvent (1H: CDCl3, 7.26 ppm; 13C: CDCl3, 77.16 ppm). (1): 1H NMR (CDCl3, 400.13 MHz): δ 7.51 (d, J = 8.6 Hz, 4H), 7.97 (s, 2H), 8.00 (d, J = 8.6 Hz, 4H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ 129.48, 130.40, 135.06, 135.31, 140.77, 188.51 ppm. (2): 1H NMR (CDCl3, 400.13 MHz): δ 7.67 (d, J = 8.6 Hz, 4H), 7.92 (d, J = 8.6 Hz, 4H), 7.96 (s, 2H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ 129.53, 130.44, 132.45, 135.03, 135.69, 188.69 ppm.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of both compounds were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S205698901800230X/zl2724sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S205698901800230X/zl27241sup4.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S205698901800230X/zl27242sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901800230X/zl27241sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698901800230X/zl27242sup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009). Software used to prepare material for publication: Mercury (Macrae et al., 2008) for (1); OLEX2 (Dolomanov et al., 2009) for (2).C16H10Cl2O2 | Z = 1 |
Mr = 305.14 | F(000) = 156 |
Triclinic, P1 | Dx = 1.457 Mg m−3 |
a = 3.9455 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.0809 (5) Å | Cell parameters from 2009 reflections |
c = 14.6836 (11) Å | θ = 2.8–26.3° |
α = 82.653 (6)° | µ = 0.46 mm−1 |
β = 88.638 (6)° | T = 298 K |
γ = 84.601 (7)° | Irregular, orange |
V = 347.82 (5) Å3 | 0.34 × 0.22 × 0.15 mm |
Agilent SuperNova, Dualflex, EosS2 diffractometer | 1256 reflections with I > 2σ(I) |
Detector resolution: 8.0945 pixels mm-1 | Rint = 0.023 |
ω scans | θmax = 26.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Bourhis et al., 2015) | h = −4→4 |
Tmin = 0.928, Tmax = 1.000 | k = −7→7 |
5641 measured reflections | l = −18→18 |
1416 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0335P)2 + 0.118P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1416 reflections | Δρmax = 0.18 e Å−3 |
91 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3800 (5) | 0.4949 (3) | 0.30832 (13) | 0.0411 (4) | |
C2 | 0.5146 (5) | 0.2732 (3) | 0.31865 (14) | 0.0482 (5) | |
H2 | 0.493021 | 0.185559 | 0.374837 | 0.058* | |
C3 | 0.6788 (6) | 0.1826 (4) | 0.24675 (15) | 0.0529 (5) | |
H3 | 0.771626 | 0.035173 | 0.254438 | 0.063* | |
C4 | 0.7048 (5) | 0.3111 (4) | 0.16369 (14) | 0.0500 (5) | |
C5 | 0.5749 (6) | 0.5314 (4) | 0.15096 (15) | 0.0559 (6) | |
H5 | 0.595485 | 0.617285 | 0.094315 | 0.067* | |
C6 | 0.4149 (5) | 0.6214 (3) | 0.22341 (14) | 0.0495 (5) | |
H6 | 0.327970 | 0.770037 | 0.215556 | 0.059* | |
C7 | 0.2047 (5) | 0.6004 (3) | 0.38415 (14) | 0.0459 (5) | |
C8 | 0.0820 (5) | 0.4582 (3) | 0.46605 (13) | 0.0452 (5) | |
H8 | 0.123290 | 0.304322 | 0.469025 | 0.054* | |
Cl1 | 0.90353 (18) | 0.19244 (12) | 0.07252 (4) | 0.0768 (3) | |
O1 | 0.1558 (5) | 0.8021 (2) | 0.38003 (11) | 0.0699 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0389 (10) | 0.0429 (10) | 0.0419 (10) | −0.0081 (8) | −0.0005 (8) | −0.0038 (8) |
C2 | 0.0565 (13) | 0.0421 (11) | 0.0450 (11) | −0.0066 (9) | 0.0017 (9) | −0.0003 (9) |
C3 | 0.0558 (13) | 0.0447 (11) | 0.0587 (13) | −0.0013 (10) | −0.0009 (10) | −0.0115 (10) |
C4 | 0.0463 (12) | 0.0595 (13) | 0.0471 (12) | −0.0076 (10) | 0.0021 (9) | −0.0164 (10) |
C5 | 0.0616 (14) | 0.0622 (13) | 0.0413 (11) | −0.0054 (11) | 0.0049 (10) | 0.0017 (10) |
C6 | 0.0539 (12) | 0.0437 (11) | 0.0481 (12) | −0.0008 (9) | 0.0031 (9) | 0.0017 (9) |
C7 | 0.0480 (11) | 0.0440 (11) | 0.0450 (11) | −0.0066 (9) | 0.0022 (9) | −0.0017 (8) |
C8 | 0.0477 (12) | 0.0431 (10) | 0.0440 (11) | −0.0046 (9) | 0.0015 (8) | −0.0023 (8) |
Cl1 | 0.0799 (5) | 0.0926 (5) | 0.0621 (4) | −0.0021 (4) | 0.0148 (3) | −0.0326 (3) |
O1 | 0.1034 (14) | 0.0410 (8) | 0.0617 (10) | −0.0006 (8) | 0.0245 (9) | −0.0015 (7) |
C1—C2 | 1.392 (3) | C4—Cl1 | 1.737 (2) |
C1—C6 | 1.390 (3) | C5—H5 | 0.9300 |
C1—C7 | 1.481 (3) | C5—C6 | 1.372 (3) |
C2—H2 | 0.9300 | C6—H6 | 0.9300 |
C2—C3 | 1.374 (3) | C7—C8 | 1.488 (3) |
C3—H3 | 0.9300 | C7—O1 | 1.218 (2) |
C3—C4 | 1.369 (3) | C8—C8i | 1.307 (4) |
C4—C5 | 1.379 (3) | C8—H8 | 0.9300 |
C2—C1—C7 | 122.61 (18) | C4—C5—H5 | 120.6 |
C6—C1—C2 | 118.30 (19) | C6—C5—C4 | 118.8 (2) |
C6—C1—C7 | 119.08 (18) | C6—C5—H5 | 120.6 |
C1—C2—H2 | 119.6 | C1—C6—H6 | 119.3 |
C3—C2—C1 | 120.72 (19) | C5—C6—C1 | 121.3 (2) |
C3—C2—H2 | 119.6 | C5—C6—H6 | 119.3 |
C2—C3—H3 | 120.3 | C1—C7—C8 | 119.63 (17) |
C4—C3—C2 | 119.4 (2) | O1—C7—C1 | 120.95 (18) |
C4—C3—H3 | 120.3 | O1—C7—C8 | 119.41 (19) |
C3—C4—C5 | 121.4 (2) | C7—C8—H8 | 118.8 |
C3—C4—Cl1 | 118.98 (17) | C8i—C8—C7 | 122.3 (2) |
C5—C4—Cl1 | 119.60 (17) | C8i—C8—H8 | 118.8 |
C1—C2—C3—C4 | −1.1 (3) | C4—C5—C6—C1 | −0.4 (3) |
C1—C7—C8—C8i | −178.2 (2) | C6—C1—C2—C3 | 0.3 (3) |
C2—C1—C6—C5 | 0.5 (3) | C6—C1—C7—C8 | 163.48 (18) |
C2—C1—C7—C8 | −17.0 (3) | C6—C1—C7—O1 | −15.6 (3) |
C2—C1—C7—O1 | 163.9 (2) | C7—C1—C2—C3 | −179.24 (19) |
C2—C3—C4—C5 | 1.2 (3) | C7—C1—C6—C5 | −179.94 (19) |
C2—C3—C4—Cl1 | −178.37 (16) | Cl1—C4—C5—C6 | 179.15 (16) |
C3—C4—C5—C6 | −0.4 (3) | O1—C7—C8—C8i | 0.9 (4) |
Symmetry code: (i) −x, −y+1, −z+1. |
C16H10Br2O2 | F(000) = 384 |
Mr = 394.06 | Dx = 1.800 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4391 (7) Å | Cell parameters from 2527 reflections |
b = 3.9937 (2) Å | θ = 2.9–26.2° |
c = 12.7244 (7) Å | µ = 5.57 mm−1 |
β = 97.827 (5)° | T = 298 K |
V = 726.92 (7) Å3 | Irregular, yellow |
Z = 2 | 0.35 × 0.14 × 0.12 mm |
Agilent SuperNova, Dualflex, EosS2 diffractometer | 1228 reflections with I > 2σ(I) |
Detector resolution: 8.0945 pixels mm-1 | Rint = 0.031 |
ω scans | θmax = 26.4°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlisPro; Bourhis et al., 2015) | h = −18→18 |
Tmin = 0.370, Tmax = 1.000 | k = −4→4 |
6231 measured reflections | l = −15→15 |
1470 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0234P)2 + 0.4382P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.36 e Å−3 |
1470 reflections | Δρmin = −0.43 e Å−3 |
92 parameters | Extinction correction: SHELXL-2016/4 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0047 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.06905 (2) | 0.86344 (8) | 0.66837 (3) | 0.05337 (16) | |
C1 | 0.31059 (19) | 0.3876 (7) | 0.5110 (2) | 0.0355 (6) | |
C2 | 0.3212 (2) | 0.4543 (8) | 0.6188 (2) | 0.0444 (7) | |
H2 | 0.377230 | 0.400535 | 0.660470 | 0.053* | |
C3 | 0.2503 (2) | 0.5990 (8) | 0.6653 (2) | 0.0471 (8) | |
H3 | 0.258517 | 0.646056 | 0.737543 | 0.057* | |
C4 | 0.1673 (2) | 0.6726 (6) | 0.6034 (2) | 0.0391 (7) | |
C5 | 0.1538 (2) | 0.6073 (7) | 0.4962 (2) | 0.0463 (7) | |
H5 | 0.097052 | 0.657253 | 0.455312 | 0.056* | |
C6 | 0.2258 (2) | 0.4666 (8) | 0.4507 (2) | 0.0422 (7) | |
H6 | 0.217497 | 0.423632 | 0.378154 | 0.051* | |
C7 | 0.3859 (2) | 0.2399 (8) | 0.4570 (2) | 0.0418 (7) | |
C8 | 0.4672 (2) | 0.0760 (7) | 0.5218 (2) | 0.0410 (7) | |
H8 | 0.471561 | 0.081856 | 0.595399 | 0.049* | |
O1 | 0.38162 (17) | 0.2478 (7) | 0.36132 (17) | 0.0665 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0433 (2) | 0.0504 (2) | 0.0706 (3) | 0.00725 (15) | 0.02309 (16) | 0.00106 (17) |
C1 | 0.0354 (15) | 0.0380 (14) | 0.0334 (15) | −0.0010 (12) | 0.0057 (12) | 0.0011 (12) |
C2 | 0.0380 (17) | 0.0601 (19) | 0.0340 (16) | 0.0088 (14) | 0.0012 (13) | −0.0001 (14) |
C3 | 0.0465 (18) | 0.0598 (19) | 0.0359 (16) | 0.0119 (15) | 0.0082 (13) | −0.0026 (15) |
C4 | 0.0371 (16) | 0.0344 (15) | 0.0487 (18) | 0.0009 (12) | 0.0158 (13) | 0.0028 (13) |
C5 | 0.0371 (16) | 0.0514 (18) | 0.0487 (18) | 0.0054 (14) | 0.0002 (13) | 0.0034 (15) |
C6 | 0.0439 (17) | 0.0491 (17) | 0.0328 (15) | 0.0031 (14) | 0.0030 (13) | −0.0006 (13) |
C7 | 0.0395 (16) | 0.0480 (16) | 0.0382 (17) | −0.0016 (13) | 0.0060 (13) | −0.0057 (13) |
C8 | 0.0364 (16) | 0.0514 (18) | 0.0357 (15) | −0.0005 (13) | 0.0060 (12) | −0.0064 (14) |
O1 | 0.0591 (15) | 0.109 (2) | 0.0322 (12) | 0.0232 (14) | 0.0078 (11) | −0.0071 (12) |
Br1—C4 | 1.896 (3) | C4—C5 | 1.376 (4) |
C1—C2 | 1.385 (4) | C5—H5 | 0.9300 |
C1—C6 | 1.390 (4) | C5—C6 | 1.377 (4) |
C1—C7 | 1.485 (4) | C6—H6 | 0.9300 |
C2—H2 | 0.9300 | C7—C8 | 1.492 (4) |
C2—C3 | 1.378 (4) | C7—O1 | 1.211 (3) |
C3—H3 | 0.9300 | C8—C8i | 1.310 (5) |
C3—C4 | 1.374 (4) | C8—H8 | 0.9300 |
C2—C1—C6 | 118.3 (3) | C4—C5—H5 | 120.6 |
C2—C1—C7 | 123.1 (3) | C4—C5—C6 | 118.8 (3) |
C6—C1—C7 | 118.7 (3) | C6—C5—H5 | 120.6 |
C1—C2—H2 | 119.4 | C1—C6—H6 | 119.4 |
C3—C2—C1 | 121.2 (3) | C5—C6—C1 | 121.3 (3) |
C3—C2—H2 | 119.4 | C5—C6—H6 | 119.4 |
C2—C3—H3 | 120.5 | C1—C7—C8 | 119.3 (2) |
C4—C3—C2 | 119.0 (3) | O1—C7—C1 | 121.0 (3) |
C4—C3—H3 | 120.5 | O1—C7—C8 | 119.7 (3) |
C3—C4—Br1 | 118.8 (2) | C7—C8—H8 | 119.0 |
C3—C4—C5 | 121.5 (3) | C8i—C8—C7 | 121.9 (4) |
C5—C4—Br1 | 119.7 (2) | C8i—C8—H8 | 119.0 |
Br1—C4—C5—C6 | −179.6 (2) | C3—C4—C5—C6 | −0.4 (5) |
C1—C2—C3—C4 | 1.0 (5) | C4—C5—C6—C1 | 0.6 (5) |
C1—C7—C8—C8i | 175.8 (3) | C6—C1—C2—C3 | −0.8 (5) |
C2—C1—C6—C5 | −0.1 (4) | C6—C1—C7—C8 | −164.8 (3) |
C2—C1—C7—C8 | 16.0 (4) | C6—C1—C7—O1 | 14.5 (4) |
C2—C1—C7—O1 | −164.7 (3) | C7—C1—C2—C3 | 178.4 (3) |
C2—C3—C4—Br1 | 178.8 (2) | C7—C1—C6—C5 | −179.3 (3) |
C2—C3—C4—C5 | −0.5 (5) | O1—C7—C8—C8i | −3.5 (6) |
Symmetry code: (i) −x+1, −y, −z+1. |
Footnotes
‡Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Research Fellow.
Funding information
This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Army Research Laboratory (USARL) by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the USARL.
References
Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. Web of Science CrossRef CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Connolly, J. D. & Hill, R. A. (2010). Nat. Prod. Rep. 27, 79–132. Web of Science CrossRef CAS Google Scholar
Deng, C., Yang, Y., Gao, M., Zhu, Y.-P., Wu, A.-X., Ma, J.-R. & Yin, G.-D. (2012). Tetrahedron, 68, 3828–3834. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fouad, M., Edrada, R. A., Ebel, R., Wray, V., Müller, W. E. G., Lin, W. H. & Proksch, P. J. (2006). J. Nat. Prod. 69, 211–218. Web of Science CrossRef CAS Google Scholar
Gao, M., Yang, Y., Wu, Y.-D., Deng, C., Cao, L.-P., Meng, X. G. & Wu, A.-X. (2010). J. Org. Chem. 12(8), 1856–1859. Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ismail, K. A., El-Tombary, A. A., Aboulwafa, O. M., Omar, A. M. E. & El-Rewini, S. H. (1996). Arch. Pharm. Pharm. Med. Chem. 329, 433–437. CrossRef CAS Web of Science Google Scholar
Koft, E. R. & Smith, A. B. (1982). J. Am. Chem. Soc. 104, 2659–2661. CrossRef CAS Web of Science Google Scholar
Li, S.-Y., Wang, X.-B., Jiang, N. & Kong, L.-Y. (2014). Eur. J. Org. Chem. pp. 8035–8039. Web of Science CSD CrossRef Google Scholar
Li, M., Wang, Y. X., Wang, J. & Chen, Y. (2017). J. Mater. Chem. C5, 3408–3414. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Nuzzo, S., Twamley, B. & Baker, R. J. (2017). J. Chem. Crystallogr. 47, 182–186. Web of Science CSD CrossRef CAS Google Scholar
Rabinovich, D., Schmidt, G. M. J. & Shaked, D. (1970). J. Chem. Soc. B, pp. 17–24. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sauer, B., Skinner-Adams, T. S., Bouchut, A., Chua, M. J., Pierrot, C., Erdmann, F., Robaa, D., Schmidt, M., Khalife, J., Andrews, K. T. & Sippl, W. (2017). Eur. J. Med. Chem. 127, 22–40. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tothadi, S., Joseph, S. & Desiraju, G. R. (2013). Cryst. Growth Des. 13, 3242–3254. Web of Science CSD CrossRef CAS Google Scholar
Wu, L., Deng, C. & Yang, Y. (2011). Acta Cryst. E67, o1499. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, K., Fang, Y., Yan, Z., Zha, Z. & Wang, Z. (2013). Org. Lett. 15, 2148–2151. Web of Science CSD CrossRef CAS Google Scholar
Yang, Y., Ni, F., Shu, W.-M., Yu, S.-B., Gao, M. & Wu, A.-X. (2013). J. Org. Chem. 78, 5418–5426. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.