research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of an aryl­tellurenium(II) cation; [4-tert-butyl-2,6-bis­­(1-pentyl-1H-benz­imidazol-2-yl-κN3)phenyl-κC1]tellurium(II) (1,4-dioxane)tri­iodido­mercurate(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 18 January 2018; accepted 13 February 2018; online 23 February 2018)

In the title salt, (C34H41N4Te)[HgI3(C4H8O2)], the aryl­tellurenium [C34H41N4Te]+ cations and [HgI3(dioxane)] anions are linked by a short inter­action between the Te atom and one of the I-atom donors of the anion, as well as through weak C—H⋯I inter­actions. The geometry around the Te atom is T-shaped with the coordination comprising a C atom of the central aromatic ring and two N atom donors of the benzimidazolyl moiety. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å], while the Te—C bond length is 2.071 (4) Å. The N—Te—N bond angle is 150.68 (11)°. The HgII atom of the anion is coordinated by iodide ions from three sides and the fourth coordination site is occupied by an O atom of the solvent mol­ecule (dioxane). Thus, it attains a trigonal–pyrimidal geometry, with O—Hg—I angles ranging of 90.76 (8) and 96.76 (7)° and I—Hg—I angles ranging from 112.41 (1) to 125.10 (1)°. The cations and anions are involved in numerous weak ππ stacking inter­actions involving both the central phenyl ring and two inversion-related benzimidazole moieties, which propagate in the a-axis direction. In addition, there are numerous C—H⋯I inter­actions between the cations and anions, which link them into a complex three-dimensional array.

1. Chemical context

Organoselenenium cations have been extensively studied and utilized in the area of synthetic organic chemistry (Back et al., 1999[Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.]; Singh & Wirth, 2012[Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts, Organoselenium Chemistry, edited by T. Wirth. p. 321. Hoboken: John Wiley & Sons, Inc.]; Chivers & Laitinen, 2015[Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725-1739.]), bio­logical fields (Mugesh & Singh, 2000[Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357.]; Singh & Wirth, 2012[Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts, Organoselenium Chemistry, edited by T. Wirth. p. 321. Hoboken: John Wiley & Sons, Inc.]; Bhuyan & Mugesh, 2012[Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds, in Organoselenium Chemistry, edited by T. Wirth, p. 361. Hoboken: John Wiley & Sons, Inc.]) and material science (Manjare et al., 2014[Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985-2998.]; Kremer et al., 2015[Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377-15387.]). Compared to organoselenenium cations, the organotellurenium analogues are less studied. Fujihara et al. (1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153-10154.]) reported the first stable tellurenium cation, [{2,6-(Me2NCH2)2C6H3Te]+[PF6]. After 16 years of preparation, the first structural characterization of the tellurenium cation [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+[Hg2Cl6]2− was demonstrated by Silvestru and co-workers (Beleaga et al., 2011[Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830-8838.]). Recently, we have reported the first examples of selone-stabilized aryl­tellurenium cations, which are synthesized by the reaction of mixed-valent tellurenyl bromide (RTeII–TeIVBr2R) with 1,3-di­butyl­benzimidazolin-2-selone (Yadav et al., 2016[Yadav, S., Raju, S., Singh, H. B. & Butcher, R. J. (2016). Dalton Trans. 45, 8458-8467.]). While attempting to prepare a stable organotellurium iodide (2) (see Fig. 1[link]) by the reaction of the mercury complex of 2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­(1-pentyl-1H-benzimidazole) (C34H41N4HgCl) (1) with TeI2, the aryl­tellurenium cation [pent­yl(N^C^N)Te]+·[HgI3] (3) [N^C^N = 5-tert-butyl-1,3-bis­(N-pentyl benzimidazol-2′-yl)phen­yl)] was isolated as a by-product (3% yield) along with the major product, a dimeric aryl­tellurenium cation [C34H41N4Te]+2[HgCl2.36I1.64]2− (4). The crystal structure of this compound is reported herein while the synthesis and structures of compounds 1 and 4 will be published elsewhere.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme.

2. Structural commentary

The title complex [C34H41N4Te]+[HgI3(dioxane)] is shown in Fig. 2[link]. It crystallizes in P21/c in the monoclinic crystal system. The asymmetric unit contains one tellurenium cationic unit stabilized by a [HgI3 (dioxane)] counter-anion. The coord­in­ation geometry around the Te atom is T-shaped whereby each Te atom is bonded with the central carbon atom of the aromatic ring and intra­molecularly coordinated with the two N atoms. This coordination gives rise to an octacyclic framework formed by two condensed five-membered rings, which is stable under ambient conditions. The observed Te—C bond length is 2.071 (4) Å, which is comparable with the related NCN pincer-based tellurenium cation in [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+ [Hg2Cl6]2− [2.074 (8) Å; Beleaga et al., 2011[Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830-8838.]]. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å]. The Te—N distances are shorter than the sum of the van der Waals radii for Te and N [Σrvdw(Te,N) = 3.61 Å] and longer than the covalent radii [Σrcov(Te,N) = 2.09 Å] (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). This implies strong intra­molecular Te⋯N inter­actions in the tellurenium cation.

[Figure 2]
Figure 2
Diagram showing the atom-labeling scheme for the title compound, [C34H41N4Te]+[HgI3(dioxane)]. The Te⋯I inter­action is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.

In the anion, the mercury atom is coordinated by three iodide ions and one oxygen atom from the solvent mol­ecule (1,4-dioxane), with Hg—I bond lengths of 2.6828 (4), 2.6912 (4) and 2.7321 (3) Å, which are in the range expected for an Hg—I covalent bond (the sum of the covalent radii of Hg and I is 2.71 Å). The Hg—O bond length of 2.730 (3) Å is longer than the sum of their covalent radii (2.15 Å), but shorter than the sum of their van der Waals radii (3.07 Å). This value is in the range found for previous Hg–dioxane structures [2.64 (1) to 2.83 (1) Å; Small, 1982[Small, R. W. H. (1982). Acta Cryst. B38, 2886-2887.]; Frey & Monier, 1971[Frey, M. & Monier, J.-C. (1971). Acta Cryst. B27, 2487-2490.]; Crochet & Fromm, 2011[Crochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089-2092.]]. The O—Hg—I bond angles are 90.76 (8) , 95.08 (7) and 96.76 (7)° and the I—Hg—I bond angles range from 112.41 (1) to 125.10 (1)°. The resulting geometry around the mercury atom is thus trigonal pyramidal with the Hg atom displaced by only 0.2018 (3) Å from the plane of the three I atoms, with the longer Hg—O bond at the apex of this pyramid.

In the 4-tert-butyl-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phenyl ligand, the two pentyl substituents have adopted two different conformations. One has the normal extended zigzag conformation as shown by the N—C—C—C and C—C—C—C torsion angles [−173.8 (3), −173.5 (4) and −174.6 (4)°, respectively] while for the other, these angles are significantly different [−178.7 (4), 171.3 (5) and 66.0 (8), respectively]. In the central aromatic region, both benzimidazole moieties are almost coplanar with the central phenyl ring [dihedral angles of 5.3 (3) and 1.6 (2)°].

3. Supra­molecular features

The mol­ecules are involved in numerous weak ππ stacking inter­actions involving both the central phenyl ring and the two benzimidazole moieties (symmetry code −x + 1, −y + 1, −z + 1), which propagate in the a-axis direction, as shown in Fig. 3[link]. The shortest separation, however, is 3.4980 (19) Å between the centroid of one of the outer phenyl rings (C24–C29; symmetry code −x + 2, −y + 1, −z + 1) and the centroid of the moiety made up of the central phenyl ring and one of the imidazole rings (Te1/N1/N3/C1/C2/C7/C13–C18). There is a short inter­action between the Te atom and one of the iodine donors from the anion [Te1⋯I1 = 3.8859 (4) Å]. In addition there are numerous C—H⋯I inter­actions between the cations and anions (Table 1[link]), which link them into a complex three-dimensional array (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯I1 0.95 3.16 4.086 (4) 164
C8—H8B⋯I2i 0.99 3.08 3.997 (4) 155
C9—H9B⋯I1ii 0.99 3.18 4.095 (4) 155
C30—H30B⋯I1iii 0.99 3.28 4.111 (4) 142
C31—H31B⋯I3iv 0.99 3.20 4.185 (4) 172
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Packing diagram viewed along the c-axis direction, showing the parallel stacking of the cations. C—H⋯I and Te⋯I inter­actions are shown as dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (web CSD version 1.19 with updates June 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there is no structure report in the literature for a tellurenium cation with bis-benzimidazole moieties, although an NCN pincer-framework-based tellurenium cation has one hit (Beleaga et al., 2011[Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830-8838.]). There are four reports in the literature of structures involving Hg coordinated to dioxane (BIYPAA, Small, 1982[Small, R. W. H. (1982). Acta Cryst. B38, 2886-2887.]; HGBDOX, Frey & Monier, 1971[Frey, M. & Monier, J.-C. (1971). Acta Cryst. B27, 2487-2490.]; VALRUX and VALSAE, Crochet & Fromm, 2011[Crochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089-2092.]), including one which also contains Hg—I bonds (VALSAE, Crochet & Fromm, 2011[Crochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089-2092.]).

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is shown in Fig. 1[link]. To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (60 ml) was added 0.102 g of TeI2 were added. The reaction mixture was stirred for 24 h at room temperature in an inert atmosphere. The reaction mixture was filtered. The filtrate was evaporated and reduced to 5 mL. Colorless prismatic crystals were obtained from slow evaporation of a1,4-dioxane solution of the compound at room temperature.

Yield 3% (0.035 g). HR–MS: m/z calculated for C34H41N4Te is 635.2394. Found 635.2391. ESI–MS (negative mode): m/z calculated for HgI3: 582.6840. Found 582.6543

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically, with C—H = ranging from 0.95 to 0.99 Å, and allowed to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C34H41N4Te)[HgI3(C4H8O2)]
Mr 1302.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.6074 (2), 25.4943 (6), 17.4326 (3)
β (°) 95.152 (2)
V3) 4252.59 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.51
Crystal size (mm) 0.27 × 0.21 × 0.13
 
Data collection
Diffractometer Rigaku CCD dual source
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, The Woodlands, Texas, USA.])
Tmin, Tmax 0.238, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 58708, 12625, 11288
Rint 0.041
(sin θ/λ)max−1) 0.728
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.080, 1.14
No. of reflections 12625
No. of parameters 448
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.53
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

[4-tert-Butyl-2,6-bis(1-pentyl-1H-benzimidazol-2-yl-κN3)phenyl-κC1]tellurium(II) (1,4-dioxane)triiodidomercurate(II) top
Crystal data top
(C34H41N4Te)[HgI3(C4H8O2)]F(000) = 2448
Mr = 1302.70Dx = 2.035 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6074 (2) ÅCell parameters from 22849 reflections
b = 25.4943 (6) Åθ = 2.0–31.3°
c = 17.4326 (3) ŵ = 6.51 mm1
β = 95.152 (2)°T = 100 K
V = 4252.59 (15) Å3Prism, colorless
Z = 40.27 × 0.21 × 0.13 mm
Data collection top
Rigaku CCD dual source
diffractometer
11288 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.041
ω scansθmax = 31.2°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1313
Tmin = 0.238, Tmax = 0.567k = 3436
58708 measured reflectionsl = 2525
12625 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0267P)2 + 9.9235P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.004
12625 reflectionsΔρmax = 1.45 e Å3
448 parametersΔρmin = 1.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.75646 (2)0.67318 (2)0.82692 (2)0.03297 (5)
I10.73560 (3)0.57972 (2)0.75006 (2)0.03369 (7)
I20.55214 (3)0.74060 (2)0.77764 (2)0.04473 (8)
I30.99100 (3)0.69905 (2)0.91390 (2)0.04466 (8)
O1P0.6255 (4)0.63149 (14)0.94549 (18)0.0431 (8)
O2P0.6836 (5)0.6252 (2)1.1071 (2)0.0653 (12)
C1P0.6860 (6)0.5855 (2)0.9821 (3)0.0491 (13)
H1PA0.7473740.5680800.9472480.059*
H1PB0.6108900.5606390.9926580.059*
C2P0.7689 (6)0.5994 (3)1.0559 (3)0.0519 (13)
H2PA0.8089720.5671851.0805700.062*
H2PB0.8471830.6227571.0449870.062*
C3P0.6282 (8)0.6717 (3)1.0710 (4)0.0686 (19)
H3PA0.7057020.6954831.0603470.082*
H3PB0.5688850.6901121.1060580.082*
C4P0.5428 (6)0.6587 (3)0.9969 (3)0.0525 (14)
H4PA0.4623520.6365801.0079580.063*
H4PB0.5060000.6914380.9721730.063*
Te10.74063 (2)0.51396 (2)0.54923 (2)0.02140 (5)
N10.5897 (3)0.56893 (13)0.48474 (18)0.0236 (6)
N20.8934 (3)0.44789 (13)0.55087 (18)0.0237 (6)
N30.4931 (3)0.59799 (13)0.37156 (18)0.0244 (6)
N41.0026 (3)0.38656 (13)0.48812 (18)0.0241 (6)
C10.5772 (4)0.56054 (15)0.4084 (2)0.0228 (7)
C20.5088 (4)0.61244 (15)0.4987 (2)0.0247 (7)
C30.4854 (4)0.63775 (18)0.5677 (3)0.0324 (9)
H3A0.5264330.6255580.6160650.039*
C40.3999 (5)0.68122 (18)0.5620 (3)0.0364 (10)
H4A0.3837110.6999480.6074230.044*
C50.3358 (5)0.69872 (19)0.4909 (3)0.0387 (10)
H5A0.2758770.7284080.4897320.046*
C60.3578 (5)0.67387 (17)0.4230 (3)0.0334 (9)
H6A0.3140100.6855790.3749710.040*
C70.4471 (4)0.63077 (15)0.4278 (2)0.0259 (8)
C80.4633 (4)0.60656 (16)0.2885 (2)0.0267 (8)
H8A0.5435500.5939170.2617130.032*
H8B0.4532230.6446670.2785690.032*
C90.3321 (4)0.57888 (17)0.2554 (2)0.0288 (8)
H9A0.2501310.5942830.2776690.035*
H9B0.3375180.5413450.2699130.035*
C100.3127 (4)0.58365 (19)0.1674 (2)0.0322 (9)
H10A0.3187950.6210780.1529280.039*
H10B0.3894740.5647270.1450690.039*
C110.1732 (5)0.5616 (2)0.1334 (3)0.0397 (11)
H11A0.0964160.5827040.1517950.048*
H11B0.1631060.5251800.1519650.048*
C120.1598 (6)0.5616 (2)0.0453 (3)0.0506 (13)
H12A0.0708630.5454230.0261780.076*
H12B0.2372180.5416190.0267420.076*
H12C0.1627960.5977830.0265440.076*
C130.6514 (4)0.51672 (15)0.3791 (2)0.0225 (7)
C140.6451 (4)0.49851 (16)0.3031 (2)0.0250 (7)
H14A0.5832080.5150820.2649600.030*
C150.7270 (4)0.45675 (16)0.2818 (2)0.0237 (7)
C160.8152 (4)0.43160 (15)0.3391 (2)0.0246 (7)
H16A0.8715730.4031140.3252370.029*
C170.8217 (4)0.44771 (15)0.4163 (2)0.0221 (7)
C180.7395 (4)0.49037 (14)0.4355 (2)0.0215 (7)
C190.7261 (4)0.43807 (17)0.1985 (2)0.0275 (8)
C200.6176 (5)0.46742 (19)0.1444 (2)0.0337 (9)
H20A0.6365460.5051700.1473620.050*
H20B0.5237540.4604970.1598410.050*
H20C0.6233140.4553190.0913940.050*
C210.6910 (6)0.37930 (19)0.1935 (3)0.0427 (11)
H21A0.6044710.3726900.2176780.064*
H21B0.7674860.3591490.2203510.064*
H21C0.6788320.3685730.1393510.064*
C220.8719 (5)0.4479 (2)0.1713 (3)0.0402 (11)
H22A0.8945450.4852690.1759650.060*
H22B0.8725080.4370280.1173940.060*
H22C0.9416040.4274990.2032450.060*
C230.9077 (4)0.42570 (14)0.4821 (2)0.0223 (7)
C240.9865 (4)0.42250 (15)0.6039 (2)0.0232 (7)
C251.0173 (4)0.43169 (16)0.6829 (2)0.0263 (8)
H25A0.9727750.4587940.7090280.032*
C261.1166 (4)0.39891 (17)0.7210 (2)0.0302 (8)
H26A1.1410480.4037390.7745760.036*
C271.1814 (4)0.35895 (17)0.6821 (2)0.0304 (8)
H27A1.2471510.3369150.7103970.036*
C281.1528 (4)0.35036 (16)0.6033 (2)0.0281 (8)
H28A1.1983650.3236200.5770250.034*
C291.0539 (4)0.38315 (15)0.5655 (2)0.0236 (7)
C301.0625 (4)0.35688 (16)0.4263 (2)0.0277 (8)
H30A1.1608490.3480980.4433150.033*
H30B1.0626470.3795410.3802380.033*
C310.9845 (5)0.30670 (16)0.4042 (2)0.0308 (9)
H31A0.8867190.3150020.3852200.037*
H31B0.9828480.2837260.4498830.037*
C321.0563 (6)0.2783 (2)0.3413 (3)0.0481 (13)
H32A1.1574600.2756330.3575000.058*
H32B1.0453730.2995300.2935970.058*
C330.9982 (7)0.2230 (3)0.3236 (4)0.0668 (18)
H33A1.0573550.2053450.2876660.080*
H33B1.0039420.2023240.3718520.080*
C340.8516 (8)0.2232 (3)0.2892 (4)0.0698 (18)
H34A0.8263980.1881260.2696100.105*
H34B0.8417110.2484980.2466700.105*
H34C0.7896840.2332000.3284240.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.03525 (9)0.03204 (9)0.03157 (8)0.00056 (7)0.00279 (6)0.00291 (6)
I10.03544 (14)0.03364 (14)0.03205 (14)0.00098 (11)0.00334 (11)0.00527 (11)
I20.04247 (17)0.02744 (14)0.0635 (2)0.00214 (12)0.00065 (15)0.00296 (14)
I30.04082 (16)0.04536 (18)0.04619 (18)0.00267 (14)0.00499 (13)0.01225 (14)
O1P0.0482 (19)0.053 (2)0.0277 (16)0.0038 (16)0.0029 (14)0.0056 (14)
O2P0.071 (3)0.094 (3)0.0289 (18)0.004 (2)0.0056 (18)0.002 (2)
C1P0.061 (3)0.049 (3)0.036 (3)0.003 (3)0.003 (2)0.009 (2)
C2P0.048 (3)0.068 (4)0.038 (3)0.003 (3)0.003 (2)0.013 (3)
C3P0.079 (5)0.083 (5)0.042 (3)0.013 (4)0.001 (3)0.018 (3)
C4P0.048 (3)0.072 (4)0.039 (3)0.012 (3)0.007 (2)0.000 (3)
Te10.02258 (11)0.02243 (11)0.01920 (10)0.00065 (9)0.00201 (8)0.00145 (9)
N10.0245 (15)0.0244 (16)0.0216 (15)0.0020 (13)0.0003 (12)0.0026 (12)
N20.0256 (15)0.0259 (16)0.0197 (14)0.0010 (13)0.0020 (12)0.0012 (12)
N30.0244 (15)0.0264 (16)0.0221 (15)0.0016 (13)0.0010 (12)0.0024 (12)
N40.0247 (15)0.0232 (15)0.0243 (15)0.0022 (12)0.0012 (12)0.0006 (12)
C10.0221 (17)0.0243 (18)0.0223 (17)0.0017 (14)0.0034 (13)0.0005 (14)
C20.0232 (17)0.0243 (18)0.0264 (18)0.0011 (14)0.0017 (14)0.0004 (14)
C30.032 (2)0.036 (2)0.030 (2)0.0043 (18)0.0048 (16)0.0031 (17)
C40.037 (2)0.035 (2)0.039 (2)0.0091 (19)0.0088 (19)0.0087 (19)
C50.039 (2)0.036 (2)0.041 (2)0.013 (2)0.006 (2)0.002 (2)
C60.032 (2)0.033 (2)0.036 (2)0.0047 (18)0.0031 (17)0.0045 (18)
C70.0255 (18)0.0245 (18)0.0281 (19)0.0016 (15)0.0039 (15)0.0010 (15)
C80.0297 (19)0.0264 (19)0.0241 (18)0.0024 (16)0.0034 (15)0.0070 (15)
C90.0267 (19)0.035 (2)0.0250 (18)0.0000 (16)0.0023 (15)0.0045 (16)
C100.032 (2)0.042 (2)0.0234 (18)0.0032 (18)0.0037 (16)0.0030 (17)
C110.035 (2)0.056 (3)0.027 (2)0.003 (2)0.0016 (17)0.002 (2)
C120.053 (3)0.068 (4)0.029 (2)0.000 (3)0.003 (2)0.001 (2)
C130.0205 (16)0.0227 (17)0.0248 (17)0.0014 (14)0.0050 (13)0.0006 (14)
C140.0226 (17)0.0292 (19)0.0230 (17)0.0020 (15)0.0011 (14)0.0015 (14)
C150.0241 (17)0.0299 (19)0.0169 (16)0.0014 (15)0.0008 (13)0.0011 (14)
C160.0271 (18)0.0232 (18)0.0234 (17)0.0022 (15)0.0026 (14)0.0033 (14)
C170.0229 (17)0.0223 (17)0.0209 (17)0.0019 (14)0.0010 (13)0.0011 (13)
C180.0236 (17)0.0207 (17)0.0204 (16)0.0022 (14)0.0028 (13)0.0001 (13)
C190.0274 (19)0.033 (2)0.0216 (17)0.0010 (16)0.0011 (14)0.0054 (15)
C200.032 (2)0.048 (3)0.0198 (18)0.0035 (19)0.0007 (16)0.0041 (17)
C210.054 (3)0.040 (3)0.033 (2)0.002 (2)0.002 (2)0.015 (2)
C220.029 (2)0.065 (3)0.027 (2)0.001 (2)0.0046 (17)0.005 (2)
C230.0254 (17)0.0214 (17)0.0200 (16)0.0004 (14)0.0016 (13)0.0020 (13)
C240.0229 (17)0.0234 (18)0.0229 (17)0.0023 (14)0.0000 (13)0.0031 (14)
C250.0239 (18)0.031 (2)0.0238 (18)0.0040 (15)0.0023 (14)0.0003 (15)
C260.032 (2)0.036 (2)0.0222 (18)0.0047 (17)0.0014 (15)0.0053 (16)
C270.0265 (19)0.033 (2)0.032 (2)0.0013 (16)0.0002 (16)0.0073 (17)
C280.0282 (19)0.0241 (19)0.032 (2)0.0035 (16)0.0010 (16)0.0039 (16)
C290.0225 (17)0.0242 (18)0.0241 (17)0.0018 (14)0.0029 (14)0.0044 (14)
C300.0308 (19)0.0263 (19)0.0266 (18)0.0050 (16)0.0062 (15)0.0016 (15)
C310.038 (2)0.0251 (19)0.030 (2)0.0003 (17)0.0081 (17)0.0023 (16)
C320.051 (3)0.043 (3)0.053 (3)0.007 (2)0.019 (2)0.024 (2)
C330.069 (4)0.056 (4)0.076 (4)0.008 (3)0.005 (3)0.036 (3)
C340.080 (5)0.056 (4)0.070 (4)0.014 (3)0.006 (4)0.013 (3)
Geometric parameters (Å, º) top
Hg—I32.6828 (4)C11—H11A0.9900
Hg—I22.6912 (4)C11—H11B0.9900
Hg—O1P2.730 (3)C12—H12A0.9800
Hg—I12.7321 (3)C12—H12B0.9800
O1P—C4P1.429 (6)C12—H12C0.9800
O1P—C1P1.433 (6)C13—C141.400 (5)
O2P—C3P1.424 (8)C13—C181.409 (5)
O2P—C2P1.425 (7)C14—C151.394 (6)
C1P—C2P1.494 (7)C14—H14A0.9500
C1P—H1PA0.9900C15—C161.405 (5)
C1P—H1PB0.9900C15—C191.527 (5)
C2P—H2PA0.9900C16—C171.404 (5)
C2P—H2PB0.9900C16—H16A0.9500
C3P—C4P1.504 (8)C17—C181.402 (5)
C3P—H3PA0.9900C17—C231.464 (5)
C3P—H3PB0.9900C19—C201.536 (6)
C4P—H4PA0.9900C19—C211.536 (6)
C4P—H4PB0.9900C19—C221.540 (6)
Te1—C182.071 (4)C20—H20A0.9800
Te1—N22.232 (3)C20—H20B0.9800
Te1—N12.244 (3)C20—H20C0.9800
N1—C11.343 (5)C21—H21A0.9800
N1—C21.389 (5)C21—H21B0.9800
N2—C231.344 (5)C21—H21C0.9800
N2—C241.387 (5)C22—H22A0.9800
N3—C11.372 (5)C22—H22B0.9800
N3—C71.391 (5)C22—H22C0.9800
N3—C81.467 (5)C24—C291.396 (5)
N4—C231.349 (5)C24—C251.403 (5)
N4—C291.397 (5)C25—C261.391 (6)
N4—C301.475 (5)C25—H25A0.9500
C1—C131.443 (5)C26—C271.400 (6)
C2—C31.401 (6)C26—H26A0.9500
C2—C71.402 (5)C27—C281.394 (6)
C3—C41.378 (6)C27—H27A0.9500
C3—H3A0.9500C28—C291.386 (5)
C4—C51.406 (7)C28—H28A0.9500
C4—H4A0.9500C30—C311.515 (6)
C5—C61.376 (6)C30—H30A0.9900
C5—H5A0.9500C30—H30B0.9900
C6—C71.392 (6)C31—C321.529 (6)
C6—H6A0.9500C31—H31A0.9900
C8—C91.513 (6)C31—H31B0.9900
C8—H8A0.9900C32—C331.538 (8)
C8—H8B0.9900C32—H32A0.9900
C9—C101.534 (5)C32—H32B0.9900
C9—H9A0.9900C33—C341.481 (9)
C9—H9B0.9900C33—H33A0.9900
C10—C111.524 (6)C33—H33B0.9900
C10—H10A0.9900C34—H34A0.9800
C10—H10B0.9900C34—H34B0.9800
C11—C121.529 (6)C34—H34C0.9800
I3—Hg—I2125.097 (12)C11—C12—H12C109.5
I3—Hg—O1P95.08 (7)H12A—C12—H12C109.5
I2—Hg—O1P96.76 (7)H12B—C12—H12C109.5
I3—Hg—I1120.825 (12)C14—C13—C18118.3 (3)
I2—Hg—I1112.406 (11)C14—C13—C1127.6 (4)
O1P—Hg—I190.76 (8)C18—C13—C1114.0 (3)
C4P—O1P—C1P110.1 (4)C15—C14—C13121.8 (4)
C4P—O1P—Hg127.3 (3)C15—C14—H14A119.1
C1P—O1P—Hg117.4 (3)C13—C14—H14A119.1
C3P—O2P—C2P108.7 (4)C14—C15—C16118.6 (3)
O1P—C1P—C2P110.7 (5)C14—C15—C19122.4 (3)
O1P—C1P—H1PA109.5C16—C15—C19119.0 (3)
C2P—C1P—H1PA109.5C17—C16—C15121.3 (4)
O1P—C1P—H1PB109.5C17—C16—H16A119.3
C2P—C1P—H1PB109.5C15—C16—H16A119.3
H1PA—C1P—H1PB108.1C18—C17—C16118.6 (3)
O2P—C2P—C1P110.9 (5)C18—C17—C23113.6 (3)
O2P—C2P—H2PA109.5C16—C17—C23127.8 (3)
C1P—C2P—H2PA109.5C17—C18—C13121.3 (3)
O2P—C2P—H2PB109.5C17—C18—Te1119.9 (3)
C1P—C2P—H2PB109.5C13—C18—Te1118.7 (3)
H2PA—C2P—H2PB108.1C15—C19—C20112.2 (3)
O2P—C3P—C4P110.4 (5)C15—C19—C21109.9 (3)
O2P—C3P—H3PA109.6C20—C19—C21107.9 (4)
C4P—C3P—H3PA109.6C15—C19—C22108.3 (3)
O2P—C3P—H3PB109.6C20—C19—C22108.5 (4)
C4P—C3P—H3PB109.6C21—C19—C22110.0 (4)
H3PA—C3P—H3PB108.1C19—C20—H20A109.5
O1P—C4P—C3P110.8 (5)C19—C20—H20B109.5
O1P—C4P—H4PA109.5H20A—C20—H20B109.5
C3P—C4P—H4PA109.5C19—C20—H20C109.5
O1P—C4P—H4PB109.5H20A—C20—H20C109.5
C3P—C4P—H4PB109.5H20B—C20—H20C109.5
H4PA—C4P—H4PB108.1C19—C21—H21A109.5
C18—Te1—N274.93 (13)C19—C21—H21B109.5
C18—Te1—N175.77 (13)H21A—C21—H21B109.5
N2—Te1—N1150.68 (11)C19—C21—H21C109.5
C1—N1—C2107.4 (3)H21A—C21—H21C109.5
C1—N1—Te1113.2 (2)H21B—C21—H21C109.5
C2—N1—Te1139.2 (3)C19—C22—H22A109.5
C23—N2—C24106.6 (3)C19—C22—H22B109.5
C23—N2—Te1115.2 (2)H22A—C22—H22B109.5
C24—N2—Te1138.1 (3)C19—C22—H22C109.5
C1—N3—C7107.4 (3)H22A—C22—H22C109.5
C1—N3—C8128.3 (3)H22B—C22—H22C109.5
C7—N3—C8124.1 (3)N2—C23—N4111.4 (3)
C23—N4—C29107.4 (3)N2—C23—C17116.2 (3)
C23—N4—C30128.9 (3)N4—C23—C17132.4 (3)
C29—N4—C30123.1 (3)N2—C24—C29108.4 (3)
N1—C1—N3110.5 (3)N2—C24—C25130.0 (4)
N1—C1—C13118.1 (3)C29—C24—C25121.6 (4)
N3—C1—C13131.5 (3)C26—C25—C24116.3 (4)
N1—C2—C3130.9 (4)C26—C25—H25A121.8
N1—C2—C7108.1 (3)C24—C25—H25A121.8
C3—C2—C7121.0 (4)C25—C26—C27121.4 (4)
C4—C3—C2116.6 (4)C25—C26—H26A119.3
C4—C3—H3A121.7C27—C26—H26A119.3
C2—C3—H3A121.7C28—C27—C26122.4 (4)
C3—C4—C5122.1 (4)C28—C27—H27A118.8
C3—C4—H4A119.0C26—C27—H27A118.8
C5—C4—H4A119.0C29—C28—C27116.1 (4)
C6—C5—C4121.6 (4)C29—C28—H28A122.0
C6—C5—H5A119.2C27—C28—H28A122.0
C4—C5—H5A119.2C28—C29—C24122.2 (4)
C5—C6—C7116.9 (4)C28—C29—N4131.6 (4)
C5—C6—H6A121.6C24—C29—N4106.2 (3)
C7—C6—H6A121.6N4—C30—C31113.8 (3)
N3—C7—C6131.6 (4)N4—C30—H30A108.8
N3—C7—C2106.6 (3)C31—C30—H30A108.8
C6—C7—C2121.8 (4)N4—C30—H30B108.8
N3—C8—C9112.9 (3)C31—C30—H30B108.8
N3—C8—H8A109.0H30A—C30—H30B107.7
C9—C8—H8A109.0C30—C31—C32109.7 (4)
N3—C8—H8B109.0C30—C31—H31A109.7
C9—C8—H8B109.0C32—C31—H31A109.7
H8A—C8—H8B107.8C30—C31—H31B109.7
C8—C9—C10111.5 (3)C32—C31—H31B109.7
C8—C9—H9A109.3H31A—C31—H31B108.2
C10—C9—H9A109.3C31—C32—C33113.6 (5)
C8—C9—H9B109.3C31—C32—H32A108.9
C10—C9—H9B109.3C33—C32—H32A108.9
H9A—C9—H9B108.0C31—C32—H32B108.9
C11—C10—C9112.6 (4)C33—C32—H32B108.9
C11—C10—H10A109.1H32A—C32—H32B107.7
C9—C10—H10A109.1C34—C33—C32113.1 (6)
C11—C10—H10B109.1C34—C33—H33A109.0
C9—C10—H10B109.1C32—C33—H33A109.0
H10A—C10—H10B107.8C34—C33—H33B109.0
C10—C11—C12112.5 (4)C32—C33—H33B109.0
C10—C11—H11A109.1H33A—C33—H33B107.8
C12—C11—H11A109.1C33—C34—H34A109.5
C10—C11—H11B109.1C33—C34—H34B109.5
C12—C11—H11B109.1H34A—C34—H34B109.5
H11A—C11—H11B107.8C33—C34—H34C109.5
C11—C12—H12A109.5H34A—C34—H34C109.5
C11—C12—H12B109.5H34B—C34—H34C109.5
H12A—C12—H12B109.5
C4P—O1P—C1P—C2P55.9 (6)C15—C16—C17—C23179.9 (4)
Hg—O1P—C1P—C2P100.4 (4)C16—C17—C18—C130.3 (5)
C3P—O2P—C2P—C1P59.8 (6)C23—C17—C18—C13179.3 (3)
O1P—C1P—C2P—O2P58.5 (6)C16—C17—C18—Te1178.0 (3)
C2P—O2P—C3P—C4P59.4 (7)C23—C17—C18—Te13.0 (4)
C1P—O1P—C4P—C3P55.9 (7)C14—C13—C18—C171.5 (5)
Hg—O1P—C4P—C3P97.5 (5)C1—C13—C18—C17178.4 (3)
O2P—C3P—C4P—O1P58.5 (7)C14—C13—C18—Te1176.3 (3)
C2—N1—C1—N31.5 (4)C1—C13—C18—Te13.9 (4)
Te1—N1—C1—N3174.9 (2)C14—C15—C19—C204.6 (5)
C2—N1—C1—C13179.5 (3)C16—C15—C19—C20176.5 (4)
Te1—N1—C1—C134.2 (4)C14—C15—C19—C21124.6 (4)
C7—N3—C1—N11.8 (4)C16—C15—C19—C2156.4 (5)
C8—N3—C1—N1173.3 (4)C14—C15—C19—C22115.2 (4)
C7—N3—C1—C13179.3 (4)C16—C15—C19—C2263.8 (5)
C8—N3—C1—C135.6 (7)C24—N2—C23—N41.5 (4)
C1—N1—C2—C3179.8 (4)Te1—N2—C23—N4179.4 (2)
Te1—N1—C2—C35.0 (7)C24—N2—C23—C17178.1 (3)
C1—N1—C2—C70.6 (4)Te1—N2—C23—C170.1 (4)
Te1—N1—C2—C7174.2 (3)C29—N4—C23—N20.3 (4)
N1—C2—C3—C4178.9 (4)C30—N4—C23—N2171.4 (4)
C7—C2—C3—C40.2 (6)C29—N4—C23—C17179.2 (4)
C2—C3—C4—C51.7 (7)C30—N4—C23—C178.1 (7)
C3—C4—C5—C61.4 (8)C18—C17—C23—N21.9 (5)
C4—C5—C6—C70.4 (7)C16—C17—C23—N2179.1 (4)
C1—N3—C7—C6178.2 (4)C18—C17—C23—N4177.6 (4)
C8—N3—C7—C66.5 (7)C16—C17—C23—N41.4 (7)
C1—N3—C7—C21.3 (4)C23—N2—C24—C292.1 (4)
C8—N3—C7—C2174.0 (3)Te1—N2—C24—C29179.3 (3)
C5—C6—C7—N3178.7 (4)C23—N2—C24—C25177.3 (4)
C5—C6—C7—C21.9 (6)Te1—N2—C24—C250.1 (7)
N1—C2—C7—N30.5 (4)N2—C24—C25—C26179.7 (4)
C3—C2—C7—N3178.9 (4)C29—C24—C25—C261.0 (6)
N1—C2—C7—C6179.1 (4)C24—C25—C26—C270.2 (6)
C3—C2—C7—C61.6 (6)C25—C26—C27—C281.4 (6)
C1—N3—C8—C993.8 (5)C26—C27—C28—C291.2 (6)
C7—N3—C8—C991.8 (5)C27—C28—C29—C240.0 (6)
N3—C8—C9—C10173.8 (3)C27—C28—C29—N4178.4 (4)
C8—C9—C10—C11173.5 (4)N2—C24—C29—C28179.4 (4)
C9—C10—C11—C12174.6 (4)C25—C24—C29—C281.2 (6)
N1—C1—C13—C14174.8 (4)N2—C24—C29—N41.9 (4)
N3—C1—C13—C146.4 (7)C25—C24—C29—N4177.6 (3)
N1—C1—C13—C185.3 (5)C23—N4—C29—C28179.6 (4)
N3—C1—C13—C18173.5 (4)C30—N4—C29—C287.9 (6)
C18—C13—C14—C152.5 (6)C23—N4—C29—C241.0 (4)
C1—C13—C14—C15177.3 (4)C30—N4—C29—C24170.7 (3)
C13—C14—C15—C161.8 (6)C23—N4—C30—C3192.9 (5)
C13—C14—C15—C19177.2 (4)C29—N4—C30—C3197.3 (4)
C14—C15—C16—C170.0 (6)N4—C30—C31—C32178.7 (4)
C19—C15—C16—C17179.0 (4)C30—C31—C32—C33171.3 (5)
C15—C16—C17—C181.0 (6)C31—C32—C33—C3466.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···I10.953.164.086 (4)164
C8—H8B···I2i0.993.083.997 (4)155
C9—H9B···I1ii0.993.184.095 (4)155
C30—H30B···I1iii0.993.284.111 (4)142
C31—H31B···I3iv0.993.204.185 (4)172
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+3/2.
 

Funding information

RJB is grateful for NSF award 1205608 for partial funding of this research, to Howard University Nanoscience Facility to access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.

References

First citationBack, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.  Google Scholar
First citationBeleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds, in Organoselenium Chemistry, edited by T. Wirth, p. 361. Hoboken: John Wiley & Sons, Inc.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationChivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739.  CrossRef CAS Google Scholar
First citationCrochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089–2092.  CSD CrossRef CAS Google Scholar
First citationFrey, M. & Monier, J.-C. (1971). Acta Cryst. B27, 2487–2490.  CSD CrossRef IUCr Journals Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387.  CSD CrossRef CAS Google Scholar
First citationManjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998.  CrossRef CAS Google Scholar
First citationMugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts, Organoselenium Chemistry, edited by T. Wirth. p. 321. Hoboken: John Wiley & Sons, Inc.  Google Scholar
First citationSmall, R. W. H. (1982). Acta Cryst. B38, 2886–2887.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationYadav, S., Raju, S., Singh, H. B. & Butcher, R. J. (2016). Dalton Trans. 45, 8458–8467.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds