research communications
Synthesis and structure of an aryltellurenium(II) cation; [4-tert-butyl-2,6-bis(1-pentyl-1H-benzimidazol-2-yl-κN3)phenyl-κC1]tellurium(II) (1,4-dioxane)triiodidomercurate(II)
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title salt, (C34H41N4Te)[HgI3(C4H8O2)], the aryltellurenium [C34H41N4Te]+ cations and [HgI3(dioxane)]− anions are linked by a short interaction between the Te atom and one of the I-atom donors of the anion, as well as through weak C—H⋯I interactions. The geometry around the Te atom is T-shaped with the coordination comprising a C atom of the central aromatic ring and two N atom donors of the benzimidazolyl moiety. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å], while the Te—C bond length is 2.071 (4) Å. The N—Te—N bond angle is 150.68 (11)°. The HgII atom of the anion is coordinated by iodide ions from three sides and the fourth coordination site is occupied by an O atom of the solvent molecule (dioxane). Thus, it attains a trigonal–pyrimidal geometry, with O—Hg—I angles ranging of 90.76 (8) and 96.76 (7)° and I—Hg—I angles ranging from 112.41 (1) to 125.10 (1)°. The cations and anions are involved in numerous weak π–π stacking interactions involving both the central phenyl ring and two inversion-related benzimidazole moieties, which propagate in the a-axis direction. In addition, there are numerous C—H⋯I interactions between the cations and anions, which link them into a complex three-dimensional array.
CCDC reference: 1823822
1. Chemical context
Organoselenenium cations have been extensively studied and utilized in the area of synthetic organic chemistry (Back et al., 1999; Singh & Wirth, 2012; Chivers & Laitinen, 2015), biological fields (Mugesh & Singh, 2000; Singh & Wirth, 2012; Bhuyan & Mugesh, 2012) and material science (Manjare et al., 2014; Kremer et al., 2015). Compared to organoselenenium cations, the organotellurenium analogues are less studied. Fujihara et al. (1995) reported the first stable tellurenium cation, [{2,6-(Me2NCH2)2C6H3Te]+[PF6]−. After 16 years of preparation, the first structural characterization of the tellurenium cation [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+[Hg2Cl6]2− was demonstrated by Silvestru and co-workers (Beleaga et al., 2011). Recently, we have reported the first examples of selone-stabilized aryltellurenium cations, which are synthesized by the reaction of mixed-valent tellurenyl bromide (RTeII–TeIVBr2–R) with 1,3-dibutylbenzimidazolin-2-selone (Yadav et al., 2016). While attempting to prepare a stable organotellurium iodide (2) (see Fig. 1) by the reaction of the mercury complex of 2,2′-(5-tert-butyl-1,3-phenylene)bis(1-pentyl-1H-benzimidazole) (C34H41N4HgCl) (1) with TeI2, the aryltellurenium cation [pentyl(N^C^N)Te]+·[HgI3]− (3) [N^C^N = 5-tert-butyl-1,3-bis(N-pentyl benzimidazol-2′-yl)phenyl)] was isolated as a by-product (3% yield) along with the major product, a dimeric aryltellurenium cation [C34H41N4Te]+2[HgCl2.36I1.64]2− (4). The of this compound is reported herein while the synthesis and structures of compounds 1 and 4 will be published elsewhere.
2. Structural commentary
The title complex [C34H41N4Te]+[HgI3(dioxane)]− is shown in Fig. 2. It crystallizes in P21/c in the monoclinic The contains one tellurenium cationic unit stabilized by a [HgI3 (dioxane)]− counter-anion. The coordination geometry around the Te atom is T-shaped whereby each Te atom is bonded with the central carbon atom of the aromatic ring and intramolecularly coordinated with the two N atoms. This coordination gives rise to an octacyclic framework formed by two condensed five-membered rings, which is stable under ambient conditions. The observed Te—C bond length is 2.071 (4) Å, which is comparable with the related NCN pincer-based tellurenium cation in [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+ [Hg2Cl6]2− [2.074 (8) Å; Beleaga et al., 2011]. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å]. The Te—N distances are shorter than the sum of the van der Waals radii for Te and N [Σrvdw(Te,N) = 3.61 Å] and longer than the covalent radii [Σrcov(Te,N) = 2.09 Å] (Bondi, 1964). This implies strong intramolecular Te⋯N interactions in the tellurenium cation.
In the anion, the mercury atom is coordinated by three iodide ions and one oxygen atom from the solvent molecule (1,4-dioxane), with Hg—I bond lengths of 2.6828 (4), 2.6912 (4) and 2.7321 (3) Å, which are in the range expected for an Hg—I ; Frey & Monier, 1971; Crochet & Fromm, 2011]. The O—Hg—I bond angles are 90.76 (8) , 95.08 (7) and 96.76 (7)° and the I—Hg—I bond angles range from 112.41 (1) to 125.10 (1)°. The resulting geometry around the mercury atom is thus trigonal pyramidal with the Hg atom displaced by only 0.2018 (3) Å from the plane of the three I atoms, with the longer Hg—O bond at the apex of this pyramid.
(the sum of the covalent radii of Hg and I is 2.71 Å). The Hg—O bond length of 2.730 (3) Å is longer than the sum of their covalent radii (2.15 Å), but shorter than the sum of their van der Waals radii (3.07 Å). This value is in the range found for previous Hg–dioxane structures [2.64 (1) to 2.83 (1) Å; Small, 1982In the 4-tert-butyl-2,6-bis(1-pentyl-1H-benzimidazol-2-yl)phenyl ligand, the two pentyl substituents have adopted two different conformations. One has the normal extended zigzag conformation as shown by the N—C—C—C and C—C—C—C torsion angles [−173.8 (3), −173.5 (4) and −174.6 (4)°, respectively] while for the other, these angles are significantly different [−178.7 (4), 171.3 (5) and 66.0 (8), respectively]. In the central aromatic region, both benzimidazole moieties are almost coplanar with the central phenyl ring [dihedral angles of 5.3 (3) and 1.6 (2)°].
3. Supramolecular features
The molecules are involved in numerous weak π–π stacking interactions involving both the central phenyl ring and the two benzimidazole moieties (symmetry code −x + 1, −y + 1, −z + 1), which propagate in the a-axis direction, as shown in Fig. 3. The shortest separation, however, is 3.4980 (19) Å between the centroid of one of the outer phenyl rings (C24–C29; symmetry code −x + 2, −y + 1, −z + 1) and the centroid of the moiety made up of the central phenyl ring and one of the imidazole rings (Te1/N1/N3/C1/C2/C7/C13–C18). There is a short interaction between the Te atom and one of the iodine donors from the anion [Te1⋯I1 = 3.8859 (4) Å]. In addition there are numerous C—H⋯I interactions between the cations and anions (Table 1), which link them into a complex three-dimensional array (Fig. 3).
4. Database survey
A survey of the Cambridge Structural Database (web CSD version 1.19 with updates June 2017; Groom et al., 2016) reveals that there is no structure report in the literature for a tellurenium cation with bis-benzimidazole moieties, although an NCN pincer-framework-based tellurenium cation has one hit (Beleaga et al., 2011). There are four reports in the literature of structures involving Hg coordinated to dioxane (BIYPAA, Small, 1982; HGBDOX, Frey & Monier, 1971; VALRUX and VALSAE, Crochet & Fromm, 2011), including one which also contains Hg—I bonds (VALSAE, Crochet & Fromm, 2011).
5. Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is shown in Fig. 1. To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (60 ml) was added 0.102 g of TeI2 were added. The reaction mixture was stirred for 24 h at room temperature in an inert atmosphere. The reaction mixture was filtered. The filtrate was evaporated and reduced to 5 mL. Colorless prismatic crystals were obtained from slow evaporation of a1,4-dioxane solution of the compound at room temperature.
Yield 3% (0.035 g). HR–MS: m/z calculated for C34H41N4Te is 635.2394. Found 635.2391. ESI–MS (negative mode): m/z calculated for HgI3: 582.6840. Found 582.6543
6. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically, with C—H = ranging from 0.95 to 0.99 Å, and allowed to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1823822
https://doi.org/10.1107/S2056989018002645/zs2398sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002645/zs2398Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C34H41N4Te)[HgI3(C4H8O2)] | F(000) = 2448 |
Mr = 1302.70 | Dx = 2.035 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6074 (2) Å | Cell parameters from 22849 reflections |
b = 25.4943 (6) Å | θ = 2.0–31.3° |
c = 17.4326 (3) Å | µ = 6.51 mm−1 |
β = 95.152 (2)° | T = 100 K |
V = 4252.59 (15) Å3 | Prism, colorless |
Z = 4 | 0.27 × 0.21 × 0.13 mm |
Rigaku CCD dual source diffractometer | 11288 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.041 |
ω scans | θmax = 31.2°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −13→13 |
Tmin = 0.238, Tmax = 0.567 | k = −34→36 |
58708 measured reflections | l = −25→25 |
12625 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0267P)2 + 9.9235P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.004 |
12625 reflections | Δρmax = 1.45 e Å−3 |
448 parameters | Δρmin = −1.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Hg | 0.75646 (2) | 0.67318 (2) | 0.82692 (2) | 0.03297 (5) | |
I1 | 0.73560 (3) | 0.57972 (2) | 0.75006 (2) | 0.03369 (7) | |
I2 | 0.55214 (3) | 0.74060 (2) | 0.77764 (2) | 0.04473 (8) | |
I3 | 0.99100 (3) | 0.69905 (2) | 0.91390 (2) | 0.04466 (8) | |
O1P | 0.6255 (4) | 0.63149 (14) | 0.94549 (18) | 0.0431 (8) | |
O2P | 0.6836 (5) | 0.6252 (2) | 1.1071 (2) | 0.0653 (12) | |
C1P | 0.6860 (6) | 0.5855 (2) | 0.9821 (3) | 0.0491 (13) | |
H1PA | 0.747374 | 0.568080 | 0.947248 | 0.059* | |
H1PB | 0.610890 | 0.560639 | 0.992658 | 0.059* | |
C2P | 0.7689 (6) | 0.5994 (3) | 1.0559 (3) | 0.0519 (13) | |
H2PA | 0.808972 | 0.567185 | 1.080570 | 0.062* | |
H2PB | 0.847183 | 0.622757 | 1.044987 | 0.062* | |
C3P | 0.6282 (8) | 0.6717 (3) | 1.0710 (4) | 0.0686 (19) | |
H3PA | 0.705702 | 0.695483 | 1.060347 | 0.082* | |
H3PB | 0.568885 | 0.690112 | 1.106058 | 0.082* | |
C4P | 0.5428 (6) | 0.6587 (3) | 0.9969 (3) | 0.0525 (14) | |
H4PA | 0.462352 | 0.636580 | 1.007958 | 0.063* | |
H4PB | 0.506000 | 0.691438 | 0.972173 | 0.063* | |
Te1 | 0.74063 (2) | 0.51396 (2) | 0.54923 (2) | 0.02140 (5) | |
N1 | 0.5897 (3) | 0.56893 (13) | 0.48474 (18) | 0.0236 (6) | |
N2 | 0.8934 (3) | 0.44789 (13) | 0.55087 (18) | 0.0237 (6) | |
N3 | 0.4931 (3) | 0.59799 (13) | 0.37156 (18) | 0.0244 (6) | |
N4 | 1.0026 (3) | 0.38656 (13) | 0.48812 (18) | 0.0241 (6) | |
C1 | 0.5772 (4) | 0.56054 (15) | 0.4084 (2) | 0.0228 (7) | |
C2 | 0.5088 (4) | 0.61244 (15) | 0.4987 (2) | 0.0247 (7) | |
C3 | 0.4854 (4) | 0.63775 (18) | 0.5677 (3) | 0.0324 (9) | |
H3A | 0.526433 | 0.625558 | 0.616065 | 0.039* | |
C4 | 0.3999 (5) | 0.68122 (18) | 0.5620 (3) | 0.0364 (10) | |
H4A | 0.383711 | 0.699948 | 0.607423 | 0.044* | |
C5 | 0.3358 (5) | 0.69872 (19) | 0.4909 (3) | 0.0387 (10) | |
H5A | 0.275877 | 0.728408 | 0.489732 | 0.046* | |
C6 | 0.3578 (5) | 0.67387 (17) | 0.4230 (3) | 0.0334 (9) | |
H6A | 0.314010 | 0.685579 | 0.374971 | 0.040* | |
C7 | 0.4471 (4) | 0.63077 (15) | 0.4278 (2) | 0.0259 (8) | |
C8 | 0.4633 (4) | 0.60656 (16) | 0.2885 (2) | 0.0267 (8) | |
H8A | 0.543550 | 0.593917 | 0.261713 | 0.032* | |
H8B | 0.453223 | 0.644667 | 0.278569 | 0.032* | |
C9 | 0.3321 (4) | 0.57888 (17) | 0.2554 (2) | 0.0288 (8) | |
H9A | 0.250131 | 0.594283 | 0.277669 | 0.035* | |
H9B | 0.337518 | 0.541345 | 0.269913 | 0.035* | |
C10 | 0.3127 (4) | 0.58365 (19) | 0.1674 (2) | 0.0322 (9) | |
H10A | 0.318795 | 0.621078 | 0.152928 | 0.039* | |
H10B | 0.389474 | 0.564727 | 0.145069 | 0.039* | |
C11 | 0.1732 (5) | 0.5616 (2) | 0.1334 (3) | 0.0397 (11) | |
H11A | 0.096416 | 0.582704 | 0.151795 | 0.048* | |
H11B | 0.163106 | 0.525180 | 0.151965 | 0.048* | |
C12 | 0.1598 (6) | 0.5616 (2) | 0.0453 (3) | 0.0506 (13) | |
H12A | 0.070863 | 0.545423 | 0.026178 | 0.076* | |
H12B | 0.237218 | 0.541619 | 0.026742 | 0.076* | |
H12C | 0.162796 | 0.597783 | 0.026544 | 0.076* | |
C13 | 0.6514 (4) | 0.51672 (15) | 0.3791 (2) | 0.0225 (7) | |
C14 | 0.6451 (4) | 0.49851 (16) | 0.3031 (2) | 0.0250 (7) | |
H14A | 0.583208 | 0.515082 | 0.264960 | 0.030* | |
C15 | 0.7270 (4) | 0.45675 (16) | 0.2818 (2) | 0.0237 (7) | |
C16 | 0.8152 (4) | 0.43160 (15) | 0.3391 (2) | 0.0246 (7) | |
H16A | 0.871573 | 0.403114 | 0.325237 | 0.029* | |
C17 | 0.8217 (4) | 0.44771 (15) | 0.4163 (2) | 0.0221 (7) | |
C18 | 0.7395 (4) | 0.49037 (14) | 0.4355 (2) | 0.0215 (7) | |
C19 | 0.7261 (4) | 0.43807 (17) | 0.1985 (2) | 0.0275 (8) | |
C20 | 0.6176 (5) | 0.46742 (19) | 0.1444 (2) | 0.0337 (9) | |
H20A | 0.636546 | 0.505170 | 0.147362 | 0.050* | |
H20B | 0.523754 | 0.460497 | 0.159841 | 0.050* | |
H20C | 0.623314 | 0.455319 | 0.091394 | 0.050* | |
C21 | 0.6910 (6) | 0.37930 (19) | 0.1935 (3) | 0.0427 (11) | |
H21A | 0.604471 | 0.372690 | 0.217678 | 0.064* | |
H21B | 0.767486 | 0.359149 | 0.220351 | 0.064* | |
H21C | 0.678832 | 0.368573 | 0.139351 | 0.064* | |
C22 | 0.8719 (5) | 0.4479 (2) | 0.1713 (3) | 0.0402 (11) | |
H22A | 0.894545 | 0.485269 | 0.175965 | 0.060* | |
H22B | 0.872508 | 0.437028 | 0.117394 | 0.060* | |
H22C | 0.941604 | 0.427499 | 0.203245 | 0.060* | |
C23 | 0.9077 (4) | 0.42570 (14) | 0.4821 (2) | 0.0223 (7) | |
C24 | 0.9865 (4) | 0.42250 (15) | 0.6039 (2) | 0.0232 (7) | |
C25 | 1.0173 (4) | 0.43169 (16) | 0.6829 (2) | 0.0263 (8) | |
H25A | 0.972775 | 0.458794 | 0.709028 | 0.032* | |
C26 | 1.1166 (4) | 0.39891 (17) | 0.7210 (2) | 0.0302 (8) | |
H26A | 1.141048 | 0.403739 | 0.774576 | 0.036* | |
C27 | 1.1814 (4) | 0.35895 (17) | 0.6821 (2) | 0.0304 (8) | |
H27A | 1.247151 | 0.336915 | 0.710397 | 0.036* | |
C28 | 1.1528 (4) | 0.35036 (16) | 0.6033 (2) | 0.0281 (8) | |
H28A | 1.198365 | 0.323620 | 0.577025 | 0.034* | |
C29 | 1.0539 (4) | 0.38315 (15) | 0.5655 (2) | 0.0236 (7) | |
C30 | 1.0625 (4) | 0.35688 (16) | 0.4263 (2) | 0.0277 (8) | |
H30A | 1.160849 | 0.348098 | 0.443315 | 0.033* | |
H30B | 1.062647 | 0.379541 | 0.380238 | 0.033* | |
C31 | 0.9845 (5) | 0.30670 (16) | 0.4042 (2) | 0.0308 (9) | |
H31A | 0.886719 | 0.315002 | 0.385220 | 0.037* | |
H31B | 0.982848 | 0.283726 | 0.449883 | 0.037* | |
C32 | 1.0563 (6) | 0.2783 (2) | 0.3413 (3) | 0.0481 (13) | |
H32A | 1.157460 | 0.275633 | 0.357500 | 0.058* | |
H32B | 1.045373 | 0.299530 | 0.293597 | 0.058* | |
C33 | 0.9982 (7) | 0.2230 (3) | 0.3236 (4) | 0.0668 (18) | |
H33A | 1.057355 | 0.205345 | 0.287666 | 0.080* | |
H33B | 1.003942 | 0.202324 | 0.371852 | 0.080* | |
C34 | 0.8516 (8) | 0.2232 (3) | 0.2892 (4) | 0.0698 (18) | |
H34A | 0.826398 | 0.188126 | 0.269610 | 0.105* | |
H34B | 0.841711 | 0.248498 | 0.246670 | 0.105* | |
H34C | 0.789684 | 0.233200 | 0.328424 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg | 0.03525 (9) | 0.03204 (9) | 0.03157 (8) | −0.00056 (7) | 0.00279 (6) | −0.00291 (6) |
I1 | 0.03544 (14) | 0.03364 (14) | 0.03205 (14) | 0.00098 (11) | 0.00334 (11) | −0.00527 (11) |
I2 | 0.04247 (17) | 0.02744 (14) | 0.0635 (2) | 0.00214 (12) | 0.00065 (15) | 0.00296 (14) |
I3 | 0.04082 (16) | 0.04536 (18) | 0.04619 (18) | −0.00267 (14) | −0.00499 (13) | −0.01225 (14) |
O1P | 0.0482 (19) | 0.053 (2) | 0.0277 (16) | 0.0038 (16) | 0.0029 (14) | 0.0056 (14) |
O2P | 0.071 (3) | 0.094 (3) | 0.0289 (18) | 0.004 (2) | −0.0056 (18) | 0.002 (2) |
C1P | 0.061 (3) | 0.049 (3) | 0.036 (3) | −0.003 (3) | −0.003 (2) | 0.009 (2) |
C2P | 0.048 (3) | 0.068 (4) | 0.038 (3) | −0.003 (3) | −0.003 (2) | 0.013 (3) |
C3P | 0.079 (5) | 0.083 (5) | 0.042 (3) | 0.013 (4) | 0.001 (3) | −0.018 (3) |
C4P | 0.048 (3) | 0.072 (4) | 0.039 (3) | 0.012 (3) | 0.007 (2) | 0.000 (3) |
Te1 | 0.02258 (11) | 0.02243 (11) | 0.01920 (10) | −0.00065 (9) | 0.00201 (8) | −0.00145 (9) |
N1 | 0.0245 (15) | 0.0244 (16) | 0.0216 (15) | 0.0020 (13) | −0.0003 (12) | −0.0026 (12) |
N2 | 0.0256 (15) | 0.0259 (16) | 0.0197 (14) | 0.0010 (13) | 0.0020 (12) | −0.0012 (12) |
N3 | 0.0244 (15) | 0.0264 (16) | 0.0221 (15) | 0.0016 (13) | 0.0010 (12) | 0.0024 (12) |
N4 | 0.0247 (15) | 0.0232 (15) | 0.0243 (15) | 0.0022 (12) | 0.0012 (12) | −0.0006 (12) |
C1 | 0.0221 (17) | 0.0243 (18) | 0.0223 (17) | −0.0017 (14) | 0.0034 (13) | −0.0005 (14) |
C2 | 0.0232 (17) | 0.0243 (18) | 0.0264 (18) | 0.0011 (14) | 0.0017 (14) | −0.0004 (14) |
C3 | 0.032 (2) | 0.036 (2) | 0.030 (2) | 0.0043 (18) | 0.0048 (16) | −0.0031 (17) |
C4 | 0.037 (2) | 0.035 (2) | 0.039 (2) | 0.0091 (19) | 0.0088 (19) | −0.0087 (19) |
C5 | 0.039 (2) | 0.036 (2) | 0.041 (2) | 0.013 (2) | 0.006 (2) | −0.002 (2) |
C6 | 0.032 (2) | 0.033 (2) | 0.036 (2) | 0.0047 (18) | 0.0031 (17) | 0.0045 (18) |
C7 | 0.0255 (18) | 0.0245 (18) | 0.0281 (19) | 0.0016 (15) | 0.0039 (15) | −0.0010 (15) |
C8 | 0.0297 (19) | 0.0264 (19) | 0.0241 (18) | 0.0024 (16) | 0.0034 (15) | 0.0070 (15) |
C9 | 0.0267 (19) | 0.035 (2) | 0.0250 (18) | 0.0000 (16) | 0.0023 (15) | 0.0045 (16) |
C10 | 0.032 (2) | 0.042 (2) | 0.0234 (18) | 0.0032 (18) | 0.0037 (16) | 0.0030 (17) |
C11 | 0.035 (2) | 0.056 (3) | 0.027 (2) | −0.003 (2) | −0.0016 (17) | 0.002 (2) |
C12 | 0.053 (3) | 0.068 (4) | 0.029 (2) | 0.000 (3) | −0.003 (2) | 0.001 (2) |
C13 | 0.0205 (16) | 0.0227 (17) | 0.0248 (17) | −0.0014 (14) | 0.0050 (13) | −0.0006 (14) |
C14 | 0.0226 (17) | 0.0292 (19) | 0.0230 (17) | −0.0020 (15) | 0.0011 (14) | 0.0015 (14) |
C15 | 0.0241 (17) | 0.0299 (19) | 0.0169 (16) | −0.0014 (15) | 0.0008 (13) | 0.0011 (14) |
C16 | 0.0271 (18) | 0.0232 (18) | 0.0234 (17) | 0.0022 (15) | 0.0026 (14) | −0.0033 (14) |
C17 | 0.0229 (17) | 0.0223 (17) | 0.0209 (17) | −0.0019 (14) | 0.0010 (13) | 0.0011 (13) |
C18 | 0.0236 (17) | 0.0207 (17) | 0.0204 (16) | −0.0022 (14) | 0.0028 (13) | 0.0001 (13) |
C19 | 0.0274 (19) | 0.033 (2) | 0.0216 (17) | 0.0010 (16) | 0.0011 (14) | −0.0054 (15) |
C20 | 0.032 (2) | 0.048 (3) | 0.0198 (18) | 0.0035 (19) | 0.0007 (16) | −0.0041 (17) |
C21 | 0.054 (3) | 0.040 (3) | 0.033 (2) | 0.002 (2) | −0.002 (2) | −0.015 (2) |
C22 | 0.029 (2) | 0.065 (3) | 0.027 (2) | 0.001 (2) | 0.0046 (17) | −0.005 (2) |
C23 | 0.0254 (17) | 0.0214 (17) | 0.0200 (16) | −0.0004 (14) | 0.0016 (13) | 0.0020 (13) |
C24 | 0.0229 (17) | 0.0234 (18) | 0.0229 (17) | −0.0023 (14) | 0.0000 (13) | 0.0031 (14) |
C25 | 0.0239 (18) | 0.031 (2) | 0.0238 (18) | −0.0040 (15) | 0.0023 (14) | 0.0003 (15) |
C26 | 0.032 (2) | 0.036 (2) | 0.0222 (18) | −0.0047 (17) | −0.0014 (15) | 0.0053 (16) |
C27 | 0.0265 (19) | 0.033 (2) | 0.032 (2) | 0.0013 (16) | 0.0002 (16) | 0.0073 (17) |
C28 | 0.0282 (19) | 0.0241 (19) | 0.032 (2) | 0.0035 (16) | 0.0010 (16) | 0.0039 (16) |
C29 | 0.0225 (17) | 0.0242 (18) | 0.0241 (17) | −0.0018 (14) | 0.0029 (14) | 0.0044 (14) |
C30 | 0.0308 (19) | 0.0263 (19) | 0.0266 (18) | 0.0050 (16) | 0.0062 (15) | −0.0016 (15) |
C31 | 0.038 (2) | 0.0251 (19) | 0.030 (2) | −0.0003 (17) | 0.0081 (17) | −0.0023 (16) |
C32 | 0.051 (3) | 0.043 (3) | 0.053 (3) | −0.007 (2) | 0.019 (2) | −0.024 (2) |
C33 | 0.069 (4) | 0.056 (4) | 0.076 (4) | 0.008 (3) | 0.005 (3) | −0.036 (3) |
C34 | 0.080 (5) | 0.056 (4) | 0.070 (4) | −0.014 (3) | −0.006 (4) | −0.013 (3) |
Hg—I3 | 2.6828 (4) | C11—H11A | 0.9900 |
Hg—I2 | 2.6912 (4) | C11—H11B | 0.9900 |
Hg—O1P | 2.730 (3) | C12—H12A | 0.9800 |
Hg—I1 | 2.7321 (3) | C12—H12B | 0.9800 |
O1P—C4P | 1.429 (6) | C12—H12C | 0.9800 |
O1P—C1P | 1.433 (6) | C13—C14 | 1.400 (5) |
O2P—C3P | 1.424 (8) | C13—C18 | 1.409 (5) |
O2P—C2P | 1.425 (7) | C14—C15 | 1.394 (6) |
C1P—C2P | 1.494 (7) | C14—H14A | 0.9500 |
C1P—H1PA | 0.9900 | C15—C16 | 1.405 (5) |
C1P—H1PB | 0.9900 | C15—C19 | 1.527 (5) |
C2P—H2PA | 0.9900 | C16—C17 | 1.404 (5) |
C2P—H2PB | 0.9900 | C16—H16A | 0.9500 |
C3P—C4P | 1.504 (8) | C17—C18 | 1.402 (5) |
C3P—H3PA | 0.9900 | C17—C23 | 1.464 (5) |
C3P—H3PB | 0.9900 | C19—C20 | 1.536 (6) |
C4P—H4PA | 0.9900 | C19—C21 | 1.536 (6) |
C4P—H4PB | 0.9900 | C19—C22 | 1.540 (6) |
Te1—C18 | 2.071 (4) | C20—H20A | 0.9800 |
Te1—N2 | 2.232 (3) | C20—H20B | 0.9800 |
Te1—N1 | 2.244 (3) | C20—H20C | 0.9800 |
N1—C1 | 1.343 (5) | C21—H21A | 0.9800 |
N1—C2 | 1.389 (5) | C21—H21B | 0.9800 |
N2—C23 | 1.344 (5) | C21—H21C | 0.9800 |
N2—C24 | 1.387 (5) | C22—H22A | 0.9800 |
N3—C1 | 1.372 (5) | C22—H22B | 0.9800 |
N3—C7 | 1.391 (5) | C22—H22C | 0.9800 |
N3—C8 | 1.467 (5) | C24—C29 | 1.396 (5) |
N4—C23 | 1.349 (5) | C24—C25 | 1.403 (5) |
N4—C29 | 1.397 (5) | C25—C26 | 1.391 (6) |
N4—C30 | 1.475 (5) | C25—H25A | 0.9500 |
C1—C13 | 1.443 (5) | C26—C27 | 1.400 (6) |
C2—C3 | 1.401 (6) | C26—H26A | 0.9500 |
C2—C7 | 1.402 (5) | C27—C28 | 1.394 (6) |
C3—C4 | 1.378 (6) | C27—H27A | 0.9500 |
C3—H3A | 0.9500 | C28—C29 | 1.386 (5) |
C4—C5 | 1.406 (7) | C28—H28A | 0.9500 |
C4—H4A | 0.9500 | C30—C31 | 1.515 (6) |
C5—C6 | 1.376 (6) | C30—H30A | 0.9900 |
C5—H5A | 0.9500 | C30—H30B | 0.9900 |
C6—C7 | 1.392 (6) | C31—C32 | 1.529 (6) |
C6—H6A | 0.9500 | C31—H31A | 0.9900 |
C8—C9 | 1.513 (6) | C31—H31B | 0.9900 |
C8—H8A | 0.9900 | C32—C33 | 1.538 (8) |
C8—H8B | 0.9900 | C32—H32A | 0.9900 |
C9—C10 | 1.534 (5) | C32—H32B | 0.9900 |
C9—H9A | 0.9900 | C33—C34 | 1.481 (9) |
C9—H9B | 0.9900 | C33—H33A | 0.9900 |
C10—C11 | 1.524 (6) | C33—H33B | 0.9900 |
C10—H10A | 0.9900 | C34—H34A | 0.9800 |
C10—H10B | 0.9900 | C34—H34B | 0.9800 |
C11—C12 | 1.529 (6) | C34—H34C | 0.9800 |
I3—Hg—I2 | 125.097 (12) | C11—C12—H12C | 109.5 |
I3—Hg—O1P | 95.08 (7) | H12A—C12—H12C | 109.5 |
I2—Hg—O1P | 96.76 (7) | H12B—C12—H12C | 109.5 |
I3—Hg—I1 | 120.825 (12) | C14—C13—C18 | 118.3 (3) |
I2—Hg—I1 | 112.406 (11) | C14—C13—C1 | 127.6 (4) |
O1P—Hg—I1 | 90.76 (8) | C18—C13—C1 | 114.0 (3) |
C4P—O1P—C1P | 110.1 (4) | C15—C14—C13 | 121.8 (4) |
C4P—O1P—Hg | 127.3 (3) | C15—C14—H14A | 119.1 |
C1P—O1P—Hg | 117.4 (3) | C13—C14—H14A | 119.1 |
C3P—O2P—C2P | 108.7 (4) | C14—C15—C16 | 118.6 (3) |
O1P—C1P—C2P | 110.7 (5) | C14—C15—C19 | 122.4 (3) |
O1P—C1P—H1PA | 109.5 | C16—C15—C19 | 119.0 (3) |
C2P—C1P—H1PA | 109.5 | C17—C16—C15 | 121.3 (4) |
O1P—C1P—H1PB | 109.5 | C17—C16—H16A | 119.3 |
C2P—C1P—H1PB | 109.5 | C15—C16—H16A | 119.3 |
H1PA—C1P—H1PB | 108.1 | C18—C17—C16 | 118.6 (3) |
O2P—C2P—C1P | 110.9 (5) | C18—C17—C23 | 113.6 (3) |
O2P—C2P—H2PA | 109.5 | C16—C17—C23 | 127.8 (3) |
C1P—C2P—H2PA | 109.5 | C17—C18—C13 | 121.3 (3) |
O2P—C2P—H2PB | 109.5 | C17—C18—Te1 | 119.9 (3) |
C1P—C2P—H2PB | 109.5 | C13—C18—Te1 | 118.7 (3) |
H2PA—C2P—H2PB | 108.1 | C15—C19—C20 | 112.2 (3) |
O2P—C3P—C4P | 110.4 (5) | C15—C19—C21 | 109.9 (3) |
O2P—C3P—H3PA | 109.6 | C20—C19—C21 | 107.9 (4) |
C4P—C3P—H3PA | 109.6 | C15—C19—C22 | 108.3 (3) |
O2P—C3P—H3PB | 109.6 | C20—C19—C22 | 108.5 (4) |
C4P—C3P—H3PB | 109.6 | C21—C19—C22 | 110.0 (4) |
H3PA—C3P—H3PB | 108.1 | C19—C20—H20A | 109.5 |
O1P—C4P—C3P | 110.8 (5) | C19—C20—H20B | 109.5 |
O1P—C4P—H4PA | 109.5 | H20A—C20—H20B | 109.5 |
C3P—C4P—H4PA | 109.5 | C19—C20—H20C | 109.5 |
O1P—C4P—H4PB | 109.5 | H20A—C20—H20C | 109.5 |
C3P—C4P—H4PB | 109.5 | H20B—C20—H20C | 109.5 |
H4PA—C4P—H4PB | 108.1 | C19—C21—H21A | 109.5 |
C18—Te1—N2 | 74.93 (13) | C19—C21—H21B | 109.5 |
C18—Te1—N1 | 75.77 (13) | H21A—C21—H21B | 109.5 |
N2—Te1—N1 | 150.68 (11) | C19—C21—H21C | 109.5 |
C1—N1—C2 | 107.4 (3) | H21A—C21—H21C | 109.5 |
C1—N1—Te1 | 113.2 (2) | H21B—C21—H21C | 109.5 |
C2—N1—Te1 | 139.2 (3) | C19—C22—H22A | 109.5 |
C23—N2—C24 | 106.6 (3) | C19—C22—H22B | 109.5 |
C23—N2—Te1 | 115.2 (2) | H22A—C22—H22B | 109.5 |
C24—N2—Te1 | 138.1 (3) | C19—C22—H22C | 109.5 |
C1—N3—C7 | 107.4 (3) | H22A—C22—H22C | 109.5 |
C1—N3—C8 | 128.3 (3) | H22B—C22—H22C | 109.5 |
C7—N3—C8 | 124.1 (3) | N2—C23—N4 | 111.4 (3) |
C23—N4—C29 | 107.4 (3) | N2—C23—C17 | 116.2 (3) |
C23—N4—C30 | 128.9 (3) | N4—C23—C17 | 132.4 (3) |
C29—N4—C30 | 123.1 (3) | N2—C24—C29 | 108.4 (3) |
N1—C1—N3 | 110.5 (3) | N2—C24—C25 | 130.0 (4) |
N1—C1—C13 | 118.1 (3) | C29—C24—C25 | 121.6 (4) |
N3—C1—C13 | 131.5 (3) | C26—C25—C24 | 116.3 (4) |
N1—C2—C3 | 130.9 (4) | C26—C25—H25A | 121.8 |
N1—C2—C7 | 108.1 (3) | C24—C25—H25A | 121.8 |
C3—C2—C7 | 121.0 (4) | C25—C26—C27 | 121.4 (4) |
C4—C3—C2 | 116.6 (4) | C25—C26—H26A | 119.3 |
C4—C3—H3A | 121.7 | C27—C26—H26A | 119.3 |
C2—C3—H3A | 121.7 | C28—C27—C26 | 122.4 (4) |
C3—C4—C5 | 122.1 (4) | C28—C27—H27A | 118.8 |
C3—C4—H4A | 119.0 | C26—C27—H27A | 118.8 |
C5—C4—H4A | 119.0 | C29—C28—C27 | 116.1 (4) |
C6—C5—C4 | 121.6 (4) | C29—C28—H28A | 122.0 |
C6—C5—H5A | 119.2 | C27—C28—H28A | 122.0 |
C4—C5—H5A | 119.2 | C28—C29—C24 | 122.2 (4) |
C5—C6—C7 | 116.9 (4) | C28—C29—N4 | 131.6 (4) |
C5—C6—H6A | 121.6 | C24—C29—N4 | 106.2 (3) |
C7—C6—H6A | 121.6 | N4—C30—C31 | 113.8 (3) |
N3—C7—C6 | 131.6 (4) | N4—C30—H30A | 108.8 |
N3—C7—C2 | 106.6 (3) | C31—C30—H30A | 108.8 |
C6—C7—C2 | 121.8 (4) | N4—C30—H30B | 108.8 |
N3—C8—C9 | 112.9 (3) | C31—C30—H30B | 108.8 |
N3—C8—H8A | 109.0 | H30A—C30—H30B | 107.7 |
C9—C8—H8A | 109.0 | C30—C31—C32 | 109.7 (4) |
N3—C8—H8B | 109.0 | C30—C31—H31A | 109.7 |
C9—C8—H8B | 109.0 | C32—C31—H31A | 109.7 |
H8A—C8—H8B | 107.8 | C30—C31—H31B | 109.7 |
C8—C9—C10 | 111.5 (3) | C32—C31—H31B | 109.7 |
C8—C9—H9A | 109.3 | H31A—C31—H31B | 108.2 |
C10—C9—H9A | 109.3 | C31—C32—C33 | 113.6 (5) |
C8—C9—H9B | 109.3 | C31—C32—H32A | 108.9 |
C10—C9—H9B | 109.3 | C33—C32—H32A | 108.9 |
H9A—C9—H9B | 108.0 | C31—C32—H32B | 108.9 |
C11—C10—C9 | 112.6 (4) | C33—C32—H32B | 108.9 |
C11—C10—H10A | 109.1 | H32A—C32—H32B | 107.7 |
C9—C10—H10A | 109.1 | C34—C33—C32 | 113.1 (6) |
C11—C10—H10B | 109.1 | C34—C33—H33A | 109.0 |
C9—C10—H10B | 109.1 | C32—C33—H33A | 109.0 |
H10A—C10—H10B | 107.8 | C34—C33—H33B | 109.0 |
C10—C11—C12 | 112.5 (4) | C32—C33—H33B | 109.0 |
C10—C11—H11A | 109.1 | H33A—C33—H33B | 107.8 |
C12—C11—H11A | 109.1 | C33—C34—H34A | 109.5 |
C10—C11—H11B | 109.1 | C33—C34—H34B | 109.5 |
C12—C11—H11B | 109.1 | H34A—C34—H34B | 109.5 |
H11A—C11—H11B | 107.8 | C33—C34—H34C | 109.5 |
C11—C12—H12A | 109.5 | H34A—C34—H34C | 109.5 |
C11—C12—H12B | 109.5 | H34B—C34—H34C | 109.5 |
H12A—C12—H12B | 109.5 | ||
C4P—O1P—C1P—C2P | −55.9 (6) | C15—C16—C17—C23 | −179.9 (4) |
Hg—O1P—C1P—C2P | 100.4 (4) | C16—C17—C18—C13 | 0.3 (5) |
C3P—O2P—C2P—C1P | −59.8 (6) | C23—C17—C18—C13 | 179.3 (3) |
O1P—C1P—C2P—O2P | 58.5 (6) | C16—C17—C18—Te1 | 178.0 (3) |
C2P—O2P—C3P—C4P | 59.4 (7) | C23—C17—C18—Te1 | −3.0 (4) |
C1P—O1P—C4P—C3P | 55.9 (7) | C14—C13—C18—C17 | 1.5 (5) |
Hg—O1P—C4P—C3P | −97.5 (5) | C1—C13—C18—C17 | −178.4 (3) |
O2P—C3P—C4P—O1P | −58.5 (7) | C14—C13—C18—Te1 | −176.3 (3) |
C2—N1—C1—N3 | 1.5 (4) | C1—C13—C18—Te1 | 3.9 (4) |
Te1—N1—C1—N3 | −174.9 (2) | C14—C15—C19—C20 | −4.6 (5) |
C2—N1—C1—C13 | −179.5 (3) | C16—C15—C19—C20 | 176.5 (4) |
Te1—N1—C1—C13 | 4.2 (4) | C14—C15—C19—C21 | −124.6 (4) |
C7—N3—C1—N1 | −1.8 (4) | C16—C15—C19—C21 | 56.4 (5) |
C8—N3—C1—N1 | 173.3 (4) | C14—C15—C19—C22 | 115.2 (4) |
C7—N3—C1—C13 | 179.3 (4) | C16—C15—C19—C22 | −63.8 (5) |
C8—N3—C1—C13 | −5.6 (7) | C24—N2—C23—N4 | 1.5 (4) |
C1—N1—C2—C3 | −179.8 (4) | Te1—N2—C23—N4 | 179.4 (2) |
Te1—N1—C2—C3 | −5.0 (7) | C24—N2—C23—C17 | −178.1 (3) |
C1—N1—C2—C7 | −0.6 (4) | Te1—N2—C23—C17 | −0.1 (4) |
Te1—N1—C2—C7 | 174.2 (3) | C29—N4—C23—N2 | −0.3 (4) |
N1—C2—C3—C4 | 178.9 (4) | C30—N4—C23—N2 | −171.4 (4) |
C7—C2—C3—C4 | −0.2 (6) | C29—N4—C23—C17 | 179.2 (4) |
C2—C3—C4—C5 | 1.7 (7) | C30—N4—C23—C17 | 8.1 (7) |
C3—C4—C5—C6 | −1.4 (8) | C18—C17—C23—N2 | 1.9 (5) |
C4—C5—C6—C7 | −0.4 (7) | C16—C17—C23—N2 | −179.1 (4) |
C1—N3—C7—C6 | −178.2 (4) | C18—C17—C23—N4 | −177.6 (4) |
C8—N3—C7—C6 | 6.5 (7) | C16—C17—C23—N4 | 1.4 (7) |
C1—N3—C7—C2 | 1.3 (4) | C23—N2—C24—C29 | −2.1 (4) |
C8—N3—C7—C2 | −174.0 (3) | Te1—N2—C24—C29 | −179.3 (3) |
C5—C6—C7—N3 | −178.7 (4) | C23—N2—C24—C25 | 177.3 (4) |
C5—C6—C7—C2 | 1.9 (6) | Te1—N2—C24—C25 | 0.1 (7) |
N1—C2—C7—N3 | −0.5 (4) | N2—C24—C25—C26 | 179.7 (4) |
C3—C2—C7—N3 | 178.9 (4) | C29—C24—C25—C26 | −1.0 (6) |
N1—C2—C7—C6 | 179.1 (4) | C24—C25—C26—C27 | −0.2 (6) |
C3—C2—C7—C6 | −1.6 (6) | C25—C26—C27—C28 | 1.4 (6) |
C1—N3—C8—C9 | 93.8 (5) | C26—C27—C28—C29 | −1.2 (6) |
C7—N3—C8—C9 | −91.8 (5) | C27—C28—C29—C24 | 0.0 (6) |
N3—C8—C9—C10 | −173.8 (3) | C27—C28—C29—N4 | 178.4 (4) |
C8—C9—C10—C11 | −173.5 (4) | N2—C24—C29—C28 | −179.4 (4) |
C9—C10—C11—C12 | −174.6 (4) | C25—C24—C29—C28 | 1.2 (6) |
N1—C1—C13—C14 | 174.8 (4) | N2—C24—C29—N4 | 1.9 (4) |
N3—C1—C13—C14 | −6.4 (7) | C25—C24—C29—N4 | −177.6 (3) |
N1—C1—C13—C18 | −5.3 (5) | C23—N4—C29—C28 | −179.6 (4) |
N3—C1—C13—C18 | 173.5 (4) | C30—N4—C29—C28 | −7.9 (6) |
C18—C13—C14—C15 | −2.5 (6) | C23—N4—C29—C24 | −1.0 (4) |
C1—C13—C14—C15 | 177.3 (4) | C30—N4—C29—C24 | 170.7 (3) |
C13—C14—C15—C16 | 1.8 (6) | C23—N4—C30—C31 | −92.9 (5) |
C13—C14—C15—C19 | −177.2 (4) | C29—N4—C30—C31 | 97.3 (4) |
C14—C15—C16—C17 | 0.0 (6) | N4—C30—C31—C32 | −178.7 (4) |
C19—C15—C16—C17 | 179.0 (4) | C30—C31—C32—C33 | 171.3 (5) |
C15—C16—C17—C18 | −1.0 (6) | C31—C32—C33—C34 | 66.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···I1 | 0.95 | 3.16 | 4.086 (4) | 164 |
C8—H8B···I2i | 0.99 | 3.08 | 3.997 (4) | 155 |
C9—H9B···I1ii | 0.99 | 3.18 | 4.095 (4) | 155 |
C30—H30B···I1iii | 0.99 | 3.28 | 4.111 (4) | 142 |
C31—H31B···I3iv | 0.99 | 3.20 | 4.185 (4) | 172 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+3/2. |
Funding information
RJB is grateful for NSF award 1205608 for partial funding of this research, to Howard University Nanoscience Facility to access to liquid nitrogen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.
References
Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press. Google Scholar
Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds, in Organoselenium Chemistry, edited by T. Wirth, p. 361. Hoboken: John Wiley & Sons, Inc. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739. CrossRef CAS Google Scholar
Crochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089–2092. CSD CrossRef CAS Google Scholar
Frey, M. & Monier, J.-C. (1971). Acta Cryst. B27, 2487–2490. CSD CrossRef IUCr Journals Google Scholar
Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387. CSD CrossRef CAS Google Scholar
Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998. CrossRef CAS Google Scholar
Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts, Organoselenium Chemistry, edited by T. Wirth. p. 321. Hoboken: John Wiley & Sons, Inc. Google Scholar
Small, R. W. H. (1982). Acta Cryst. B38, 2886–2887. CSD CrossRef CAS IUCr Journals Google Scholar
Yadav, S., Raju, S., Singh, H. B. & Butcher, R. J. (2016). Dalton Trans. 45, 8458–8467. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.