research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystallographic characterization of [2,2-bis­­(η5-penta­methyl­cyclo­penta­dien­yl)-3,4-bis­(tri­methyl­sil­yl)-2-zircona­furan-5-one-κO5]triiso­butyl­aluminium

CROSSMARK_Color_square_no_text.svg

aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of, Sciences, Vavilov St. 28, 119991, Moscow, Russian Federation, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by A. M. Chippindale, University of Reading, England (Received 18 December 2017; accepted 22 March 2018; online 27 March 2018)

The crystal structure of the title zwitterionic zirconocene complex containing a furan­one unit, [AlZr(C10H15)2(C4H9)3(C9H18O2Si2)], is reported. On reacting a zircona­furan­one with two equivalents of HAl(i-Bu)2, disproportionation of the Lewis acid results in the formation of a triiso­butyl­aluminium fragment, Al(i-Bu)3, which coordinates to the exocyclic carbonyl O atom of the zircona­furan­one ring. Single-crystal X-ray diffraction reveals that the zircona­furan­one ring remains intact with coordination of the aluminium to the exocyclic O atom. One of the i-butyl groups is disordered over two sets of sites, with an occupancy ratio of 0.731 (3):0.269 (3).

1. Chemical context

Metallocene complexes of early transition metals can be activated by strong Lewis acids for many catalytic purposes. Reactions of group 4 metallocene complexes with Lewis acids such as HAl(i-Bu)2, Al(i-Bu)3 and also B(C6F5)3 are therefore of great inter­est and have been studied intensively (Brintzinger et al., 1995[Brintzinger, H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. (1995). Angew. Chem. 107, 1255-1283.]). It has been reported previously that titana- and zirconacycles react readily with Al(i-Bu)3/HAl(i-Bu)2 to give either heterobimetallic complexes with inter­esting structural features (Erker et al., 1992[Erker, G., Albrecht, M., Werner, S., Nolte, M. & Krüger, C. (1992). Chem. Ber. 125, 1953-1956.]; Arndt et al., 2001[Arndt, P., Spannenberg, A., Baumann, W., Becke, S. & Rosenthal, U. (2001). Eur. J. Inorg. Chem. pp. 2885-2890.]) or zwitterionic binuclear compounds (Erker et al., 1992[Erker, G., Albrecht, M., Werner, S., Nolte, M. & Krüger, C. (1992). Chem. Ber. 125, 1953-1956.]; Burlakov et al., 2004[Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2004). Organometallics, 23, 4160-4165.], 2006[Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 519-522.], 2011[Burlakov, V. V., Kaleta, K., Beweries, T., Arndt, P., Baumann, W., Spannenberg, A., Shur, V. B. & Rosenthal, U. (2011). Organometallics, 30, 1157-1161.]). The latter demonstrated remarkable catalytic activity in the ROP of -caprolactone (Arndt et al., 1996[Arndt, P., Lefeber, C., Kempe, R., Tillack, A. & Rosenthal, U. (1996). Chem. Ber. 129, 1281-1285.]; Arndt et al., 1997[Arndt, P., Thomas, D. & Rosenthal, U. (1997). Tetrahedron Lett. 38, 5467-5468.]). The structure of a zwitterionic zirconocene ester enolate complex and a tantalactone, each coordinated to Al(C6F5)3 units, were reported recently (Tsurugi et al., 2006[Tsurugi, H., Ohno, T., Yamagata, T. & Mashima, K. (2006). Organometallics, 25, 3179-3189.]). The role of the zirconocene complex as an inter­mediate in the isospecific polymerization of methacrylates has been discussed (Zr: Bolig & Chen, 2004[Bolig, A. D. & Chen, E. Y.-X. (2004). J. Am. Chem. Soc. 126, 4897-4906.]; Ta: Tsurugi et al., 2006[Tsurugi, H., Ohno, T., Yamagata, T. & Mashima, K. (2006). Organometallics, 25, 3179-3189.]). Recently, we found that the reaction of a zirconadi­hydro­furan with HAl(i-Bu)2 gave a 1:1 complex where, in addition to the coordination of the aluminium atom to the oxygen of the intact furan ring, a Zr–H–Al bridge was obtained. This compound also behaves as an active catalyst in the ROP of -caprolactone (Burlakov et al., 2017[Burlakov, V. V., Bogdanov, V. S., Sokolova, O. O., Arndt, P., Spannenberg, A., Minacheva, M. Kh., Lyssenko, K. A., Anan'ev, I. A., Rosenthal, U. & Shur, V. B. (2017). ChemistrySelect, 2, 399-404.]). In addition, a zwitterionic hafnocene furan­one–B(C6F5)3 adduct has been synthesized and structurally characterized (Beweries et al., 2009[Beweries, T., Burlakov, V. V., Rosenthal, U. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 95-97.]). We were therefore inter­ested in the reactivity of the zirconafuran­one 1, whose crystal structure has been reported (Pellny et al., 1999[Pellny, P.-M., Burlakov, V. V., Baumann, W., Spannenberg, A. & Rosenthal, U. (1999). Z. Anorg. Allg. Chem. 625, 910-918.]), towards HAl(i-Bu)2.

[Scheme 1]

In the present work, the zirconafuran­one 1 reacts with two equivalents of HAl(i-Bu)2, and a disproportionation of the Lewis acid gives a triiso­butyl­aluminium fragment, leading to the formation of the zwitterionic title compound 2 by coordination of Al(i-Bu)3 to the exocyclic carbonyl oxygen of the zircona­furan­one ring (see Scheme[link]).

2. Structural commentary

The mol­ecular structure of 2 (Fig. 1[link]) shows a bent zirconocene unit, together with a planar five-membered metallacycle (the intact zircona­furan­one) with an aluminium atom of the i-Bu3Al group coordinated to the exocyclic oxygen atom. The values of the Al1—O2 distance [1.9016 (10) Å] and the Al1—O2—C3 angle [134.62 (9)°] are as expected. As a result of the complexation of the organoaluminium unit in 2, the C3—O2 bond is essentially elongated compared to that in the starting complex 1 [1: 1.222 (6), 2: 1.2605 (15) Å)] whereas the C3—O1 bond is shortened [1: 1.326 (6), 2: 1.2819 (15) Å]. This shortening is accompanied by an elongation of the Zr1—O1 distance [1: 2.048 (4), 2: 2.0891 (9) Å] and a slight decrease in the C2—C3 distance [1: 1.524 (7), 2: 1.5055 (18) Å]. All these bond lengths lie in the expected ranges and similar values have been reported for a hafnocene complex coordinated with B(C6F5)3 (Beweries et al., 2009[Beweries, T., Burlakov, V. V., Rosenthal, U. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 95-97.]), and for zwitterionic adducts of the Lewis acid Al(C6F5)3 to either a zirconocene enolate (Bolig et al., 2004[Bolig, A. D. & Chen, E. Y.-X. (2004). J. Am. Chem. Soc. 126, 4897-4906.]) or a tantalalactone (Tsurugi et al., 2006[Tsurugi, H., Ohno, T., Yamagata, T. & Mashima, K. (2006). Organometallics, 25, 3179-3189.]). These effects can be explained by a contribution of the resonance forms 2a2c to the electronic structure of complex 2 (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex 2 with the atom labelling. Displacement ellipsoids correspond to the 30% probability level. H atoms have been omitted for clarity. The minor disorder component is indicated by open bonds.
[Figure 2]
Figure 2
Possible resonance structures of complex 2.

The zircona­furan­one metallacycle in 2 retains its virtually planar structure. The endocyclic C1—Zr1—O1 bond angle [74.44 (4)°] is close to that in the starting complex 1 [75.5 (2)°]. The Al atom deviates from the zircona­furan­one plane by 0.21 Å.

3. Supra­molecular features

For the title complex 2 no significant supra­molecular features are observed. The crystal packing appears to be dominated by van der Waals inter­actions (Fig. 3[link]).

[Figure 3]
Figure 3
Packing diagram for 2 viewed along the a axis. Displacement ellipsoids correspond to the 30% probability level. H atoms and lower occupancy sites have been omitted for clarity.

4. Synthesis and crystallisation

All operations were carried out under argon with standard Schlenk techniques or in a glovebox. The starting zirconona­furan­one 1 was prepared according to a method previously described in the literature (Pellny et al., 1999[Pellny, P.-M., Burlakov, V. V., Baumann, W., Spannenberg, A. & Rosenthal, U. (1999). Z. Anorg. Allg. Chem. 625, 910-918.]).

A commercial 1 M solution of iBu2AlH in cyclo­hexane was purchased from Sigma Aldrich and used as received. Solvents were purified by conventional methods and were distilled twice over metallic sodium (toluene, n-hexa­ne) under Ar prior to use. The 1H and 13C NMR spectra were recorded on Bruker AMX-400 and AV-400 spectrometers. The IR spectra were recorded on a Nicolet Magna IR-750 FTIR spectrometer. The mass spectra were measured using a MAT 95-XP instrument.

Synthesis of 2: To a solution of 1 (0.216 g, 0.38 mmol) in 7–8 mL of toluene were added 0.8 mL of a 1 M solution of iBu2AlH (0.8 mmol) in cyclo­hexane. The resulting mixture was stirred for several minutes and then allowed to stand under Ar at room temperature. After one day, the resulting yellow solution was evaporated under vacuum to give an oily yellow residue. Then, n-hexane (1.0–1.5 mL) was added and the solution obtained allowed to stand overnight at room temperature. The following day, the precipitated fine crystalline orange complex 2 was separated from the mother liquor by deca­nting, washed with cold n-hexane and dried in vacuum. Yield of 2: 0.221 g (74%). A recrystallization of the complex from n-hexane gave 0.114 g of red–orange crystals of 2 suitable for an X-ray diffraction study. M.p. 434–436 K (dec.) under Ar. C41H75AlO2Si2Zr (774.41): calculated C 63.59, H 9.76; found C 63.31, H 9.63%. 1H NMR (C6D6, 295K, δ, ppm): −0.43 (s, br, 3H, α-SiMe), 0.28 (s, br, 6H, α-SiMe2), 0.51 (d, 3J = 7.0 Hz, 6H, CH2); 0.55 (s, 9H, β-SiMe3), 1.48 (d, 3J = 6.6 Hz, 18H, CH3); 1.66 (s, 30H, Cp*); 2.46 (m, 3H, CH). 13C NMR (C6D6, 295K, δ, ppm): 3.4 (β-SiMe3); 11.9 (C5Me5); 25.8 (CH2); 27.7 (CH); 29.5 (CH3); 124.4 (C5Me5); 169.5 (C=O); 172.8 (β-C); at 295 K the signals of α-C, and α-SiMe3 are not observed. IR (ATR, cm−1): νsCO2, 1340; νasCO2, 1520. MS (70 eV, m/z): 675 [M − C2SiMe3]+, 574 [M − iBu3Al]+, 360 [Cp*2Zr]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in idealized positions and refined using a riding model: C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. One of the i-butyl groups was found to be disordered over two sets of sites (C11A, C12A, C13A/C11B, C12B, C13B) with an occupancy ratio of 0.731 (3):0.269 (3). The EADP instruction was used during modelling of this group. The DFIX instruction was used for restraining the distance C11B–C13B.

Table 1
Experimental details

Crystal data
Chemical formula [AlZr(C10H15)2(C4H9)3(C9H18O2Si2)]
Mr 774.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.5404 (2), 16.5073 (3), 22.9519 (4)
β (°) 95.0206 (9)
V3) 4355.58 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.53 × 0.32 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 97067, 10803, 9409
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.04
No. of reflections 10803
No. of parameters 448
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29
Computer programs: APEX2 and, SAINT (Bruker, 2011[Bruker (2011). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

[2,2-Bis(η5-pentamethylcyclopentadienyl)-3,4-bis(trimethylsilyl)-2-zirconafuran-5-one-κO5]triisobutylaluminium top
Crystal data top
[AlZr(C10H15)2(C4H9)3(C9H18O2Si2)]F(000) = 1672
Mr = 774.39Dx = 1.181 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5404 (2) ÅCell parameters from 9039 reflections
b = 16.5073 (3) Åθ = 2.3–28.6°
c = 22.9519 (4) ŵ = 0.36 mm1
β = 95.0206 (9)°T = 150 K
V = 4355.58 (13) Å3Prism, orange
Z = 40.53 × 0.32 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
10803 independent reflections
Radiation source: fine-focus sealed tube9409 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1515
Tmin = 0.671, Tmax = 0.746k = 2221
97067 measured reflectionsl = 3030
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0308P)2 + 2.1095P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
10803 reflectionsΔρmax = 0.37 e Å3
448 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.31511 (3)0.78416 (2)0.06571 (2)0.01847 (8)
C10.07740 (11)0.70811 (8)0.11621 (6)0.0180 (2)
C20.07292 (11)0.72120 (8)0.05721 (6)0.0180 (2)
C30.18627 (11)0.74781 (8)0.03551 (5)0.0170 (2)
C40.02054 (18)0.67250 (11)0.23547 (7)0.0410 (4)
H4A0.04560.72280.25320.061*
H4B0.06350.66570.24440.061*
H4C0.06140.62650.25130.061*
C50.17679 (13)0.75327 (11)0.14051 (8)0.0376 (4)
H5A0.24950.72480.12830.056*
H5B0.15820.79090.10970.056*
H5C0.18580.78350.17660.056*
C60.10857 (15)0.57277 (10)0.13180 (8)0.0365 (4)
H6A0.08560.53430.16320.055*
H6B0.07430.55630.09610.055*
H6C0.19350.57340.12460.055*
C70.19217 (14)0.67444 (12)0.00642 (8)0.0399 (4)
H7A0.22740.71570.03000.060*
H7B0.18820.62280.02760.060*
H7C0.23950.66780.03090.060*
C80.06282 (15)0.80310 (12)0.05034 (8)0.0401 (4)
H8A0.00470.81250.07260.060*
H8B0.07100.84840.02340.060*
H8C0.13310.79890.07740.060*
C90.01225 (16)0.62376 (12)0.05374 (8)0.0412 (4)
H9A0.04470.61350.08710.062*
H9B0.02320.57440.03020.062*
H9C0.08660.63980.06790.062*
C100.43851 (12)0.84505 (9)0.01800 (6)0.0227 (3)
H10A0.41380.90240.01650.027*0.731 (3)
H10B0.44240.82380.02250.027*0.731 (3)
H10C0.39910.88720.00380.027*0.269 (3)
H10D0.47490.80690.01140.027*0.269 (3)
C140.36565 (14)0.67117 (9)0.08337 (6)0.0280 (3)
H14A0.44020.66150.05960.034*
H14B0.30790.63380.06850.034*
C150.38273 (13)0.64510 (9)0.14575 (6)0.0258 (3)
H150.43330.68620.16300.031*
C160.44275 (17)0.56268 (10)0.14793 (8)0.0404 (4)
H16A0.52010.56570.12670.061*
H16B0.45050.54780.18880.061*
H16C0.39620.52170.12970.061*
C170.26749 (17)0.64230 (11)0.18318 (8)0.0434 (4)
H17A0.21640.60220.16710.065*
H17B0.28120.62710.22330.065*
H17C0.23050.69580.18330.065*
C180.24126 (12)0.84926 (8)0.13239 (6)0.0229 (3)
H18A0.28140.83630.16760.028*
H18B0.15950.83130.14000.028*
C190.24145 (13)0.94209 (9)0.12488 (6)0.0266 (3)
H190.32000.95810.10660.032*
C200.22088 (16)0.98725 (10)0.18296 (8)0.0378 (4)
H20A0.14370.97350.20160.057*
H20B0.28040.97140.20870.057*
H20C0.22541.04580.17580.057*
C210.15199 (15)0.96891 (10)0.08371 (7)0.0347 (3)
H21A0.15531.02790.07910.052*
H21B0.16910.94300.04550.052*
H21C0.07400.95300.10010.052*
C220.30471 (14)0.58593 (9)0.12621 (7)0.0289 (3)
C230.27096 (13)0.57747 (9)0.18382 (8)0.0302 (3)
C240.35679 (13)0.61435 (9)0.22298 (6)0.0247 (3)
C250.44621 (12)0.64332 (8)0.18925 (6)0.0216 (3)
C260.41274 (13)0.62635 (9)0.12985 (6)0.0244 (3)
C270.24605 (18)0.54962 (11)0.07126 (9)0.0462 (5)
H27A0.25200.58720.03860.069*
H27B0.16390.53960.07650.069*
H27C0.28400.49840.06280.069*
C280.17516 (17)0.52383 (11)0.20124 (11)0.0537 (6)
H28A0.20470.46860.20740.081*
H28B0.11130.52370.17020.081*
H28C0.14680.54420.23750.081*
C290.36174 (17)0.60883 (11)0.28868 (7)0.0394 (4)
H29A0.28740.62670.30190.059*
H29B0.42440.64360.30600.059*
H29C0.37670.55260.30090.059*
C300.56634 (13)0.67020 (10)0.21131 (7)0.0319 (3)
H30A0.62280.62880.20220.048*
H30B0.57000.67810.25370.048*
H30C0.58460.72130.19240.048*
C310.48657 (15)0.64314 (11)0.08034 (7)0.0373 (4)
H31A0.54890.60280.08060.056*
H31B0.52060.69740.08500.056*
H31C0.43830.64020.04310.056*
C320.24716 (12)0.88143 (8)0.15538 (6)0.0211 (3)
C330.17173 (12)0.85625 (8)0.19759 (6)0.0207 (3)
C340.24156 (12)0.82389 (8)0.24646 (6)0.0211 (3)
C350.35968 (12)0.83082 (8)0.23447 (6)0.0213 (3)
C360.36309 (12)0.86491 (8)0.17777 (6)0.0218 (3)
C370.20965 (15)0.92403 (9)0.09909 (6)0.0298 (3)
H37A0.20090.98210.10660.045*
H37B0.13510.90180.08260.045*
H37C0.26850.91610.07130.045*
C380.04497 (13)0.87667 (9)0.19567 (7)0.0299 (3)
H38A0.03590.93240.20940.045*
H38B0.00640.83930.22100.045*
H38C0.00970.87170.15540.045*
C390.20212 (14)0.80374 (10)0.30555 (6)0.0303 (3)
H39A0.23940.75340.32000.045*
H39B0.11740.79690.30220.045*
H39C0.22380.84790.33290.045*
C400.46210 (14)0.82334 (10)0.27918 (7)0.0319 (3)
H40A0.53340.81740.25930.048*
H40B0.45210.77570.30370.048*
H40C0.46770.87200.30370.048*
C410.47167 (14)0.88740 (10)0.14958 (7)0.0329 (3)
H41A0.45360.89210.10720.049*
H41B0.53080.84540.15790.049*
H41C0.50120.93930.16530.049*
O10.27625 (8)0.75358 (6)0.07220 (4)0.01799 (18)
O20.19180 (8)0.76400 (6)0.01785 (4)0.02080 (19)
Si10.05531 (3)0.67729 (2)0.15391 (2)0.02370 (8)
Si20.04190 (3)0.70704 (3)0.00788 (2)0.02353 (8)
Zr10.26628 (2)0.72870 (2)0.16087 (2)0.01563 (4)
C11A0.56192 (17)0.84307 (13)0.03814 (9)0.0264 (4)0.731 (3)
H11A0.58890.78550.03740.032*0.731 (3)
C12A0.6450 (4)0.8917 (3)0.00443 (16)0.0431 (6)0.731 (3)
H12A0.64160.87060.04420.065*0.731 (3)
H12B0.72460.88670.00700.065*0.731 (3)
H12C0.62190.94880.00330.065*0.731 (3)
C13A0.5658 (2)0.8747 (2)0.10002 (11)0.0431 (6)0.731 (3)
H13A0.51230.84320.12670.065*0.731 (3)
H13B0.54240.93180.10150.065*0.731 (3)
H13C0.64500.86970.11180.065*0.731 (3)
C11B0.5373 (5)0.8867 (4)0.0468 (2)0.0264 (4)0.269 (3)
H11B0.50620.93790.06560.032*0.269 (3)
C12B0.6443 (11)0.9079 (8)0.0060 (5)0.0431 (6)0.269 (3)
H12D0.62130.94220.02590.065*0.269 (3)
H12E0.68010.85800.01030.065*0.269 (3)
H12F0.70040.93710.02790.065*0.269 (3)
C13B0.5838 (6)0.8341 (5)0.0938 (3)0.0431 (6)0.269 (3)
H13D0.51950.81780.12210.065*0.269 (3)
H13E0.64110.86480.11390.065*0.269 (3)
H13F0.62080.78570.07580.065*0.269 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.02091 (19)0.02017 (19)0.01445 (17)0.00112 (15)0.00230 (14)0.00134 (14)
C10.0193 (6)0.0154 (6)0.0196 (6)0.0007 (5)0.0029 (5)0.0006 (5)
C20.0171 (6)0.0180 (6)0.0189 (6)0.0006 (5)0.0019 (5)0.0008 (5)
C30.0194 (6)0.0146 (6)0.0169 (6)0.0018 (4)0.0012 (4)0.0003 (4)
C40.0602 (11)0.0401 (9)0.0246 (8)0.0098 (8)0.0148 (7)0.0029 (7)
C50.0209 (7)0.0409 (9)0.0519 (10)0.0016 (6)0.0084 (7)0.0104 (8)
C60.0341 (8)0.0295 (8)0.0458 (10)0.0116 (7)0.0030 (7)0.0004 (7)
C70.0252 (8)0.0575 (11)0.0361 (9)0.0119 (7)0.0030 (6)0.0010 (8)
C80.0295 (8)0.0482 (10)0.0406 (9)0.0011 (7)0.0088 (7)0.0158 (8)
C90.0397 (9)0.0488 (11)0.0341 (9)0.0034 (8)0.0029 (7)0.0188 (8)
C100.0219 (6)0.0266 (7)0.0199 (6)0.0007 (5)0.0031 (5)0.0011 (5)
C140.0378 (8)0.0247 (7)0.0214 (7)0.0053 (6)0.0025 (6)0.0024 (5)
C150.0299 (7)0.0225 (7)0.0259 (7)0.0017 (6)0.0077 (6)0.0007 (5)
C160.0498 (10)0.0292 (8)0.0440 (10)0.0112 (7)0.0136 (8)0.0027 (7)
C170.0529 (11)0.0340 (9)0.0401 (10)0.0050 (8)0.0143 (8)0.0113 (7)
C180.0271 (7)0.0240 (7)0.0177 (6)0.0020 (5)0.0014 (5)0.0020 (5)
C190.0278 (7)0.0235 (7)0.0274 (7)0.0011 (6)0.0036 (6)0.0038 (6)
C200.0455 (10)0.0294 (8)0.0386 (9)0.0059 (7)0.0036 (7)0.0133 (7)
C210.0435 (9)0.0278 (8)0.0320 (8)0.0049 (7)0.0001 (7)0.0039 (6)
C220.0360 (8)0.0162 (6)0.0326 (8)0.0070 (6)0.0085 (6)0.0028 (6)
C230.0294 (7)0.0162 (6)0.0445 (9)0.0016 (6)0.0008 (6)0.0086 (6)
C240.0290 (7)0.0209 (7)0.0244 (7)0.0067 (5)0.0037 (5)0.0080 (5)
C250.0231 (6)0.0208 (6)0.0205 (6)0.0060 (5)0.0003 (5)0.0019 (5)
C260.0312 (7)0.0215 (7)0.0202 (6)0.0105 (6)0.0008 (5)0.0005 (5)
C270.0544 (11)0.0280 (8)0.0517 (11)0.0097 (8)0.0207 (9)0.0165 (8)
C280.0392 (10)0.0283 (9)0.0938 (17)0.0047 (8)0.0073 (10)0.0242 (10)
C290.0532 (10)0.0405 (9)0.0259 (8)0.0163 (8)0.0114 (7)0.0143 (7)
C300.0247 (7)0.0349 (8)0.0353 (8)0.0062 (6)0.0017 (6)0.0014 (7)
C310.0436 (9)0.0452 (10)0.0244 (7)0.0200 (8)0.0098 (7)0.0062 (7)
C320.0281 (7)0.0145 (6)0.0204 (6)0.0014 (5)0.0005 (5)0.0013 (5)
C330.0233 (6)0.0160 (6)0.0225 (6)0.0010 (5)0.0006 (5)0.0032 (5)
C340.0257 (6)0.0196 (6)0.0181 (6)0.0000 (5)0.0022 (5)0.0029 (5)
C350.0240 (6)0.0201 (6)0.0195 (6)0.0005 (5)0.0004 (5)0.0048 (5)
C360.0254 (7)0.0187 (6)0.0212 (6)0.0044 (5)0.0022 (5)0.0039 (5)
C370.0444 (9)0.0202 (7)0.0243 (7)0.0020 (6)0.0001 (6)0.0034 (5)
C380.0247 (7)0.0269 (7)0.0379 (8)0.0045 (6)0.0019 (6)0.0025 (6)
C390.0353 (8)0.0356 (8)0.0208 (7)0.0014 (7)0.0071 (6)0.0002 (6)
C400.0289 (7)0.0373 (9)0.0278 (7)0.0042 (6)0.0066 (6)0.0103 (6)
C410.0315 (8)0.0343 (8)0.0339 (8)0.0104 (6)0.0085 (6)0.0019 (7)
O10.0171 (4)0.0203 (4)0.0165 (4)0.0010 (3)0.0008 (3)0.0016 (3)
O20.0204 (4)0.0268 (5)0.0152 (4)0.0009 (4)0.0015 (3)0.0021 (4)
Si10.02271 (18)0.0256 (2)0.02383 (19)0.00627 (15)0.00793 (14)0.00108 (15)
Si20.01993 (17)0.0307 (2)0.01937 (18)0.00313 (15)0.00191 (14)0.00152 (15)
Zr10.01765 (6)0.01484 (6)0.01414 (6)0.00022 (4)0.00003 (4)0.00078 (4)
C11A0.0217 (9)0.0249 (11)0.0329 (10)0.0013 (8)0.0037 (7)0.0032 (9)
C12A0.0308 (7)0.0647 (17)0.0350 (10)0.0145 (10)0.0093 (7)0.0062 (10)
C13A0.0308 (7)0.0647 (17)0.0350 (10)0.0145 (10)0.0093 (7)0.0062 (10)
C11B0.0217 (9)0.0249 (11)0.0329 (10)0.0013 (8)0.0037 (7)0.0032 (9)
C12B0.0308 (7)0.0647 (17)0.0350 (10)0.0145 (10)0.0093 (7)0.0062 (10)
C13B0.0308 (7)0.0647 (17)0.0350 (10)0.0145 (10)0.0093 (7)0.0062 (10)
Geometric parameters (Å, º) top
Al1—O21.9016 (10)C24—C251.4257 (19)
Al1—C101.9912 (14)C24—C291.507 (2)
Al1—C181.9988 (14)C24—Zr12.5348 (13)
Al1—C142.0062 (15)C25—C261.4121 (19)
C1—C21.3679 (18)C25—C301.501 (2)
C1—Si11.8934 (13)C25—Zr12.5466 (13)
C1—Zr12.3508 (13)C26—C311.505 (2)
C2—C31.5055 (18)C26—Zr12.5354 (14)
C2—Si21.9224 (13)C27—H27A0.9800
C3—O21.2605 (15)C27—H27B0.9800
C3—O11.2819 (15)C27—H27C0.9800
C4—Si11.8814 (17)C28—H28A0.9800
C4—H4A0.9800C28—H28B0.9800
C4—H4B0.9800C28—H28C0.9800
C4—H4C0.9800C29—H29A0.9800
C5—Si11.8863 (18)C29—H29B0.9800
C5—H5A0.9800C29—H29C0.9800
C5—H5B0.9800C30—H30A0.9800
C5—H5C0.9800C30—H30B0.9800
C6—Si11.8862 (17)C30—H30C0.9800
C6—H6A0.9800C31—H31A0.9800
C6—H6B0.9800C31—H31B0.9800
C6—H6C0.9800C31—H31C0.9800
C7—Si21.8719 (16)C32—C361.4170 (19)
C7—H7A0.9800C32—C331.4202 (19)
C7—H7B0.9800C32—C371.5010 (19)
C7—H7C0.9800C32—Zr12.5331 (13)
C8—Si21.8658 (18)C33—C341.4264 (19)
C8—H8A0.9800C33—C381.4980 (19)
C8—H8B0.9800C33—Zr12.5485 (13)
C8—H8C0.9800C34—C351.4188 (19)
C9—Si21.8716 (18)C34—C391.5051 (19)
C9—H9A0.9800C34—Zr12.5511 (13)
C9—H9B0.9800C35—C361.4216 (19)
C9—H9C0.9800C35—C401.5010 (19)
C10—C11B1.531 (6)C35—Zr12.5571 (13)
C10—C11A1.536 (2)C36—C411.506 (2)
C10—H10A0.9900C36—Zr12.5256 (13)
C10—H10B0.9900C37—H37A0.9800
C10—H10C0.9900C37—H37B0.9800
C10—H10D0.9900C37—H37C0.9800
C14—C151.524 (2)C38—H38A0.9800
C14—H14A0.9900C38—H38B0.9800
C14—H14B0.9900C38—H38C0.9800
C15—C171.520 (2)C39—H39A0.9800
C15—C161.530 (2)C39—H39B0.9800
C15—H151.0000C39—H39C0.9800
C16—H16A0.9800C40—H40A0.9800
C16—H16B0.9800C40—H40B0.9800
C16—H16C0.9800C40—H40C0.9800
C17—H17A0.9800C41—H41A0.9800
C17—H17B0.9800C41—H41B0.9800
C17—H17C0.9800C41—H41C0.9800
C18—C191.542 (2)O1—Zr12.0891 (9)
C18—H18A0.9900C11A—C13A1.518 (3)
C18—H18B0.9900C11A—C12A1.534 (5)
C19—C211.525 (2)C11A—H11A1.0000
C19—C201.528 (2)C12A—H12A0.9800
C19—H191.0000C12A—H12B0.9800
C20—H20A0.9800C12A—H12C0.9800
C20—H20B0.9800C13A—H13A0.9800
C20—H20C0.9800C13A—H13B0.9800
C21—H21A0.9800C13A—H13C0.9800
C21—H21B0.9800C11B—C13B1.520 (2)
C21—H21C0.9800C11B—C12B1.525 (14)
C22—C261.410 (2)C11B—H11B1.0000
C22—C231.418 (2)C12B—H12D0.9800
C22—C271.503 (2)C12B—H12E0.9800
C22—Zr12.5388 (14)C12B—H12F0.9800
C23—C241.415 (2)C13B—H13D0.9800
C23—C281.498 (2)C13B—H13E0.9800
C23—Zr12.5509 (14)C13B—H13F0.9800
O2—Al1—C10107.81 (5)C36—C32—Zr173.44 (8)
O2—Al1—C18104.24 (5)C33—C32—Zr174.37 (7)
C10—Al1—C18112.72 (6)C37—C32—Zr1121.76 (9)
O2—Al1—C14101.51 (6)C32—C33—C34107.95 (12)
C10—Al1—C14111.95 (6)C32—C33—C38124.70 (13)
C18—Al1—C14117.21 (6)C34—C33—C38126.19 (13)
C2—C1—Si1122.20 (10)C32—C33—Zr173.17 (7)
C2—C1—Zr1111.23 (9)C34—C33—Zr173.86 (8)
Si1—C1—Zr1126.57 (6)C38—C33—Zr1128.42 (9)
C1—C2—C3114.52 (11)C35—C34—C33107.67 (12)
C1—C2—Si2135.55 (10)C35—C34—C39124.34 (13)
C3—C2—Si2109.77 (9)C33—C34—C39126.63 (13)
O2—C3—O1121.03 (12)C35—C34—Zr174.11 (7)
O2—C3—C2120.17 (11)C33—C34—Zr173.66 (7)
O1—C3—C2118.79 (11)C39—C34—Zr1128.38 (10)
Si1—C4—H4A109.5C34—C35—C36108.27 (12)
Si1—C4—H4B109.5C34—C35—C40124.98 (13)
H4A—C4—H4B109.5C36—C35—C40125.12 (13)
Si1—C4—H4C109.5C34—C35—Zr173.64 (8)
H4A—C4—H4C109.5C36—C35—Zr172.54 (7)
H4B—C4—H4C109.5C40—C35—Zr1131.20 (10)
Si1—C5—H5A109.5C32—C36—C35107.90 (12)
Si1—C5—H5B109.5C32—C36—C41126.26 (13)
H5A—C5—H5B109.5C35—C36—C41125.56 (13)
Si1—C5—H5C109.5C32—C36—Zr174.02 (8)
H5A—C5—H5C109.5C35—C36—Zr174.98 (8)
H5B—C5—H5C109.5C41—C36—Zr1121.80 (10)
Si1—C6—H6A109.5C32—C37—H37A109.5
Si1—C6—H6B109.5C32—C37—H37B109.5
H6A—C6—H6B109.5H37A—C37—H37B109.5
Si1—C6—H6C109.5C32—C37—H37C109.5
H6A—C6—H6C109.5H37A—C37—H37C109.5
H6B—C6—H6C109.5H37B—C37—H37C109.5
Si2—C7—H7A109.5C33—C38—H38A109.5
Si2—C7—H7B109.5C33—C38—H38B109.5
H7A—C7—H7B109.5H38A—C38—H38B109.5
Si2—C7—H7C109.5C33—C38—H38C109.5
H7A—C7—H7C109.5H38A—C38—H38C109.5
H7B—C7—H7C109.5H38B—C38—H38C109.5
Si2—C8—H8A109.5C34—C39—H39A109.5
Si2—C8—H8B109.5C34—C39—H39B109.5
H8A—C8—H8B109.5H39A—C39—H39B109.5
Si2—C8—H8C109.5C34—C39—H39C109.5
H8A—C8—H8C109.5H39A—C39—H39C109.5
H8B—C8—H8C109.5H39B—C39—H39C109.5
Si2—C9—H9A109.5C35—C40—H40A109.5
Si2—C9—H9B109.5C35—C40—H40B109.5
H9A—C9—H9B109.5H40A—C40—H40B109.5
Si2—C9—H9C109.5C35—C40—H40C109.5
H9A—C9—H9C109.5H40A—C40—H40C109.5
H9B—C9—H9C109.5H40B—C40—H40C109.5
C11B—C10—Al1120.9 (2)C36—C41—H41A109.5
C11A—C10—Al1117.46 (11)C36—C41—H41B109.5
C11A—C10—H10A107.9H41A—C41—H41B109.5
Al1—C10—H10A107.9C36—C41—H41C109.5
C11A—C10—H10B107.9H41A—C41—H41C109.5
Al1—C10—H10B107.9H41B—C41—H41C109.5
H10A—C10—H10B107.2C3—O1—Zr1120.99 (8)
C11B—C10—H10C107.1C3—O2—Al1134.62 (9)
Al1—C10—H10C107.1C4—Si1—C6105.39 (8)
C11B—C10—H10D107.1C4—Si1—C5106.32 (9)
Al1—C10—H10D107.1C6—Si1—C5110.14 (8)
H10C—C10—H10D106.8C4—Si1—C1110.82 (7)
C15—C14—Al1121.07 (10)C6—Si1—C1112.36 (7)
C15—C14—H14A107.1C5—Si1—C1111.48 (7)
Al1—C14—H14A107.1C8—Si2—C9111.40 (9)
C15—C14—H14B107.1C8—Si2—C7104.85 (8)
Al1—C14—H14B107.1C9—Si2—C7104.33 (9)
H14A—C14—H14B106.8C8—Si2—C2110.57 (7)
C17—C15—C14111.16 (13)C9—Si2—C2106.56 (7)
C17—C15—C16109.32 (14)C7—Si2—C2119.00 (7)
C14—C15—C16112.22 (13)O1—Zr1—C174.44 (4)
C17—C15—H15108.0O1—Zr1—C3685.03 (4)
C14—C15—H15108.0C1—Zr1—C36125.20 (4)
C16—C15—H15108.0O1—Zr1—C3276.58 (4)
C15—C16—H16A109.5C1—Zr1—C3292.80 (4)
C15—C16—H16B109.5C36—Zr1—C3232.53 (4)
H16A—C16—H16B109.5O1—Zr1—C24129.72 (4)
C15—C16—H16C109.5C1—Zr1—C24117.27 (5)
H16A—C16—H16C109.5C36—Zr1—C24114.94 (5)
H16B—C16—H16C109.5C32—Zr1—C24143.03 (5)
C15—C17—H17A109.5O1—Zr1—C2676.27 (4)
C15—C17—H17B109.5C1—Zr1—C26113.37 (5)
H17A—C17—H17B109.5C36—Zr1—C26109.85 (5)
C15—C17—H17C109.5C32—Zr1—C26134.96 (5)
H17A—C17—H17C109.5C24—Zr1—C2653.82 (4)
H17B—C17—H17C109.5O1—Zr1—C2281.45 (4)
C19—C18—Al1116.89 (9)C1—Zr1—C2284.83 (5)
C19—C18—H18A108.1C36—Zr1—C22141.96 (5)
Al1—C18—H18A108.1C32—Zr1—C22157.71 (5)
C19—C18—H18B108.1C24—Zr1—C2253.86 (5)
Al1—C18—H18B108.1C26—Zr1—C2232.27 (5)
H18A—C18—H18B107.3O1—Zr1—C25104.17 (4)
C21—C19—C20109.70 (13)C1—Zr1—C25137.36 (4)
C21—C19—C18111.31 (12)C36—Zr1—C2596.52 (5)
C20—C19—C18112.88 (13)C32—Zr1—C25128.98 (5)
C21—C19—H19107.6C24—Zr1—C2532.59 (4)
C20—C19—H19107.6C26—Zr1—C2532.26 (4)
C18—C19—H19107.6C22—Zr1—C2553.53 (5)
C19—C20—H20A109.5O1—Zr1—C33102.80 (4)
C19—C20—H20B109.5C1—Zr1—C3381.73 (4)
H20A—C20—H20B109.5C36—Zr1—C3353.85 (4)
C19—C20—H20C109.5C32—Zr1—C3332.46 (4)
H20A—C20—H20C109.5C24—Zr1—C33126.62 (5)
H20B—C20—H20C109.5C26—Zr1—C33163.45 (5)
C19—C21—H21A109.5C22—Zr1—C33164.18 (5)
C19—C21—H21B109.5C25—Zr1—C33137.37 (4)
H21A—C21—H21B109.5O1—Zr1—C23113.05 (5)
C19—C21—H21C109.5C1—Zr1—C2387.17 (5)
H21A—C21—H21C109.5C36—Zr1—C23146.98 (5)
H21B—C21—H21C109.5C32—Zr1—C23169.89 (5)
C26—C22—C23107.76 (13)C24—Zr1—C2332.32 (5)
C26—C22—C27124.71 (16)C26—Zr1—C2353.37 (5)
C23—C22—C27127.10 (16)C22—Zr1—C2332.34 (5)
C26—C22—Zr173.73 (8)C25—Zr1—C2353.38 (5)
C23—C22—Zr174.30 (8)C33—Zr1—C23137.91 (5)
C27—C22—Zr1123.70 (10)O1—Zr1—C34130.43 (4)
C24—C23—C22108.41 (13)C1—Zr1—C34105.24 (4)
C24—C23—C28125.21 (16)C36—Zr1—C3453.92 (4)
C22—C23—C28125.21 (17)C32—Zr1—C3453.85 (4)
C24—C23—Zr173.21 (8)C24—Zr1—C3495.39 (5)
C22—C23—Zr173.36 (8)C26—Zr1—C34138.49 (5)
C28—C23—Zr1129.12 (11)C22—Zr1—C34147.93 (5)
C23—C24—C25107.40 (13)C25—Zr1—C34106.71 (4)
C23—C24—C29124.92 (14)C33—Zr1—C3432.49 (4)
C25—C24—C29126.72 (14)C23—Zr1—C34116.45 (5)
C23—C24—Zr174.47 (8)O1—Zr1—C35117.26 (4)
C25—C24—Zr174.16 (8)C1—Zr1—C35134.79 (4)
C29—C24—Zr1125.84 (10)C36—Zr1—C3532.48 (4)
C26—C25—C24107.93 (13)C32—Zr1—C3553.60 (4)
C26—C25—C30123.43 (13)C24—Zr1—C3589.44 (5)
C24—C25—C30127.38 (13)C26—Zr1—C35111.84 (5)
C26—C25—Zr173.43 (8)C22—Zr1—C35138.06 (5)
C24—C25—Zr173.25 (8)C25—Zr1—C3584.76 (4)
C30—C25—Zr1129.13 (10)C33—Zr1—C3553.47 (4)
C22—C26—C25108.47 (13)C23—Zr1—C35120.57 (5)
C22—C26—C31126.77 (14)C34—Zr1—C3532.25 (4)
C25—C26—C31124.58 (14)C13A—C11A—C12A110.4 (2)
C22—C26—Zr174.00 (8)C13A—C11A—C10112.23 (18)
C25—C26—Zr174.31 (8)C12A—C11A—C10110.0 (2)
C31—C26—Zr1121.66 (10)C13A—C11A—H11A108.0
C22—C27—H27A109.5C12A—C11A—H11A108.1
C22—C27—H27B109.5C10—C11A—H11A108.0
H27A—C27—H27B109.5C11A—C12A—H12A109.5
C22—C27—H27C109.5C11A—C12A—H12B109.5
H27A—C27—H27C109.5H12A—C12A—H12B109.5
H27B—C27—H27C109.5C11A—C12A—H12C109.5
C23—C28—H28A109.5H12A—C12A—H12C109.5
C23—C28—H28B109.5H12B—C12A—H12C109.5
H28A—C28—H28B109.5C11A—C13A—H13A109.5
C23—C28—H28C109.5C11A—C13A—H13B109.5
H28A—C28—H28C109.5H13A—C13A—H13B109.5
H28B—C28—H28C109.5C11A—C13A—H13C109.5
C24—C29—H29A109.5H13A—C13A—H13C109.5
C24—C29—H29B109.5H13B—C13A—H13C109.5
H29A—C29—H29B109.5C13B—C11B—C12B104.5 (7)
C24—C29—H29C109.5C13B—C11B—C10111.9 (5)
H29A—C29—H29C109.5C12B—C11B—C10115.5 (5)
H29B—C29—H29C109.5C13B—C11B—H11B108.2
C25—C30—H30A109.5C12B—C11B—H11B108.2
C25—C30—H30B109.5C10—C11B—H11B108.2
H30A—C30—H30B109.5C11B—C12B—H12D109.5
C25—C30—H30C109.5C11B—C12B—H12E109.5
H30A—C30—H30C109.5H12D—C12B—H12E109.5
H30B—C30—H30C109.5C11B—C12B—H12F109.5
C26—C31—H31A109.5H12D—C12B—H12F109.5
C26—C31—H31B109.5H12E—C12B—H12F109.5
H31A—C31—H31B109.5C11B—C13B—H13D109.5
C26—C31—H31C109.5C11B—C13B—H13E109.5
H31A—C31—H31C109.5H13D—C13B—H13E109.5
H31B—C31—H31C109.5C11B—C13B—H13F109.5
C36—C32—C33108.17 (12)H13D—C13B—H13F109.5
C36—C32—C37126.46 (13)H13E—C13B—H13F109.5
C33—C32—C37125.20 (13)
 

Acknowledgements

We thank our technical staff for assistance.

Funding information

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. RO1269/9–1) and the Russian Science Foundation (Project code 18–13-00404).

References

First citationArndt, P., Lefeber, C., Kempe, R., Tillack, A. & Rosenthal, U. (1996). Chem. Ber. 129, 1281–1285.  CSD CrossRef CAS Web of Science Google Scholar
First citationArndt, P., Spannenberg, A., Baumann, W., Becke, S. & Rosenthal, U. (2001). Eur. J. Inorg. Chem. pp. 2885–2890.  CrossRef Google Scholar
First citationArndt, P., Thomas, D. & Rosenthal, U. (1997). Tetrahedron Lett. 38, 5467–5468.  CrossRef Google Scholar
First citationBeweries, T., Burlakov, V. V., Rosenthal, U. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 95–97.  Google Scholar
First citationBolig, A. D. & Chen, E. Y.-X. (2004). J. Am. Chem. Soc. 126, 4897–4906.  CrossRef Google Scholar
First citationBrintzinger, H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. (1995). Angew. Chem. 107, 1255–1283.  CrossRef Google Scholar
First citationBruker (2011). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2004). Organometallics, 23, 4160–4165.  CrossRef Google Scholar
First citationBurlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 519–522.  CrossRef Google Scholar
First citationBurlakov, V. V., Bogdanov, V. S., Sokolova, O. O., Arndt, P., Spannenberg, A., Minacheva, M. Kh., Lyssenko, K. A., Anan'ev, I. A., Rosenthal, U. & Shur, V. B. (2017). ChemistrySelect, 2, 399–404.  CrossRef Google Scholar
First citationBurlakov, V. V., Kaleta, K., Beweries, T., Arndt, P., Baumann, W., Spannenberg, A., Shur, V. B. & Rosenthal, U. (2011). Organometallics, 30, 1157–1161.  CrossRef Google Scholar
First citationErker, G., Albrecht, M., Werner, S., Nolte, M. & Krüger, C. (1992). Chem. Ber. 125, 1953–1956.  CrossRef Google Scholar
First citationPellny, P.-M., Burlakov, V. V., Baumann, W., Spannenberg, A. & Rosenthal, U. (1999). Z. Anorg. Allg. Chem. 625, 910–918.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsurugi, H., Ohno, T., Yamagata, T. & Mashima, K. (2006). Organometallics, 25, 3179–3189.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds